DEZE PAGINA NIET vóór 8.30u OMSLAAN!

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "DEZE PAGINA NIET vóór 8.30u OMSLAAN!"

Transcriptie

1 STTISTIEK 1 - VERSIE MT WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 22 oktober 2013, uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER, ET. OP HET NTWOORFORMULIER. ONTROLEER OF JE E JUISTE VERSIE VN HET NTWOORFORMULIER, US VERSIE HET. anwijzingen: - Het tentamen bestaat uit 25 meerkeuzevragen. - ij alle meerkeuzevragen is één van de vier gegeven antwoorden correct. Vul de antwoorden in met potlood. Elke vraag met géén of meer dan één zwart rondje wordt geheel fout gerekend. - Op je tafel mag je uitsluitend de volgende zaken hebben liggen: oek, studiewijzer, rekenmachine, zelfgemaakte handgeschreven samenvatting (één 4tje) en collegekaart. Mobiele telefoon is niet toegestaan! - Overhandig na afloop van het tentamen het antwoordformulier aan de surveillant. - Elke vraag weegt even zwaar mee voor het cijfer. e score wordt gecorrigeerd voor de gokkans. Het aantal goed beantwoorde vragen voor een voldoende wordt na het tentamen door de examinatoren vastgesteld. - e eventueel behaalde 0.5-punt voor de eindopdracht van het practicum wordt bij het cijfer van het tentamen opgeteld (maximaal een 10). - e antwoorden van dit tentamen staan binnenkort op lackboard ( bij MT15303) - Inzage Zodra de uitslag van het tentamen bekend is gemaakt, wordt op lackboard aangegeven wanneer en waar het tentamen kan worden ingezien.

2 STTISTIEK 1 - VERSIE MT

3 STTISTIEK 1 - VERSIE MT Opgave 1 Een veerpont vervoert wandelaars, fietsers, bromfietsers, personenauto s en vrachtauto s (vervoersmiddelen). Men is geïnteresseerd in het aantal personen per dag die van deze veerpont gebruik maken. In 2010 worden door een aselecte trekking 20 dagen gekozen. Op elk van deze dagen wordt het aantal personen geteld. e eenheden van dit onderzoek zijn: agen Veerponten Personen Vervoersmiddelen Opgave 2 In een groot Europees onderzoek wordt de groei van planten bestudeerd. Een belangrijke variabele is de totale bladoppervlakte van een plant. eze bladoppervlakte wordt met behulp van een computersysteem automatisch gemeten. Het blijkt dat de positie van de plant in het computersysteem van groot belang is. f en toe is de positie zo dat een groot blad van de plant gemist wordt door het computersysteem. it levert een sterk afwijkende waarde van de totale bladoppervlakte op. Men meet elke plant in 10 verschillende posities. Welke centrummaat en welke maat voor spreiding is het meest geschikt voor de 10 waarnemingen van de totale bladoppervlakte per plant? centrummaat maat voor spreiding gemiddelde standaardafwijking gemiddelde interkwartielafstand mediaan standaardafwijking mediaan interkwartielafstand Informatie bij opgaven 3 t/m 5 hris Horner heeft in 2013 op 41 jarige leeftijd de ronde van Spanje gewonnen. Voor een wielrenner is hij behoorlijk oud, wat speculaties oplevert over dopinggebruik. Om dit te pareren heeft hij zijn hematocrietwaarden (%) van dopingtests op internet gezet. Voor 2013 zijn dat de volgende waarden: e maximale hematocrietwaarde die is toegestaan is 50 %. Wanneer een wielrenner daar boven komt wordt hij van doping beschuldigd. Opgave 3 ereken de variantie van de hematocrietwaarden van hris Horner in Opgave 4 Stel dat de hematocrietwaarde op een willekeurig moment in het jaar van een bepaalde wielrenner normaal verdeeld is met een verwachting van 45 en een standaardafwijking van 2. ereken de kans dat deze wielrenner van doping wordt beschuldigd

