Tentamen lineaire algebra 2 17 januari 2014, 10:00 13:00 zalen 174, 312, 412, 401, 402
|
|
- Martha Maas
- 3 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Tentamen lineaire algebra 2 17 januari 214, 1: 13: zalen 174, 312, 412, 41, 42 Dit zijn geen complete uitwerkingen. Er is dus geen garantie dat het overschrijven met andere getallen voldoende is voor huiswerk of tentamens. Er is ook een bestand met alleen de opgaven. Lees de oplossing pas na het doen van een serieuze poging. Dit is geen openboektentamen. Alleen niet-programmeerbare rekenmachines zijn toegestaan. Bewijs je antwoorden. Opgave 1. Beschouw de reële matrices A = 1 7 ( en B = (a) Bepaal de Jordannormaalvorm van A, inclusief de bijbehorende basistransformatie. (b) Vind een diagonaliseerbare matrix D en een nilpotente matrix N zodat B = D + N en ND = DN. (c) Bepaal B 214. ). Oplossing. (a) Er wordt gevraagd om J en Q met Q 1 AQ = J waarbij J in Jordannormaalvorm staat. Op de webpagina staat hoe je dit kan uitrekenen, en veel voorbeelden. Er wordt expliciet in de opgave gevraagd om ook de basistransformatie Q te geven. Eventueel kan ook Q 1 gegeven worden in plaats van Q. Je kan je antwoord altijd voor jezelf op kladpapier controleren: test of Q volledige rang heeft en geldt AQ = QJ. (b) Het bestaan van D en N is Corollary 5.4. Het bewijs daarvan geeft een algemene methode om D en N te vinden, die geoefend is in opgaven In dit specifieke geval kan het directer: D heeft dezelfde eigenwaarden als B, dus alleen 1. Daarom geldt D = I 2 en dus N = B + I 2. (c) We geven twee methoden om deze opgave te doen. methode 1: Met gebruikmaking van het antwoord op (b). Uit het binomium van Newton, dat gebruikt mag worden omdat N en D commuteren, volgt 1
2 B = D ( )D213 N +, waarbij geldt = omdat N 2 =. Het antwoord is dus ( ) methode 2: Met alleen de Jordan-normaalvorm: er geldt B = Q 1 JQ met de Jordannormaalvorm ( ) 1 1 J =. 1 Dus B 214 = (Q 1 JQ) 214 = Q 1 J 214 Q (zeg ook waarom!). Reken Q en Q 1 uit en vind een algemene formule voor J n. Zo n algemene formule is eenvoudig te vinden door naar J, J 2, J 3, te kijken; en te bewijzen met inductie. De formule is ook op het college aan bod geweest en een soortgelijke opgave (met e B in plaats van B n ) is huiswerk geweest. 2
3 Opgave 2. Zij φ : R 2 R 2 R de symmetrische bilineaire vorm gegeven door de matrix ( ) 2 2 A =. 2 3 (a) Bepaal een basis van R 2 ten opzichte waarvan φ gegeven wordt door een diagonaalmatrix. (b) Bepaal de rang en de signatuur van φ. (c) Beantwoord (a) en (b) ook met R 2 vervangen door R 3 en 1 1 A = Oplossing (a) Het gaat hier om het diagonaliseren van een bilineaire vorm, dus niet van een lineaire afbeelding. De diagonaalvorm is dus Q T AQ en niet Q 1 AQ. Dit is precies het verschil tussen congruent (onder Proposition 8.12) en gelijkvormig (similar, Lineaire Algebra 1). Merk op: er werd om een basis gevraagd, dus Q (of beter: de kolommen van Q) moet gegeven worden. De methode hiervoor is het bewijs van Theorem Zie ook Example 8.21 en opgaven 8.8 en 8.9, en zie (c) hieronder. Wie Q 1 AQ schrijft, of diagonaliseert met behulp van eigenwaarden en eigenvectoren, maakt het zichzelf extra moeilijk om verschillende redenen: je hebt dan opeens de eigenwaarden (ingewikkelde getallen uit R) nodig in plaats van alleen maar Q, je gebruikt resultaten voor (matrices van) afbeeldingen en zal dus moeten opmerken dat, hoe, en waarom, Q T hier gerelateerd is aan Q 1, of dat, hoe, en waarom, de afbeelding gerelateerd is aan de bilineaire vorm. (b) Als deel (a) correct gedaan is, neem dan voor r het aantal positieve elementen op de diagonaal en voor s het aantal negatieve elementen. De rang is dan r + s en de signatuur r s. Alternatieve methode. Ook zonder deel (a) zijn er methoden om de rang en de signatuur te berekenen. Wat weet je bijvoorbeeld over r en s als φ positief definiet, negatief definiet, of niet-gedegenereerd is? En wat weet je als er v bestaat met φ(v, v) >, of v met φ(v, v) <? Met deze opmerkingen zijn de rang en de signatuur in dit geval uit te rekenen. Opmerking. Dat de rang en de signatuur van een bilineaire vorm ook te berekenen zijn met eigenwaarden van de lineaire afbeelding gegeven door dezelfde matrix A is een niet-triviale stelling die geen deel van dit college is. Als je dat wilt gebruiken, dan zal je dat zelf moeten bewijzen. Zie daarvoor ook het 3
4 verschil tussen Q 1 en Q T hierboven. Hetzelfde geldt voor de bewering dat de rang van φ hetzelfde is als de rang van de lineaire afbeelding gegeven door A. Het antwoord is: rang 2 + = 2, signatuur 2 = 2. (c) Zie (a) en (b). Verder: A = en φ(v, w) = v T Aw (v, w R 3 ) Stap 1 is beslissen of φ = geldt. Dat is duidelijk niet het geval, dus zoeken we (net als in het bewijs van Theorem 8.19) naar v 1 met φ(v 1, v 1 ) 1. Bijvoorbeeld v 1 = (, 1, ) T met φ(v 1, v 1 ) = 1. Vervolgens zoeken we een basis van het orthogonaal complement span(v 1 ) van span(v 1 ) met betrekking tot φ. Merk op: φ(w φ(w,v1) φ(v v 1,v 1) 1, v 1 ) =, dus door voor w een aantal basisvectoren te kiezen, krijgen we al snel mooie vectoren w φ(w, v 1) φ(v 1, v 1 ) v 1 span(v 1 ). Zo leveren w = (1,, ) T en w = (,, 1) T de vectoren b 1 = (1, 1, ) T, b 2 = (,, 1) T span(v 1 ). Laat Q be basistransformatie zijn die hoort bij de basis v 1, b 1, b 2. We hebben dan ( Q T AQ = A met A φ(v1, v 1 ) = C ) Q, Q = en C = (φ(b j, b i )) i,j. We beginnen opnieuw, maar nu met C, in lagere dimensie. Merk op: φ span(v1) span(v 1) wordt ten opzichte van de basis b 1, b 2 gegeven door C. We rekenen C uit: ( ) 1 1 C = 1 1 en we zoeken een vector v 2 R 2 met v T 2 Cv 2, bijvoorbeeld v 2 = (1, ) T met v T 2 Cv 2 = 1. Net als hiervoor maken we een vector w wt Cv 2 v2 T Cv v 2 span(v 2 ). 2 Bijvoorbeeld: w = (, 1) T geeft ( 1, 1) T. Nu is v 2, ( 1, 1) T dus een diagonaliserende basis, met ( ) ( ) P T CP = C := en P =. 1 Laat ( 1 Q = P 4 ),
5 dus Q T A Q = D := 1 1 Samenstellen van de basistransformaties geeft dan:. D = Q T A Q = Q T Q T AQQ = (QQ ) T A(QQ ). De gevraagde basis is nu de verzameling kolommen van QQ = = Ons antwoord is dus (, 1, ) T, (1, 1, ) T, ( 1, 1, 1) T. Er zijn meerdere bases die een correct antwoord vormen. Je antwoord is achteraf direct te controleren door φ(, ) uit te rekenen op deze basis. De rang is r + s = = 2 en de signatuur is r s = 1 1 =.. 5
6 Opgave 3. Beschouw de kwadratische vorm q(x, y) = 7x xy 2y 2. (a) Bepaal een symmetrische matrix A zodat voor alle x, y R geldt ( ) x q(x, y) = (x, y)a. y (b) Bepaal twee reële getallen a, b en een orthogonale afbeelding f : R 2 R 2 zodat geldt q(f(u, v)) = au 2 + bv 2 voor alle u, v R. (c) Welke waarden neemt q(x, y) aan op de eenheidscirkel x 2 + y 2 = 1? Oplossing. (a) en (b) gaan precies zoals Example 1.1 en de alinea s erboven op pagina 44. (c): Merk op dat f een isometrie is en dus een bijectie geeft van de eenheidscirkel naar de eenheidscirkel. Dus q(x, y) neemt op de eenheidscirkel x 2 + y 2 = 1 precies dezelfde waarden aan als au 2 + bv 2 aanneemt op de eenheidscirkel u 2 + v 2 = 1. Dat wil zeggen, de waarden in het interval tussen a en b, inclusief a en b zelf. 6