4 STTISTIEK 1 - VERSIE MT Opgave 5 Stel dat een zekere wielrenner van nature een vrij lage hematocrietwaarde heeft met een verwachting van 40%. e wielrenner besluit voor een belangrijke wedstrijd doping te gaan gebruiken. Met hoeveel kan hij zijn verwachte hematocrietwaarde verhogen, wanneer hij bereid is een risico van 10% te lopen om te worden betrapt op doping? In de berekeningen mag je ervan uitgaan dat hematocrietwaarde van de wielrenner normaal verdeeld is met een standaardafwijking van 2. Het antwoord ligt het dichtst bij: Opgave 6 Een groot zeilschip wordt verhuurd voor personeelsuitjes. oor weersomstandigheden (mist, te harde wind of bliksem) kan het schip niet altijd uitvaren en kan het personeelsuitje niet doorgaan. Op een willekeurige dag is de kans op mist gelijk aan 0.05, de kans op te harde wind is gelijk aan 0.05 en de kans op bliksem is gelijk aan e gebeurtenis mist is disjunct met een te harde wind. Gebeurtenissen mist en bliksem zijn ook disjunct. e kans dat er zowel een te harde wind staat als dat het bliksemt is gelijk aan ereken de kans dat op een willekeurige dag het personeelsuitje door kan gaan: Informatie bij opgaven 7 en 8 ij een verzekeringsmaatschappij kan men zich verzekeren tegen het niet doorgaan van een personeelsuitje. eze verzekering dekt meer dan alleen niet uitvaren door het weer. Er wordt onderscheid gemaakt tussen voorzien (het personeelsuitje is van te voren afgezegd) en onvoorzien (personeel is al bij het schip aanwezig) niet doorgaan van het personeelsuitje. e kansverdeling van de kosten/baten (Euro s) die de verzekeringsmaatschappij gebruikt, is gelijk aan: Mogelijkheden Uitvaren Niet uitvaren voorzien Niet uitvaren onvoorzien Kosten/baten (Euro) P(mogelijkheid) Opgave 7 ereken de verwachte winst (in Euro s), wanneer de verzekering 100 keer is afgesloten Opgave 8 e verzekeringsmaatschappij sluit 20 keer (onafhankelijk) deze verzekering af. e verzekeringsmaatschappij verwacht, op grond van de kansverdeling, dat het zeilschip 4 keer niet uit kan varen. ereken de kans dat het zeilschip vaker dan verwacht niet kan uitvaren?

5 STTISTIEK 1 - VERSIE MT Opgave 9 Een dominospel bestaat uit 28 stenen. Op beide helften van elke steen staat met ogen een getal aangegeven van nul tot en met zes. Van de 28 stenen zijn er 7 dubbele, waar op elke helft hetzelfde aantal ogen staat. Het spel begint met het (aselect) pakken van 6 stenen. Men wil de kans berekenen dat geen van de 6 stenen een dubbele is. Een student past de binomiale verdeling toe. Welke van de volgende uitspraken is juist? e binomiale verdeling kan niet worden toegepast, omdat de kans op succes niet gelijk blijft. e binomiale verdeling kan niet worden toegepast, omdat alleen een kans wordt berekend op geen enkele dubbele. e binomiale verdeling kan niet worden toegepast, omdat n π niet groter of gelijk is aan 5. e binomiale verdeling kan hier inderdaad worden toegepast. Informatie bij opgaven 10 t/m 14 Gewone beschuiten worden verkocht in beschuitrollen van 13 stuks. Er zijn ook grotere, zogeheten Twentsche beschuiten die worden verkocht in zakken van 10 stuks. Vanzelfsprekend wegen beschuiten niet allemaal precies even veel. Het gewicht van een gewone beschuit is normaal verdeeld met een verwacht gewicht van 8.0 gram en een standaardafwijking van 0.6 gram. Het gewicht van een Twentsche beschuit is normaal verdeeld met een verwachting van 10.7 gram en een standaardafwijking van 0.9 gram. Zowel bij een rol gewone beschuit als bij een zak Twentsche beschuit kan het gebeuren dat de inhoud minder weegt dan de 100 gram die op de verpakking staat vermeld. In deze opgaven gaan we er vanuit dat het gewicht van beschuiten onafhankelijk is. Opgave 10 ereken het gewicht dat door 10% van de gewone beschuiten wordt overschreden Opgave 11 ereken de kans dat de inhoud van een zak Twentsche beschuit minder weegt dan 100 gram Opgave 12 Een fabrikant van gewone beschuit gaat ervan uit dat de machines voor productie van gewone beschuiten zo zijn ingesteld dat slechts 5% van de beschuiten te licht is. Een medewerker van deze fabriek heeft echter de indruk dat meer dan 5% van de beschuiten te licht is. Om zijn vermoeden te onderzoeken, pakt hij willekeurig 50 beschuiten. Van deze 50 beschuiten blijken er 10 te licht te zijn. e medewerker voert een exacte toets op een kans uit om te kijken of hij gelijk heeft of niet. Hij hanteert daarbij een significantieniveau van Welke verdeling moet de medewerker gebruiken voor het berekenen van de P-waarde bij deze toets? in(50, 0.05) in(50, 0.20) N(2.5, 0.042) N(0, 1)

6 STTISTIEK 1 - VERSIE MT Opgave 13 e conclusie van het onderzoek is dat er is aangetoond dat meer dan 5% van de beschuiten te licht is. at betekent dat de P-waarde.. groter is dan 0.01 kleiner of gelijk is aan 0.01 groter is dan 0.05 kleiner of gelijk is aan 0.05 Opgave 14 e fabrikant zegt dat hij het niet eens is met de keuze van het significantieniveau van de medewerker en dat daarom de conclusie voor hem ongunstig is. Hij wil graag het gebruikelijke significantieniveau van Welke bewering is juist? e fabrikant heeft geen gelijk, want het significantieniveau heeft helemaal niets te maken met de belangen van de fabrikant. e fabrikant heeft geen gelijk, de keuze van de medewerker geeft juist minder kans op een voor de fabrikant nadelige conclusie. e fabrikant heeft gelijk, want de P-waarde wordt groter bij een groter significantieniveau. Geen van de antwoorden, of is juist. Opgave 15 Uit een zeer groot onderzoek is gebleken dat msterdammers redelijk eerlijk zijn. ij een portemonnee test, waarbij een portemonnee met diverse pasjes en 40 euro op straat werd gelegd, brengt 60% van de vinders de portemonnee naar de politie. Een onderzoeker is geïnteresseerd hoe eerlijk een willekeurige bezoeker van de P Hooftstraat is ten opzichte van een willekeurige msterdammer. Op voorhand heeft hij geen idee of de bezoekers van de P Hooftstraat eerlijker zijn of juist niet. Op willekeurige dagen en tijdstippen legt de onderzoeker 8 keer een portemonnee op het trottoir van de P Hooftstraat. Geen van de portemonnees blijkt naar de politie gebracht te worden. Laat π de kans zijn dat een willekeurige bezoeker de portemonnee niet naar de politie brengt. e onderzoeker zal de volgende nul- en alternatieve hypothese formuleren: H 0 : π = 0.40 en H a : π 0.40 H 0 : π = 0.40 en H a : π > 0.40 H 0 : π = 0.60 en H a : π 0.60 H 0 : π = 0.60 en H a : π < 0.60 Informatie bij opgaven 16 t/m 19 Een autofabrikant claimt dat hoogstens 8% van zijn auto s één of ander defect heeft. ij een grote kwaliteitscontrole worden 300 auto s aselect geselecteerd. Van deze auto s blijken er 30 een defect te hebben. e fractie auto s van deze fabrikant met één of ander defect noemen we π. Wanneer we het ongelijk van de fabrikant willen aantonen hebben we de volgende hypothesen nodig: H 0 : π = 0.08 en H a : π > Opgave 16 ereken de uitkomst van de toetsingsgrootheid van een benaderende z-toets