7 Opgave 4. Beantwoord voor elk van de lineaire afbeeldingen f in (a) (c) de vragen (i) (iii). Er worden dus 3 3 = 9 antwoorden verwacht, inclusief negen bewijzen. (a) Zij f : R 2 R 2 de rotatie van 6 graden om de oorsprong. Hierbij heeft R 2 het standaardinprodukt. (b) Zij f : C 4 C 4 gegeven door f(w) = w w, v v met v = (7+i, 5 3i, 2, i). Hierbij heeft C 4 het standaardinprodukt. (c) Zij V de reële vectorruimte van polynomiale functies van graad ten hoogste 2 met het inprodukt p 1 (x), p 2 (x) = 1 1 p 1 (x)p 2 (x)dx en zij f : V V gegeven door f(p(x)) = p (x), de afgeleide van p(x). (i) Is f normaal? (ii) Is f zelf-geadjungeerd? (iii) Is f een isometrie? Oplossing. De antwoorden zijn: (a)(i) ja (a)(ii) nee (a)(iii) ja (b)(i) ja (b)(ii) ja (b)(iii) nee (c)(i) nee (c)(ii) nee (c)(iii) nee Een algemene methode is het berekenen van de matrix van de afbeelding ten opzichte van een orthonormale basis, gevolgd door het toepassen van Corollary 9.18: het verband tussen de woorden normaal, zelf-geadjungeerd en isometrie enerzijds en de matrix-eigenschappen normaal, Hermites en unitair anderzijds. Hierbij is het belangrijk dat de gebruikte basis orthonormaal is, wat de standaardbasis bij (c) niet is. In het geval van (c) moet dus eerst het Gram-Schmidt-proces worden toegepast om een orthonormale basis te vinden. Alternatieve oplossing. Het is ook mogelijk (maar niet verplicht) om deze opgave met meer inzicht en minder rekenwerk te doen. Examples 9.13 geeft bijvoorbeeld al implicaties die zorgen dat alleen (a)(ii), (a)(iii), (b)(ii), (b)(iii) en (c)(i) gedaan hoeven te worden. Hieronder staan wat oplossingen met variërende moeilijkheidsgraad. 7
8 (a)(ii) Een zelf-geadjungeerde afbeelding is een afbeelding f zodat voor alle u en v geldt f(u), v = u, f(v). Tegenvoorbeelden u en v zijn makkelijk te vinden. (a)(iii) Het mag bekend verondersteld worden dat rotaties afstanden en hoeken respecteren en dus isometrieën zijn. (b)(ii) Een zelf-geadjungeerde afbeelding is een afbeelding f zodat voor alle u en w geldt f(u), w = u, f(w). We rekenen beide kanten uit met behulp van de definitie van een Hermitese vorm over C: en f(u), w = u u, v v, w = u, w u, v v, w u, f(w) = u, w w, v v = u, w w, v u, v = u, w v, w u, v. (b)(iii) Een isometrie is een isomorfisme waarvoor geldt f(u), f(w) = u, w. De meeste vectoren u en w geven een tegenvoorbeeld. Voor minimaal rekenwerk, neem u = w = v. We rekenen uit: f(v) = v v, v v = cv met c = 1 v, v = 1 v 2 < 1. Er volgt dus f(v), f(v) = c 2 v, v v, v. (c)(iii) Deze afbeelding is nilpotent, want de derde afgeleide van een kwadratisch polynoom is nul. De afbeelding is dus in het bijzonder geen isomorfisme, dus geen isometrie. (c)(ii) Zoals (a)(ii). Of zoals (c)(i) maar dan met Theorem 1.9. (c)(i) Deze afbeelding is nilpotent, want de derde afgeleide van een kwadratisch polynoom is nul. Als de afbeelding normaal zou zijn, dan zou de bijbehorende matrix wegens Theorem 1.6 diagonaliseerbaar zijn over C. Een nilpotente diagonaliseerbare afbeelding is de nul-afbeelding. Aangezien f niet de nul-afbeelding is, is dit een tegenspraak. 8
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 2015 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt
Oefensommen tentamen Lineaire algebra 2 - december A =
Oefensommen tentamen Lineaire algebra 2 - december 2012 Opg 1 De schaakbordmatrix A is de 8 bij 8 matrix 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 A = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1
Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)
Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N
Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00
Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus
Uitwerkingen tentamen Lineaire Algebra 2
Uitwerkingen tentamen Lineaire Algebra 2 15 januari, 2016 Opgave 2 (10 punten (a Het karakteristiek polynoom van A is det(ti A = (t 1 5, dus er is maar één eigenwaarde, namelijk λ = 1 Er geldt (A I 2 =
Eigenwaarden en eigenvectoren in R n
Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
Geadjungeerde en normaliteit
Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.