7 STTISTIEK 1 - VERSIE MT Opgave 17 Stel dat de uitkomst van de toetsingsgrootheid van een benaderende toets gelijk is aan 0.7. ereken de P- waarde Opgave 18 Wanneer de nulhypothese waar is, kan het aantal auto s met een defect in een willekeurige steekproef van 300 auto s variëren tussen en.. Gebruik de empirical rule met een percentage van 95%. tussen 19 en 29 auto s met een defect tussen 25 en 35 auto s met een defect tussen 15 en 33 auto s met een defect tussen 23 en 25 auto s met een defect Opgave 19 In een nieuw onderzoek met 150 auto s blijkt dat de steekproeffractie auto s met een defect gelijk is aan e P-waarde van de toets bij dit nieuwe onderzoek zal. de P-waarde in het beschreven onderzoek met 300 auto s. groter zijn dan kleiner zijn dan gelijk zijn aan kun je met deze informatie niets over zeggen Informatie bij opgaven 20 en 21 In een onderzoek wordt gemeten hoeveel wortels (in grammen) kleine kinderen eten tijdens één warme maaltijd. Stel dat de hoeveelheid wortels die kinderen bij één warme maaltijd eten een verwachtingswaarde van 90 gram en een standaardafwijking van 40 gram heeft. Opgave 20 Geef de kansverdeling van de hoeveelheid gegeten wortels, gemiddeld over vier willekeurige gekozen kinderen. Kan op basis van deze gegevens niet bepaald worden, want de entrale Limiet Stelling kan in dit geval niet toegepast worden. N(90, 20), de entrale Limiet Stelling is hiervoor niet nodig. N(90, 20), op grond van de entrale Limiet Stelling. N(90, 10), op grond van de entrale Limiet Stelling. Opgave 21 Om het onderzoek te kunnen vergelijken met een ander onderzoek wordt de hoeveelheid gegeten wortels niet meer uitgedrukt in gram maar in kilogram (1000 gram). Verandert de variantie wanneer de hoeveelheid gegeten wortels niet meer in gram maar in kilogram wordt uitgedrukt? Nee, variantie verandert niet Ja, variantie moet vermenigvuldigd worden met 1000 Ja, variantie moet gedeeld worden door 1000 Ja, variantie moet gedeeld worden door

8 STTISTIEK 1 - VERSIE MT Opgave 22 Stel men heeft de volgende nul- en alternatieve hypothese H 0 : = 0.5 en H a : 0.5 in een exacte binomiale toets, waarbij de succeskans is. In een simulatie, waarbij de succeskans gelijk is aan 0.5, wordt 50 keer deze toets uitgevoerd met telkens 20 (gesimuleerde) waarnemingen. Het significantieniveau = e theoretische verdeling van het aantal keer dat, in deze simulaties, de nulhypothese verworpen wordt, ligt dicht in de buurt van: in(50, 0.5) in(50, 0.05) in(20, 0.5) in(20, 0.05) Opgave 23 Stel dat op een universiteit 60% van de studenten vrouw is en dat 40% van alle studenten (zowel mannen als vrouwen) os- en Natuurbeheer studeert. Het percentage van de studenten dat vrouw is en os- en Natuurbeheer studeert is 34%. Op grond van de informatie van deze universiteit mogen we concluderen dat: vrouw en studeren van os- en Natuurbeheer onafhankelijke gebeurtenissen zijn. vrouw en studeren van os- en Natuurbeheer disjuncte gebeurtenissen zijn. vrouw en studeren van os- en Natuurbeheer consistente gebeurtenissen zijn. Geen van de antwoorden, of is juist. Opgave 24 Honden met heupdysplasie hebben te veel speling tussen de kom van het heupgewricht in het bekken en de kop van het dijbeen. ls gevolg hiervan kan een ernstige vorm van gewrichtsontsteking (artritis) ontstaan. In principe kan elke hond hier last van krijgen, maar heupdysplasie komt het meest voor bij allerlei grote rassen zoals de uitse Herder, de Rottweiler etc. Men vermoedt dat 45% van de volwassen uitse Herders heupdysplasie heeft. In een onderzoek naar de fractie volwassen uitse Herders met heupdysplasie ( ) hebben 10 van de 18 aselect gekozen volwassen uitse Herders heupdysplasie. Het significantieniveau = e P-waarde van een exacte toets voor H 0 : π = 0.45 en H a : π 0.45 is (antwoord afgerond op 4 decimalen): andere waarde Opgave 25 Op basis van lange ervaring weet een vertegenwoordiger dat zijn auto bij een dagelijkse rit een benzineverbruik per 100 km heeft dat Normaal verdeeld is met verwachting 7.5 liter en een standaardafwijking van 0.6 liter. e vertegenwoordiger moet volgende week van maandag tot en met vrijdag weer zijn dagelijkse ritten maken. eze 5 ritten zijn nagenoeg even lang. Het benzineverbruik in deze 5 ritten mag onafhankelijk verondersteld worden. ereken de kans dat het gemiddeld benzineverbruik onder de 7.9 liter per 100 km ligt

DEZE PAGINA NIET vóór 8.30u OMSLAAN!

DEZE PAGINA NIET vóór 8.30u OMSLAAN! STTISTIEK 1 VERSIE MT15303 1308 1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 5 augustus 2013, 8.30-10.30 uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER,

Nadere informatie

STATISTIEK 2 VERSIE A MAT15403 1308-1. Tentamen Statistiek 2 (MAT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur

STATISTIEK 2 VERSIE A MAT15403 1308-1. Tentamen Statistiek 2 (MAT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur STTISTIEK 2 VERSIE MT15403 1308-1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 2 (MT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur EZE PGIN NIET vóór 11.00 uur OMSLN! STRT MET INVULLEN

Nadere informatie

STATISTIEK 2 VERSIE A MAT Tentamen Statistiek 2 (MAT-15403) Donderdag 13 maart 2014, uur

STATISTIEK 2 VERSIE A MAT Tentamen Statistiek 2 (MAT-15403) Donderdag 13 maart 2014, uur STTISTIEK 2 VERSIE MT15403 1403-1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 2 (MT-15403) onderdag 13 maart 2014, 8.30-10.30 uur EZE PGIN NIET vóór 8.30 uur OMSLN! STRT MET INVULLEN VN

Nadere informatie

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet? Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

Compex wiskunde A1 vwo 2006-I

Compex wiskunde A1 vwo 2006-I Beschuit Gewone beschuiten worden verkocht in beschuitrollen van 13 stuks. Een gewone beschuit weegt gemiddeld 8,0 gram. Er zijn ook grotere, zogeheten Twentsche beschuiten die worden verkocht in zakken

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Examen VWO. wiskunde A1,2

Examen VWO. wiskunde A1,2 wiskunde A1,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni 13.3 16.3 uur 2 6 Voor dit examen zijn maximaal 83 punten te behalen; het examen bestaat uit 2 vragen. Voor

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni totale examentijd 3,5 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni totale examentijd 3,5 uur wiskunde A1,2 Compex Examen VWO - Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni totale examentijd 3,5 uur 20 06 In dit deel van het examen staan de vragen waarbij de computer

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2006-I

Eindexamen wiskunde A1-2 vwo 2006-I Beschuit Gewone beschuiten worden verkocht in beschuitrollen van 13 stuks. Een gewone beschuit weegt gemiddeld 8, gram. Er zijn ook grotere, zogeheten Twentsche beschuiten die worden verkocht in zakken

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 17-11-2003 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een zakrekenmachine.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) en Tentamen Inleiding Experimentele Fysica voor Combi s (3NA10) d.d. 31 oktober 2011 van 9:00 12:00 uur Vul de

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 29 juli 2013 Tijd: 14.00-17.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B 1. (a) Bereken het gemiddelde salaris van de werknemers in de tabel hiernaast. (b) Bereken ook het mediale salaris. (c) Hoe groot is het modale salaris hier? salaris in euro s aantal werknemers 15000 1

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Uitwerkingen voortoets/oefentoets E3 maart/april 2009 MLN

Uitwerkingen voortoets/oefentoets E3 maart/april 2009 MLN Uitwerkingen voortoets/oefentoets E3 maart/april 009 MLN UITZENDBUREAU a H 0 : p=0. ( op is een kans van 0% wel 0.) is de bewering van het uitzendbureau H : p 0. (Helena is het er niet mee eens en denkt

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Examen VWO - Compex. wiskunde A1 Compex

Examen VWO - Compex. wiskunde A1 Compex wiskunde A1 Compex Examen VWO - Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni totale examentijd 3,5 uur 2 6 In dit deel van het examen staan de vragen waarbij de computer niet

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

Lesbrief hypothesetoetsen

Lesbrief hypothesetoetsen Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 11 juni 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Statistiek = leuk + zinvol

Statistiek = leuk + zinvol Statistiek = leuk + zinvol Doel 1: Doel : Doel 3: zie titel een statistisch onderzoek kunnen beoordelen een statistisch onderzoek kunnen opzetten een probleem vertalen in standaardmethoden gegevens verzamelen,