Tentamen Lineaire Algebra UITWERKINGEN
Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen
Tentamen Lineaire Algebra B
Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een
EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie
EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van
Unitaire en Hermitese transformaties
Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het
Symmetrische matrices
Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire
TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,
TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines
Tentamen Lineaire Algebra 1 (Wiskundigen)
Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)
Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015
Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen
Jordan normaalvorm. Hoofdstuk 7
Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er
Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
Eigenwaarden en Diagonaliseerbaarheid
Hoofdstuk 3 Eigenwaarden en Diagonaliseerbaarheid 31 Diagonaliseerbaarheid Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit
Eindtermen Lineaire Algebra voor E vor VKO (2DE01)
Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra donderdag 29 januari 205, 9.00-2.00 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken.
Matrixgroepen. SL n (K) = S GL n (K)
B Matrixgroepen De lineaire algebra is niet alleen een theorie waar de functionaalanalyse op voort bouwt, omgekeerd hebben sommige resultaten uit de hoofdtext ook consequenties voor de lineaire algebra.
Tentamen Lineaire Algebra
Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het
Matrices en Stelsel Lineaire Vergelijkingen
Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een
UITWERKINGEN 1 2 C : 2 =
UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De
Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen
Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Dit tentamen bestaat uit 4 open vragen, en kort-antwoord vragen. De uitwerkingen van de open vragen dienen volledig, duidelijk geformuleerd
Bilineaire Vormen. Hoofdstuk 9
Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte
wordt de stelling van Pythagoras toegepast, in dit geval twee keer: eerst in de x y-vlakte en vervolgens in de vlakte loodrecht op de vector y.
Wiskunde voor kunstmatige intelligentie, 2 Les 5 Inproduct Als we het in de meetkunde (of elders) over afstanden en hoeken hebben, dan hebben we daar intuïtief wel een idee van. Maar wat is eigenlijk de
EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I
EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I Theorie Opgave 1. In deze opgave wordt gevraagd om een aantal argumenten of overgangen uit de cursusnota s in detail te verklaren. In delen (a) (b) peilen we naar
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk
Samenvatting Lineaire Algebra, periode 4
Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax
TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,
TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen
Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie
Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte
Lineaire afbeeldingen
Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn
Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen
Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:
Lineaire Algebra Een Samenvatting
Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle
11.0 Voorkennis V
11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters
Coördinatiseringen. Definitie 1. Stel dat B = {b 1,..., b n } een basis is van een vectorruimte V en dat v V. iedere vector v V :
Coördinatiseringen Het rekenen met vectoren in R n gaat erg gemakkelijk De coördinaten bieden de mogelijkheid om handig te rekenen (vegen Het is nu ook mogelijk om coördinaten in te voeren voor vectoren
Meetkunde en lineaire algebra
Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x
Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
Lineaire afbeeldingen
Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor
Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)
Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)
1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.
. Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van
Vectorruimten en deelruimten
Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie
Aanvullingen bij Hoofdstuk 8
Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper
Examenvragen Meetkunde en lineaire algebra Eerste examenperiode
Examenvragen Meetkunde en lineaire algebra Eerste examenperiode 2008-2009 Door rotatie van de rechte r die bepaald wordt door de punten P(3, 1, 2) en Q(1, 1, 2) omheen de rechte s die gaat door het punt
4 Positieve en niet-negatieve lineaire algebra
4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,
Complexe eigenwaarden
Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie
Lineaire afbeeldingen
Hoofdstuk 2 Lineaire afbeeldingen 21 Inleiding Een afbeelding f van een verzameling V naar een verzameling W is een regel die aan ieder element v van V een element f(v) van W toevoegt maw een generalisatie
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Herhaling: opspansel De vectoren v 1,..., v k V spannen
TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.
TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0
Tentamina Lineaire Algebra Cursussen. Uitgangspunten, aanbevelingen en opmerkingen
Tentamina Lineaire Algebra Cursussen Fons Daalderop, Joost de Groot, Roelof Koekoek Mei 4 Uitgangspunten, aanbevelingen en opmerkingen De inhoud van de cursus Lineaire Algebra is voor wat betreft de basisstof
CTB1002-D2 Lineaire Algebra 2
CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit
Wiskundigen. Tentamen Lineaire Algebra 1. Donderdag 18 december 2008, a ( )
Wiskundigen Tentamen Lineaire Algebra Donderdag 8 december 8,.-3. Naam: () Bepaal voor alle reële waarden van a de rang van de matrix a C a = a. 4a () Zij n een geheel getal en laat P n de vectorruimte
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire
te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector
Les 3 Matrix product We hebben gezien hoe we matrices kunnen gebruiken om lineaire afbeeldingen te beschrijven. Om het beeld van een vector onder een afbeelding te bepalen hebben we al een soort product
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De
Oplossing van opgave 6 en van de kerstbonusopgave.
Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.
(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie.
Vraag op 5 punten de sfeer met middelpunt in,, 4 en straal 6; de omwentelingscilinder met straal 6 en als as de rechte door,, met richtingsvector,, Bepaal een affiene transformatie of een coördinatentransformatie,
Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door
Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal
Vectorruimten met inproduct
Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)
extra sommen bij Numerieke lineaire algebra
extra sommen bij Numerieke lineaire algebra 31 oktober 2012 1. Stel, we willen met een rekenapparaat (dat arithmetische bewerkingen uitvoert met een relatieve nauwkeurigheid ξ, ξ ξ) voor twee getallen
2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus
2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus Kwartiel 2, week 7.b Op het college op donderdagochtend 7 januari is behandeld: - hoek tussen vectoren en cosinus regel - driehoeksongelijkheid
OPGAVEN LINEAIRE ALGEBRA 2
OPGAVEN BIJ HET COLLEGE LINEAIRE ALGEBRA 2 ******** RJKooman Universiteit Leiden najaar 2007 0 In de opgaven gebruiken we de notatie K voor het lichaam van scalairen van een vectorruimte In alle gevallen
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)
Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )
Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie
Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie
Lineaire Algebra C 2WF09
Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09
Uitwerking opgaven 17 december. Spoilers!!
Uitwerking opgaven 7 december Spoilers!! (duh... 8 januari 206 Inhoudsopgave Complex diagonaliseren matrix 2. Opgave................................................ 2.2 Oplossing...............................................
Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria
Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria Deliverable 3.5 J. Brandts, F. Beukers, H. Cuypers, H. de Graaf Inleiding In deze deliverable zullen we voor het domein van de lineaire algebra de
Hoofdstuk 9. Vectorruimten. 9.1 Scalairen
Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen
Examenvragen eerste zittijd academiejaar Vraag 1 (op 6 punten) Gegeven:
Examenvragen eerste zittijd academiejaar 2010-2011 Vraag 1 (op 6 punten) de vectorruimte V = {A R 3 3 tr(a) = 0 en a 12 = a 21, a 13 = a 32, a 23 = a 31 }; de afbeelding T : V V, A A T A. (1) Toon aan
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints
Voorwaardelijke optimalisatie
Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg
Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.
WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de
Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:
Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x
1 Eigenwaarden en eigenvectoren
Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan
3 De duale vectorruimte
3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3. (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire afbeeldingen
Stelsels Vergelijkingen
Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit
College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie
College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.
Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,
Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd
Algebra groep 2 & 3: Standaardtechnieken kwadratische functies
Algebra groep 2 & 3: Standaardtechnieken kwadratische functies Trainingsweek juni 2008 Kwadraat afsplitsen Een kwadratische functie oftewel tweedegraads polynoom) px) = ax 2 + bx + c a 0) kan in verschillende
x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).
76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)
De 15-stelling. Dennis Buijsman 23 augustus Begeleiding: S. R. Dahmen
De 15-stelling Dennis Buijsman 23 augustus 2015 Begeleiding: S. R. Dahmen Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam
More points, lines, and planes
More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)