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R Tentamenset A. Gegeven de volgende verzamelingen A en B. A is de verzameling van alle gehele getallen tussen de 0 en 0 die deelbaar zijn door, en B is de verzameling gehele positieve getallen deelbaar

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Eindexamen wiskunde A1-2 havo 2006-I

Eindexamen wiskunde A1-2 havo 2006-I Verdienen vrouwen minder? In maart 23 stond in de Volkskrant een artikel over de inkomensachterstand van vrouwen op mannen. Deze figuur stond er bij: figuur 1 gemiddeld inkomen van vrouwen gemiddeld inkomen

Nadere informatie

Statistiek voor A.I. College 10. Donderdag 18 Oktober

Statistiek voor A.I. College 10. Donderdag 18 Oktober Statistiek voor A.I. College 10 Donderdag 18 Oktober 1 / 28 Huffington Post poll verkiezingen VS - 12 Oktober 2012 2 / 28 Gallup poll verkiezingen VS - 15 Oktober 2012 3 / 28 Jullie - onderzoek Kimberly,

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie

Faculteit Economie en Bedrijfskunde studiejaar

Faculteit Economie en Bedrijfskunde studiejaar Faculteit Economie en Bedrijfskunde studiejaar 03-04 VOORBLAD Op deze eerste pagina vindt u belangrijke informatie met betrekking tot dit tentamen. Lees de hierna volgende informatie aandachtig door voordat

Nadere informatie

de dagelijkse energiebehoefte in kilocalorieën (kcal) en G het gewicht in kg.

de dagelijkse energiebehoefte in kilocalorieën (kcal) en G het gewicht in kg. Supersize me In de film Supersize Me besluit de hoofdpersoon, Morgan Spurlock, dertig dagen lang uitsluitend fastfood te eten. Op deze manier krijgt hij elke dag 5000 kcal aan energie binnen. Eerst wordt

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 1 woensdag 23 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 1 woensdag 23 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2012 tijdvak 1 woensdag 23 mei 13.30-16.30 uur wiskunde A Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor

Nadere informatie

Grootste examentrainer en huiswerkbegeleider van Nederland. Wiskunde A. Trainingsmateriaal. De slimste bijbaan van Nederland! lyceo.

Grootste examentrainer en huiswerkbegeleider van Nederland. Wiskunde A. Trainingsmateriaal. De slimste bijbaan van Nederland! lyceo. Grootste examentrainer en huiswerkbegeleider van Nederland Wiskunde A Trainingsmateriaal De slimste bijbaan van Nederland! lyceo.nl Traininingsmateriaal Wiskunde A Lyceo-trainingsdag 2015 Jij staat op

Nadere informatie

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend!

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! Examentoets 2 6VWO-A12 Statistiek woensdag 20 januari 2010 o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! o Geef bij

Nadere informatie

Examen HAVO. Wiskunde A1,2 (nieuwe stijl)

Examen HAVO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Donderdag 23 mei 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit

Nadere informatie

Inleiding Statistiek

Inleiding Statistiek Inleiding Statistiek Practicum 1 Op dit practicum herhalen we wat Matlab. Vervolgens illustreren we het schatten van een parameter en het toetsen van een hypothese met een klein simulatie experiment. Het

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend!

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! Examentoets 2 6VWO-A Statistiek woensdag 20 januari 2010 o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! o Geef bij gebruik

Nadere informatie

Hoofdstuk 6 Hypothesen toetsen

Hoofdstuk 6 Hypothesen toetsen Hoofdstuk 6 Hypothesen toetsen ladzijde 144 1a X is aantal autokopers die merk A aanschaffen. X is Bin(100; 0,30) verdeeld. 0,30 3 100 = 30, naar verwachting zullen dus 30 autokopers merk A aanschaffen.

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 10 Donderdag 20 Oktober 1 / 1 2 Statistiek Vandaag: Hypothese toetsen 2 / 1 3 / 1 Terzijde NU.nl 19 oktober 2011: Veel Facebookvrienden wijst op grotere hersenen. (http://www.nu.nl/wetenschap/2645008/veel-facebookvrienden-wijst-groterehersenen-.html)

Nadere informatie

Statistiek ( ) ANTWOORDEN eerste tentamen

Statistiek ( ) ANTWOORDEN eerste tentamen Statistiek (200300427) ANTWOORDEN eerste tentamen studiejaar 2010-11, blok 4; Taalwetenschap, Universiteit Utrecht. woensdag 18 mei 2011, 17:15-19:00u, Kromme Nieuwegracht 80, zaal 0.06. Schrijf je naam

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

Examen VWO. wiskunde A1

Examen VWO. wiskunde A1 wiskunde A1 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 21 juni 13.30 16.30 uur 20 06 Voor dit examen zijn maximaal 79 punten te behalen; het examen bestaat uit 21 vragen. Voor

Nadere informatie

Herkansing eindtoets statistiek voor HBO

Herkansing eindtoets statistiek voor HBO Herkansing 1A 1 Herkansing eindtoets statistiek voor HBO Schrijf de antwoorden op de vragen alleen op deze pagina s. Antwoorden geschreven op andere vellen papier worden niet meegenomen in de beoordeling.

Nadere informatie

Wiskunde A. Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur

Wiskunde A. Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur Wiskunde A Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur 20 00 Als bij een vraag een verklaring, uitleg of berekening vereist is, worden aan het antwoord

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 28 januari 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2007-II

Eindexamen wiskunde A1-2 vwo 2007-II Vakanties In het najaar van 2003 is een enquête gehouden onder 3000 Nederlanders waarin gevraagd werd op welke wijze zij hun vakantie hadden geboekt in de jaren 2002 en 2003. Men onderscheidde daarbij

Nadere informatie

Uitleg significantieniveau en toetsen van hypothesen

Uitleg significantieniveau en toetsen van hypothesen Uitleg significantieniveau en toetsen van hypothesen Het significantieniveau (meestal aangegeven met de letter α) stelt de kans voor, dat H 0 gelijk heeft, maar H 1 gelijk krijgt. Je trekt dus een foute

Nadere informatie

Correctievoorschrift HAVO

Correctievoorschrift HAVO Correctievoorschrift HAVO 00 tijdvak wiskunde A Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Eindexamen wiskunde a 1-2 havo 2003 - I

Eindexamen wiskunde a 1-2 havo 2003 - I Eindexamen wiskunde a 1-2 havo 2003 - I Duikeend Op het IJsselmeer overwinteren grote groepen duikeenden. Ze leven van mosselen die daar veel op de bodem voorkomen. Duikeenden slikken hun mosselen met

Nadere informatie

Examen HAVO. wiskunde A1,2

Examen HAVO. wiskunde A1,2 wiskunde 1,2 Examen HVO Hoger lgemeen Voortgezet Onderwijs Tijdvak 1 Dinsdag 23 mei 13.30 16.30 uur 20 06 Voor dit examen zijn maximaal 81 punten te behalen; het examen bestaat uit 21 vragen. Voor elk

Nadere informatie

Examen VWO. wiskunde A1,2. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde A1,2. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2007 tijdvak 2 woensdag 20 juni 13.30-16.30 uur wiskunde A1,2 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 85 punten te behalen. Voor

Nadere informatie

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995 Schriftelijk examen statistiek, data-analyse en informatica Maandag 29 mei 1995 Tweede jaar kandidaat arts + Tweede jaar kandidaat in de biomedische wetenschappen Naam: Voornaam: Vraa Kengetal g Blad 1

Nadere informatie

Statistiek voor A.I. College 12. Dinsdag 23 Oktober

Statistiek voor A.I. College 12. Dinsdag 23 Oktober Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram

Nadere informatie

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1 Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Correctievoorschrift VWO-Compex. Wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO-Compex. Wiskunde A1,2 (nieuwe stijl) Wiskunde A, (nieuwe stijl) Correctievoorschrift VWO-Compex Voorbereidend Wetenschappelijk Onderwijs 3 Tijdvak Inzenden scores Vul de scores van alle kandidaten per school in op de optisch leesbare formulieren

Nadere informatie

De 'echte' toets lijkt hierop, alleen is de vormgeving anders. De uitwerkingen vind je voor de toetsweek terug op

De 'echte' toets lijkt hierop, alleen is de vormgeving anders. De uitwerkingen vind je voor de toetsweek terug op De 'echte' toets lijkt hierop, alleen is de vormgeving anders. De uitwerkingen vind je voor de toetsweek terug op www.molenaarnet.org. Geef je niet exacte antwoorden in 4 decimalen nauwkeurig Opgave 1

Nadere informatie

Eindexamen wiskunde A havo 2011 - I

Eindexamen wiskunde A havo 2011 - I Zuinig rijden Tijdens rijlessen leer je om in de auto bij foto 20 km per uur van de eerste naar de tweede versnelling te schakelen. Daarna ga je bij 40 km per uur naar de derde versnelling, bij 60 km per

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Wiskunde 1 voor kunstmatige intelligentie Opgaven voor Kansrekening Opgave 1. Een oneerlijke dobbelsteen is zo gemaakt dat 3 drie keer zo vaak valt als 4 en 2 twee keer zo vaak als 5. Verder vallen 1,

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6 Oefenmateriaal V5 wiskunde C Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-2 H10: Kansverdelingen..3-4 H11: Allerlei functies.5- Hoofdstuk 9: Rijen & Reeksen Recursieve formule

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 1 woensdag 28 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 1 woensdag 28 mei uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 2008 tijdvak woensdag 28 mei 3.30-6.30 uur wiskunde,2 ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 20 vragen. Voor dit eamen zijn maimaal 82 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde A1

Examen VWO. wiskunde A1 wiskunde A1 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni 13.30 16.30 uur 20 06 Voor dit examen zijn maximaal 82 punten te behalen; het examen bestaat uit 19 vragen. Voor

Nadere informatie

Je kunt al: -de centrummaten en spreidingsmaten gebruiken -een spreidingsdiagram gebruiken als grafische weergave van twee variabelen

Je kunt al: -de centrummaten en spreidingsmaten gebruiken -een spreidingsdiagram gebruiken als grafische weergave van twee variabelen Lesbrief: Correlatie en Regressie Leerlingmateriaal Je leert nu: -een correlatiecoëfficient gebruiken als maat voor het statistische verband tussen beide variabelen -een regressielijn te tekenen die een

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

H10: Allerlei functies H11: Kansverdelingen..6-7

H10: Allerlei functies H11: Kansverdelingen..6-7 Oefenmateriaal V5 wiskunde A Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-3 H10: Allerlei functies....4-5 H11: Kansverdelingen..6-7 Hoofdstuk 9: Rijen & Reeksen Recursieve

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur Kansrekening en statistiek wi2105in deel 2 27 januari 2010, 14.00 16.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na

Nadere informatie

Examen VWO. Wiskunde A1,2 (nieuwe stijl)

Examen VWO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A1,2 (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 31 mei 13.30 16.30 uur 20 01 Voor dit examen zijn maximaal 0 punten te behalen; het examen bestaat uit

Nadere informatie

Eindexamen wiskunde B 1 havo 2009 - I

Eindexamen wiskunde B 1 havo 2009 - I Vetpercentage Al heel lang onderzoekt men het verband tussen enerzijds het gewicht en de lengte van volwassen mensen en anderzijds hun gezondheid. Hierbij gebruikt men vaak de Body Mass Index (BMI). De

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Reflecties bij de invoering van TI-Nspire CAS op de Europese Scholen L.A.A. Blomme

Reflecties bij de invoering van TI-Nspire CAS op de Europese Scholen L.A.A. Blomme Reflecties bij de invoering van TI-Nspire CAS op de Europese Scholen L.A.A. Blomme In 2010 is op de Europese Scholen het nieuwe wiskunde programma gestart. Een van de grote innovaties betreft het invoeren

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 30 januari 2009 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 2 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Centrummaten

Uitwerkingen bij 1_0 Voorkennis: Centrummaten Uitwerkingen bij 1_0 Voorkennis: Centrummaten + + + + + + = + + + + + + =! " "" ## $!! % &#' % #! %!% $ % "$ ()*+," "!!""-.$!"" -.!-!%! " $-.#" &#! / 0 & ) ))) ))))), 1 & )))) ) ))) ), $ " % "-! #-!-!""

Nadere informatie

Correctievoorschrift HAVO. Wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift HAVO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A1,2 (nieuwe stijl) Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 20 03 Tijdvak 1 Inzenden scores Vul de scores van de alfabetisch eerste vijf kandidaten per school in op de optisch

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie