FYSICA. 2de jaar 1ste graad klas: 2MA. schooljaar: leraar: Michel Gabriels leerling:

Maat: px
Weergave met pagina beginnen:

Download "FYSICA. 2de jaar 1ste graad klas: 2MA. schooljaar: 2007-2008 leraar: Michel Gabriels leerling:"

Transcriptie

1 FYSICA 2de jaar 1ste graad klas: 2MA schooljaar: leraar: Michel Gabriels leerling:

2 1 Hoofdstuk 1: WAT IS FYSICA 1.1 Domeinen van de fysica Warmte Licht Beweging Energie 2de jaar 1ste graad ASO Hoofdstuk 2

3 1.2 Toegepaste fysica 1.3 Wetenschappelijk werk 2de jaar 1ste graad ASO Hoofdstuk 3

4 2 Hoofdstuk 2: EIGENSCHAPPEN VAN DE MATERIE 2.1 Voorwerpen en stoffen 2.2 Eigenschappen van de materie Ondoordringbaarheid Proeven in verband met: Zinken Zweven en drijven Massadichtheid 2de jaar 1ste graad ASO Hoofdstuk 4

5 2.2.2 Aggregatietoestanden Cohesie en adhesie Moleculen hebben vaak de neiging om aan elkaar vast te plakken, als we een waterdruppel nemen, en we laten die los in de lucht vallen, merken we dat de druppel bij elkaar blijft. Dit fenomeen heet cohesie, de watermoleculen trekken elkaar (dezelfde moleculen) aan. Zo hebben we ook adhesie, als we een glas met water vullen zien we dat het water als het ware langs het glas omhoog wil kruipen, dit noemen we adhesie, de moleculen trekken een ander soort moleculen aan. Zo werkt ook een capillair, dit zijn hele dunne buisjes waar door de adhesie vloeistof in een (vaak glazen) capillair "gezogen" wordt. 2de jaar 1ste graad ASO Hoofdstuk 5

6 Capillairen worden vaak in zuiveringsinstallaties gebruikt, doordat de capillair zo dun is blijven vaak veel vervuilingen achter. In een laboratorium wordt o.a. op de volgende manier gebruik gemaakt van adhesie. Allereerst wordt een materiaal waar bijvoorbeeld kleurstoffen inzitten op chromatografie papier gedaan (vaak is een druppel al genoeg). Wanneer er nu een laagje oplosmiddel (=loopvloeistof) in een bak wordt gedaan, en dit papier erin wordt gehangen, zal door de adhesie het papier nat worden, en dit zal omhoog "lopen". (als je de onderkant van een papiertje in water legt zal na verloop van tijd het hele papier nat worden, = zelfde principe). Met het "lopen" van de vloeistof zullen de verschillende stoffen "meelopen", alleen zullen de stoffen niet allemaal even ver "meelopen". Hierdoor kunnen de verschillende componenten uit een stof gescheiden worden Poreusheid Porositeit of poreusheid is de aanwezigheid van kleine openingen (poriën) in een materiaal. Men herkent er het woord "porie" (kleine opening) in. Porositeit heeft in het algemeen tot gevolg dat het materiaal langzaam vocht doorlaat. Ook opzuigen of omhoogzuigen van vocht door capillaire werking is mogelijk. Voorbeelden van poreuze materialen zijn: Baksteen, ongeglazuurd aardewerk, sponzen gesteenten als kalksteen en zandsteen de schaal van het ei van kippen, marmer Ook bestaan er poreuze pleisters, poreuze kunststoffen. Voor isolatie van een gebouw is een poreus materiaal gewenst, door de warmtehoudende eigenschap van de grote hoeveelheid lucht in het materiaal Samendrukbaarheid Deelbaarheid en oplosbaarheid Diffusie 2de jaar 1ste graad ASO Hoofdstuk 6

7 3 Hoofdstuk 3: STRUCTUURMODEL VAN DE MATERIE 3.1 Hoe zijn stoffen opgebouwd? 3.2 Model van de structuur van de materie 3.3 Toepassingen van het deeltjesmodel De aggregatietoestanden Vaste stoffen Vloeistoffen Gassen Faseovergangen Ruimte tussen de deeltjes Samendrukbaarheid Deeltjes bewegen 2de jaar 1ste graad ASO Hoofdstuk 7

8 4 Hoofdstuk 4: WARMTE EN TEMPERATUUR 4.1 Warmte en temperatuur 4.2 Uitzetting van stoffen Uitzetting van vaste stoffen Uitzetting van vloeistoffen Uitzetting van gassen Verklaring van de uitzetting 4.3 Temperatuurmeting Het meten van een temperatuur Bouw van de vloeistofthermometer Soorten thermometers 2de jaar 1ste graad ASO Hoofdstuk 8

9 5 Hoofdstuk 5: FASEOVERGANGEN VAN DE MATERIE 5.1 De faseovergang vast vloeibaar Smeltproces Stolproces Volumeverandering bij smelten en stollen 5.2 De faseovergang vloeibaar damp Verdampen Koken Condenseren 5.3 De faseovergang vast damp 5.4 Verklaring van de faseovergangen met het deeltjesmodel 2de jaar 1ste graad ASO Hoofdstuk 9

10 6 Hoofdstuk 6: VOORTPLANTING VAN HET LICHT 6.1 Inleiding: individueel onderzoek! We gaan op zoek naar het bestaan van licht! Wat is licht? Wie vond het elektrische licht uit? In een eerste fase zoeken jullie zelf naar ervaringen met licht. Elk krijgt een deelthema om thuis eerst zelf op onderzoek te gaan. Daarna komen jullie vertellen welke ontdekkingen jullie deden. Optica is het deel van de fysica dat eigenschappen van het licht beschrijft, en zich bezighoudt met de verschijnselen die zich voordoen als licht invalt op voorwerpen. Reeds in de 17de eeuw ontdekte Christiaan Huygens dat licht zich net zo gedroeg als een golf op een wateroppervlak. Enkele jaren later beweerde Isaac Newton echter dat licht bestaat uit deeltjes. Met beide theorieën kan je een deel van de eigenschappen van het licht verklaren. Door de eigenschappen van het licht te bestuderen, zijn veel toepassingen ontstaan. breking breking camera obscura kleuren kleuren lenzen en spiegels lenzen en spiegels schaduw schaduw zon en maansverd. zon en maansverd. Louis Ansger Shaun Eva Louise Jona Lucas Mopsa Evi Joran Gilles Licht als energievorm Bekijk het volgende filmpje op YOU TUBE! Tik in: Radiometer van Crookes Het molentje draait wanneer het met licht wordt beschenen. De lichtdeeltjes produceren een energie die het molentje in gang duwt. Dit is de RADIOMETER VAN CROOKES, of een gyroscoop. Licht kan je ook voelen. Bedenk een proef waarbij je geblinddoekt toch kan herkennen of er licht in je buurt is. 2de jaar 1ste graad ASO Hoofdstuk 10

11 In de donkere kamer van een fotolaboratorium kan je rood licht aantreffen. Rood licht is minder energetisch dan bijvoorbeeld blauw of ultraviolet en daarom beïnvloedt het niet het gevoelige fotopapier. Het elektromagnetisch spectrum toont ons de volledige kleurenschakering van het licht Lichtbron donker voorwerp In een donkere kamer (denk aan de camera obscura) kan je licht maken met een lichtbron. Een lamp wordt meestal aan het plafond bevestigd om de ruimte te belichten. De lamp is een lichtbron. Een voorwerp wat zelfstandig licht uitzendt, noemt men een directe lichtbron. Geef nog enkele voorbeelden van lichtbronnen: Een donker voorwerp schijnt zelf geen enkel licht uit. Het ultieme donker voorwerp kunnen we het best benaderen wanneer we in een willekeurige onregelmatige holle ruimte met donkere inwendige wanden een kleine opening maken. Deze opening zal zelf geen licht uitschijnen en is daarom in onze ogen een donker voorwerp. Een donker lichaam kan wel licht weerkaatsen. Voorbeelden van donkere lichamen die licht weerkaatsen, zijn: de maan een spiegel het oog van een kat een fietsreflector een persoon een bank Er zijn ook voorwerpen die weinig of geen licht weerkaatsen. Voorwerpen die donker van kleur zijn, weerkaatsen slechts weinig licht, maar absorberen het. Teken hier een doorsnede van een donker lichaam: 2de jaar 1ste graad ASO Hoofdstuk 11

12 6.2 De rechtlijnige voortplanting van het licht Wanneer je een zaklantaarn naar een muur schijnt dan zie je zijn lichtbeeld op die muur. Met de beweging van de zaklamp zal ook het beeld verplaatsen op de muur. Rechtlijnig met de schijnrichting van je zaklamp Voortplanting van het licht Ondoorschijnende, doorschijnende en doorzichtige voorwerpen Als je achtereenvolgens een glazen plaat, een blad papier en een stuk karton voor een lamp plaatst, kun je het volgende waarnemen: Door de glazen plaat kun je de lamp duidelijk zien. De glazen plaat is een doorzichtig voorwerp. Door het blad papier kun je het licht van de lamp wel zien, maar de lamp zelf is niet duidelijk zichtbaar. Een blad papier is een doorschijnend voorwerp. Door het stuk karton kun je noch de lamp, noch het licht van de lamp zien. Een stuk karton is een ondoorschijnend voorwerp Lichtpunt lichtbundel lichtstraal Omdat licht zich in principe rechtlijnig voortplant, stellen we ons licht voor als bestaande uit lichtstralen. In werkelijkheid bestaat licht niet uit stralen, maar kan licht beschreven worden als elektromagnetische golven of als deeltjes die men fotonen noemt. Het blijkt echter heel handig om de werking van bijvoorbeeld spiegels en telescopen uit te leggen door gebruik te maken van een model waarin licht als stralen wordt opgevat. Een lichtbron zendt lichtstralen uit, die we gezamenlijk als lichtbundel aanduiden. De stralen in een lichtbundel kunnen ten opzichte van elkaar verschillende richtingen hebben. Een lichtbundel met stralen die uit elkaar gaan, noemen we een divergerende lichtbundel. Een lichtbundel met stralen die evenwijdig zijn, noemen we een parallelle lichtbundel. De belangrijkste lichtbron is de zon. De zon is heel ver van ons verwijderd, zodat de lichtstralen die op aarde invallen bijna evenwijdig zijn. Het zonlicht op aarde is dus bij benadering een parallelle lichtbundel. Soms gaan de lichtstralen van een lichtbundel naar elkaar toe. Zo'n lichtbundel noemen we een convergerende lichtbundel. 2de jaar 1ste graad ASO Hoofdstuk 12

13 Lichtsnelheid Licht plant zich in vacuüm en in de meeste stoffen (media) voort met een zeer grote snelheid. De lichtsnelheid in vacuüm is m/s. Dit is een exacte waarde omdat de meter is gedefinieerd als: 'De afstand die licht in vacuüm in 1/ seconde aflegt'. Daaruit volgt dus dat licht in één seconde meter aflegt. Deze waarde wordt vaak afgerond naar kilometer per seconde. In natuurkundige formules wordt de lichtsnelheid meestal aangegeven met de letter c. In andere media, zoals lucht en water, is de lichtsnelheid lager dan in vacuüm. Verschillende media hebben in principe verschillende lichtsnelheden. We zeggen dat zij verschillende optische dichtheden hebben. 2de jaar 1ste graad ASO Hoofdstuk 13

14 6.3 Schaduwvorming Algemeen Rechtlijnige voortplanting van het licht in een homogeen medium en schaduwvorming Aangezien licht zich rechtlijnig voortplant, kan het niet achter ondoorschijnende voorwerpen komen. Het niet verlichte gebied achter een ondoorschijnend voorwerp noemen we schaduw. De vorm van de schaduw wordt bepaald door de vorm van het voorwerp. Wiskundig gezien is een schaduw de projectie van een voorwerp, waarbij de projectierichting overeenkomt met de richting van de lichtstralen Schaduwen gevormd door een puntvormige lichtbron Schaduwen gevormd door een niet-puntvormige lichtbron Maanstanden De maan draait om de aarde. De lichtstralen van de zon verlichten altijd slechts het halve oppervlak van de maan. Afhankelijk van de stand van de maan, is het gedeelte van het maanoppervlak dat we vanaf aarde zien geheel verlicht (volle maan), gedeeltelijk verlicht of onverlicht (nieuwe maan). Omdat we enkel het verlichte deel van de maan kunnen zien lijkt het alsof de maan van vorm verandert. Dit noemen we de schijngestalten van de maan. Men onderscheidt vijf schijngestalten: nieuwe maan (1) eerste kwartier (2) halve maan (3 + 7) volle maan (5) laatste kwartier (8) 2de jaar 1ste graad ASO Hoofdstuk 14

15 6.3.5 Maans- en zonsverduistering Een zonsverduistering Een zonsverduistering is een fenomeen, waarbij het licht van de zon de aarde niet bereikt, omdat de maan in de weg van het licht zit. Eigenlijk is het niet de zon, maar een gedeelte van de aarde, dat verduisterd wordt. De zon wordt door de maan bedekt en lijkt daardoor vanaf de aarde verduisterd te zijn. Een maansverduistering Een maansverduistering doet zich voor wanneer de aarde precies tussen de zon en de maan staat. Normaal weerkaatst de maan het licht van de zon naar de aarde, maar tijdens een maansverduistering staat de aarde in de weg en ontvangt de maan geen zonlicht; de maan bevindt zich in de schaduw van de aarde. Een maansverduistering kan enkel plaatsvinden bij volle maan. 6.4 Camera obscura Een camera obscura (Latijn voor donkere kamer) is een verduisterde doos, waarbij in een van de wanden een klein gaatje is aangebracht. Het hierdoor invallende licht werpt een afbeelding van de buitenwereld op de tegenoverliggende wand. Als de achterwand van de camera obscura doorzichtig wordt gemaakt (bijvoorbeeld met matglas), is de afbeelding van buitenaf te zien. Voordat de lichtgevoelige plaat was ontdekt (rond 1800), was de camera obscura een kermisattractie. Men kon immers de wereld buiten ongezien bespieden. Met spiegels werd er voor gezorgd dat de afbeelding weer rechtop kwam te staan. Kunstschilders gebruikten de camera obscura als hulpmiddel om de werkelijkheid nauwkeurig over te kunnen nemen op hun doek. In de Victoriaanse tijd werden er camera's obscura gebouwd ter grootte van een huis, waarin men tegen betaling een blik kon werpen op de omgeving. 2de jaar 1ste graad ASO Hoofdstuk 15

16 7 Hoofdstuk 7: WEERKAATSING VAN HET LICHT 7.1 Inleiding Dat licht weerkaatst wordt is zo vanzelfsprekend, dat het bijna overbodig lijkt om de weerkaatsing van licht verder te onderzoeken. Toch is het belangrijk om dit verschijnsel te bestuderen. 7.2 Weerkaatsing van het licht Als men een smalle lichtbundel op een witte muur laat schijnen, ziet men een lichtvlek op de muur. Als men dezelfde lichtbundel op een spiegel laat schijnen, ziet men geen lichtvlek. De oorzaak hiervan is de verschillende manier waarop het licht weerkaatst wordt door het voorwerp Regelmatige en diffuse weerkaatsing Als je de muur met een microscoop zou bestuderen, zou je zien dat deze heel veel oneffenheden bevat. De muur zal het licht in alle richtingen weerkaatsen. Dit noemen we diffuse weerkaatsing. De spiegel is helemaal vlak en zal het licht in één richting terugkaatsen. Enkel indien we ons in de weerkaatste lichtbundel bevinden, zullen we de lichtstralen kunnen zien Soorten spiegels Holle spiegels Bolle spiegels Vlakke spiegels weerkaatsingswetten Een lichtstraal die invalt op een voorwerp, valt altijd in op een bepaald punt van het voorwerp. Het invalspunt is het punt waar de invallende straal het voorwerp raakt. De lijn die loodrecht op het voorwerp staat en door het invalspunt gaat, noemen we de normaal. De hoek die de invallende lichtstraal maakt met de 2de jaar 1ste graad ASO Hoofdstuk 16

17 normaal, noemen we de invalshoek, en de hoek die de weerkaatste lichtstraal maakt met de normaal, noemen we de weerkaatsingshoek. De wet van de terugkaatsing luidt als volgt: De invalshoek van een lichtstraal is altijd gelijk aan de weerkaatsingshoek. We kunnen m.b.v. een experiment deze wet controleren. Door te onderzoeken welke invalshoek overeenkomt met welke weerkaatsingshoek, kunnen we controleren dat deze wet inderdaad klopt. 7.3 Beeldvorming bij vlakke spiegels Beeldpunt Symmetriewet voor vlakke spiegels Bij vlakke spiegels zien we als gevolg van de wijze van terugkaatsen van de lichtstralen, een spiegelbeeld op gelijke afstand van de spiegel als het voorwerp voor de spiegel, en in afmetingen daaraan gelijk. De afstand van een punt tot een rechte is de afstand van dat punt tot het voetpunt van de loodlijn uit dat punt op die rechte Beeld van een reëel voorwerp Gezichtsveld van een vlakke spiegel 2de jaar 1ste graad ASO Hoofdstuk 17

18 8 Hoofdstuk 8: BREKING VAN HET LICHT 8.1 Inleiding Als een lichtstraal vanuit de lucht een wateroppervlak treft en z'n weg in het water vervolgt, treedt een welbekend verschijnsel op: de lichtstraal gaat niet rechtdoor, maar wordt gebroken. Als gevolg daarvan zien we een stok die gedeeltelijk in het water staat alsof er een knik in zit. Dit verschijnsel heet breking van het licht; het doet zich voor telkens wanneer licht het grensvlak passeert tussen media van verschillende optische dichtheid. Indien we een lichtstraal loodrecht op een wateroppervlak laten invallen, zal de lichtstraal niet breken. Als we in stilstaand water recht naar beneden kijken, ziet alles er gewoon uit. 2de jaar 1ste graad ASO Hoofdstuk 18

19 8.2 Het brekingsverschijnsel Als licht van een stof met lage dichtheid, overgaat in een stof met hogere dichtheid, breekt het licht naar de normaal toe. De hoek tussen de gebroken lichtstraal en de normaal noemen we de brekingshoek. De brekingshoek zal kleiner zijn dan de invalshoek. De verhouding tussen de invalshoek en de brekingshoek wordt bepaald door de optische dichtheid of brekingsindex van elk medium waar de lichtbundel doorheen loopt. Dit verschijnsel kunnen we samenvatten in volgende wet: De Wet van Snellius Hierin is: n1: de brekingsindex van de eerste stof n2: de brekingsindex van de tweede stof Θ1: de invalshoek Θ2: de brekingshoek 8.3 Studie van de lichtbreking Overgang van optisch ijler naar optisch dichter Overgang van optisch dichter naar optisch ijler Totale weerkaatsing Grenshoek Als licht het grensvlak treft van een optisch minder dichte stof, is er een invalshoek waarbij de brekingshoek juist 90 is. Er treedt dan geen breking meer op, maar het grensvlak fungeert als spiegel en er treedt volledige reflectie op. In formulevorm betekent dit dat θ2 = 90. Dit fenomeen wordt o.a. gebruikt bij glasvezelkabels Brekingswetten 2de jaar 1ste graad ASO Hoofdstuk 19

20 8.4 Enkele gevolgen van de lichtbreking Werkelijke stand van de zon (of een ander hemellichaam) Schijnbare diepte van water Evenwijdige verschuiving bij een planparallelle plaat 8.5 Breking en totale terugkaatsing bij prisma s Definitie soorten Breking door een prisma deviatiehoek Totale terugkaatsing bij een gelijkbenig rechthoekig prisma 2de jaar 1ste graad ASO Hoofdstuk 20

21 9 Hoofdstuk 9: LENZEN EN LICHT 9.1 Inleiding Wanneer we een druppel olie op een blad papier bekijken, wordt het beeld onder de druppel vervormd. Dit komt doordat de druppel olie het licht breekt. De druppel gedraagt zich als een bolle lens. Een lens is een doorzichtig voorwerp dat begrensd wordt door minstens één gebogen oppervlak. 9.2 Breking door lenzen Definitie soorten Bolle lenzen zijn in het midden dikker dan aan de zijkanten. Holle lenzen zijn in het midden dunner dan aan de zijkanten Meetkundige kenmerken Brandpunten Een evenwijdige bundel evenwijdig met de hoofdas wordt door de lens gebroken, waarna de gebroken stralen samenkomen in een punt op de hoofdas. Dat punt wordt een brandpunt van de lens genoemd. Er zijn twee brandpunten, gelegen aan weerszijden van de lens op gelijke afstanden van de lens. De afstand tussen het midden van de lens en een brandpunt heet de brandpuntsafstand. De naam brandpunt verwijst ernaar dat het licht van de zon dat geconcentreerd wordt in het brandpunt, de temperatuur in het brandpunt zo hoog doet oplopen, dat materiaal kan ontbranden. In figuren wordt een brandpunt gewoonlijk aangegeven met de hoofdletter F en de brandpuntsafstand met de kleine letter f van het Latijnse focus. De drie hoofdstralen Bij de beeldconstructie zijn er 3 hoofdstralen, van waaruit een beeld kan worden opgebouwd: 2de jaar 1ste graad ASO Hoofdstuk 21

22 Eén evenwijdig aan de hoofdas, die na de hoofdas wordt afgebogen door het brandpunt (parallelstraal). Een straal, recht door het optisch middelpunt. Deze lichtstraal wordt niet gebroken (centrumstraal). Een straal door het brandpunt, die in de lens wordt gebroken en vanaf daar evenwijdig aan de hoofdas verder gaat (brandstraal) Breking Brandpunten van een dunne bolle lens 2de jaar 1ste graad ASO Hoofdstuk 22

23 9.3 Beeld van reële voorwerpen door dunne bolle lenzen Begrippen Men kan bij een lens het beeld construeren m.b.v. twee van de drie hoofdstralen. We voeren een aantal begrippen in: f is de brandpuntsafstand. v is de afstand van het voorwerp tot de lens b is de afstand van het beeld tot de lens V is de grootte van het voorwerp B is de grootte van het beeld Overzicht en beeldconstructies * Eerste geval: v > 2f De voorwerpsafstand is groter dan het dubbele van de brandpuntsafstand. In dit geval staat het beeld omgekeerd en is het verkleind. Een toepassing die gebruik maakt van dit geval is het fototoestel. De werkelijkheid wordt verkleind en omgekeerd op een film of CCD geprojecteerd. * Tweede geval: v = 2f De voorwerpsafstand is gelijk aan het dubbele van de brandpuntsafstand. In dit geval staat het beeld omgekeerd en is het even groot. 2de jaar 1ste graad ASO Hoofdstuk 23

24 * Derde geval: 2f > v > f De voorwerpsafstand is groter dan de brandpuntsafstand maar kleiner dan het dubbele van de brandpuntsafstand. Het beeld staat omgekeerd en is vergroot. Een toepassing die gebruik maakt van dit geval is een diaprojector. De dia (voorwerp) wordt vergroot op een scherm geprojecteerd. * Vierde geval: v = f De voorwerpsafstand is gelijk aan de brandpuntsafstand. In dit geval is er geen beeld. De stralen treden als een evenwijdige bundel uit. Dit werd toegepast in kleinere zoeklichten die voor de bundelvorming met een lens waren uitgerust. * Vijfde geval: f > v De voorwerpsafstand is kleiner dan de brandpuntsafstand. In dit geval is het beeld virtueel. Het staat rechtop en is vergroot. Een toepassing die gebruik maakt van dit geval is een vergrootglas. 2de jaar 1ste graad ASO Hoofdstuk 24

25 9.3.3 Lineaire vergroting 9.4 Beeld van reële voorwerpen door dunne holle lenzen 9.5 Sterkte van een lens 9.6 Het oog De voorste oogkamer, die de voornaamste lenswerking van het oog verzorgt, projecteert samen met de ooglens voor de scherpstelling, een scherp, kopstaand beeld op het netvlies. De lichtsterkte ervan wordt, net als bij een camera, geregeld door een diafragma. Bij de mens heeft het regenboogvlies de functie van diafragma. Kringspiertjes trekken dit afhankelijk van de lichtsterkte in meer of mindere mate dicht. Op het netvlies bevinden zich lichtgevoelige zenuwcellen, die een signaal naar de hersenen afgeven dat afhankelijk is van de hoeveelheid licht op de plaats van de cel op het netvlies. Alle prikkels tezamen worden door de oogzenuw naar de hersenen getransporteerd, die er een beeld van maken In rust In werking Oogcorrecties 9.7 Enkele optische toestellen De loep Bij het vergrootglas is v < f. Het voorwerp staat dus dichter bij de lens dan het brandpunt. In dat geval krijg je een virtueel beeld. Het beeld staat rechtop; aan dezelfde kant als het voorwerp en is vergroot. 2de jaar 1ste graad ASO Hoofdstuk 25

26 9.7.2 De diaprojector De overheadprojector De telescoop In een telescoop zitten meerdere lenzen. Vaak is het ook een combinatie van lenzen met spiegels. Het beeld is sterk vergroot. Met een telescoop kun goed hemellichamen bekijken omdat een telescoop sterk vergroot. je Het fototoestel Bij een fototoestel zorgt de lens voor een verkleind reëel beeld. Dit beeld staat op zijn kop en komt terecht in de achterkant van de camera. Vroeger zat daar een filmrolletje. Na ontwikkelen kon dat worden afgedrukt en had je foto's. In een digitale camera zitten daar lichtgevoelige cellen. Die sturen informatie door naar een geheugenkaart. Met een digitale camera kunnen foto's worden afgedrukt, maar ook kun je ze op TV afbeelden of op je computer bekijken. 2de jaar 1ste graad ASO Hoofdstuk 26

27 Opgaven: Als er bij een optreden rook over het podium wordt geblazen, kan je duidelijk de stralenbundels van de spots zien. Verklaar hoe dit komt. Hoe komt het dat je in een aangedampte spiegel geen beeld meer kan waarnemen? Waarom zijn de muren in een filmzaal meestal zwart? Waarom is het doek waarop geprojecteerd wordt wit? Hoe kan je een zwarte kat in een wit sneeuwlandschap projecteren. Je kijkt naar een duiker die zich in een zwembad bevindt. Bevindt deze duiker zich a) dieper of b) minder diep dan waar jij hem ziet? Verklaar m.b.v. een tekening. Een lichtjaar is de afstand die het licht aflegt in één jaar. Bereken hoeveel km een lichtjaar is. Op aarde is de hemel overdag blauw, wit of grijs. Op de maan is de hemel overdag zwart. Hoe kan dit? De maan draait elke 28 dagen eenmaal rond de aarde. Een maansverduistering komt veel minder voor. Verklaar hoe dit komt. Indien er een maansverduistering is, kan iedereen die zich op het juiste halfrond bevindt bewonderen. Indien er een zonsverduistering is, dan kunnen slechts weinig mensen deze bewonderen. Verklaar het verschil. Een lichtstraal gaat over van lucht naar water. De invalshoek bedraagt 25. Bereken de brekingshoek. Een lichtstraal gaat over van lucht naar glas. De brekingshoek bedraagt 15. Bereken de invalshoek. Een bolle lens geeft een scherp beeld op een afstand van 120 cm. De brandpuntsafstand bedraagt 60 cm. Bereken op welke afstand het voorwerp staat, en bereken de vergroting. Een bolle lens geeft een scherp beeld van 20 cm hoog op een afstand van 60 cm. De brandpuntsafstand bedraagt 40 cm. Op welke afstand staat het voorwerp, en hoe groot is het voorwerp? 2de jaar 1ste graad ASO Hoofdstuk 27

28 10 Hoofdstuk 10: GEKLEURD LICHT EN KLEURDRUK 10.1 Inleiding 10.2 Kleurschifting of dispersie of waaruit bestaat wit licht? 10.3Kleur van een voorwerp 10.4Kleur en het oog: het zien van kleur Het mengen van licht Je kunt mengen met lichtkleuren. Dit gebeurt bijvoorbeeld in een televisie. Het mengen is dan subtractief en dat wil zeggen dat het resultaat steeds lichter wordt Het probleem van de puntjes Kleurendruk: het mengen van pigmenten 2de jaar 1ste graad ASO Hoofdstuk 28

29 Je kunt kleuren mengen. Dat kan op twee manieren: met verf: (additief = erbij doen, het resultaat = donkerder) Je gaat dan uit van 3 primaire kleuren, rood geel en blauw en met die kleuren maak je de hele regenboog na: 2de jaar 1ste graad ASO Hoofdstuk 29

30 1 Hoofdstuk 1: WAT IS FYSICA 1.1 Domeinen van de fysica Warmte Licht Beweging Energie 1.2 Toegepaste fysica 1.3 Wetenschappelijk werk 2 Hoofdstuk 2: EIGENSCHAPPEN VAN DE MATERIE 2.1 Voorwerpen en stoffen 2.2 Eigenschappen van de materie Ondoordringbaarheid Aggregatietoestanden Cohesie en adhesie Poreusheid Samendrukbaarheid Deelbaarheid en oplosbaarheid Diffusie 3 Hoofdstuk 3: STRUCTUURMODEL VAN DE MATERIE 3.1 Hoe zijn stoffen opgebouwd? 3.2 Model van de structuur van de materie 3.3 Toepassingen van het deeltjesmodel De aggregatietoestanden Faseovergangen Ruimte tussen de deeltjes Samendrukbaarheid Deeltjes bewegen 4 Hoofdstuk 4: WARMTE EN TEMPERATUUR 4.1 Warmte en temperatuur 4.2 Uitzetting van stoffen Uitzetting van vaste stoffen Uitzetting van vloeistoffen Uitzetting van gassen Verklaring van de uitzetting 4.3 Temperatuurmeting Het meten van een temperatuur Bouw van de vloeistofthermometer Soorten thermometers 5 Hoofdstuk 5: FASEOVERGANGEN VAN DE MATERIE 5.1 De faseovergang vast vloeibaar Smeltproces Stolproces Volumeverandering bij smelten en stollen 5.2 De faseovergang vloeibaar damp 2de jaar 1ste graad ASO Hoofdstuk 30

31 5.2.1 Verdampen Koken Condenseren 5.3 De faseovergang vast damp 5.4 Verklaring van de faseovergangen met het deeltjesmodel 6 Hoofdstuk 6: VOORTPLANTING VAN HET LICHT 6.1 Inleiding: individueel onderzoek! Licht als energievorm Lichtbron donker voorwerp 6.2 De rechtlijnige voortplanting van het licht Voortplanting van het licht Lichtpunt lichtbundel lichtstraal 6.3 Schaduwvorming Algemeen Schaduwen gevormd door een puntvormige lichtbron Schaduwen gevormd door een niet-puntvormige lichtbron Maanstanden Maans- en zonsverduistering 6.4 Camera obscura 7 Hoofdstuk 7: WEERKAATSING VAN HET LICHT 7.1 Inleiding 7.2 Weerkaatsing van het licht Regelmatige en diffuse weerkaatsing Soorten spiegels weerkaatsingswetten 7.3 Beeldvorming bij vlakke spiegels Beeldpunt Symmetriewet voor vlakke spiegels Beeld van een reëel voorwerp Gezichtsveld van een vlakke spiegel 8 Hoofdstuk 8: BREKING VAN HET LICHT 8.1 Inleiding 8.2 Het brekingsverschijnsel 8.3 Studie van de lichtbreking Overgang van optisch ijler naar optisch dichter Overgang van optisch dichter naar optisch ijler Totale weerkaatsing Brekingswetten 8.4 Enkele gevolgen van de lichtbreking Werkelijke stand van de zon (of een ander hemellichaam) Schijnbare diepte van water Evenwijdige verschuiving bij een planparallelle plaat 8.5 Breking en totale terugkaatsing bij prisma s Definitie soorten Breking door een prisma deviatiehoek Totale terugkaatsing bij een gelijkbenig rechthoekig prisma 9 Hoofdstuk 9: LENZEN EN LICHT 9.1 Inleiding 9.2 Breking door lenzen 2de jaar 1ste graad ASO Hoofdstuk 31

32 9.2.1 Definitie soorten Meetkundige kenmerken Breking Brandpunten van een dunne bolle lens 9.3 Beeld van reële voorwerpen door dunne bolle lenzen Begrippen Overzicht en beeldconstructies Lineaire vergroting 9.4 Beeld van reële voorwerpen door dunne holle lenzen 9.5 Sterkte van een lens 9.6 Het oog In rust In werking Oogcorrecties 9.7 Enkele optische toestellen De loep De diaprojector De overheadprojector De telescoop Het fototoestel 10 Hoofdstuk 10: GEKLEURD LICHT EN KLEURDRUK 10.1 Inleiding 10.2 Kleurschifting of dispersie of waaruit bestaat wit licht? 10.3 Kleur van een voorwerp 10.4 Kleur en het oog: het zien van kleur Het mengen van licht Het probleem van de puntjes Kleurendruk: het mengen van pigmenten 2de jaar 1ste graad ASO Hoofdstuk 32

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld 6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld Lichtbronnen: Directe lichtbronnen produceren zelf licht Indirecte lichtbronnen reflecteren licht. Je ziet een voorwerp als er licht

Nadere informatie

N A T U U R W E T E N S C H A P P E N V O O R H A N D E L 1 Copyright

N A T U U R W E T E N S C H A P P E N V O O R H A N D E L 1 Copyright N AT U U R W E T E N S C H A P P E N V O O R H A N D E L 1 2 LICHT EN ZIEN 2.1 Donkere lichamen en lichtbronnen 2.1.1 Donkere lichamen Donkere lichamen zijn lichamen die zichtbaar worden als er licht

Nadere informatie

Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO!

Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO! Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO! M. Beddegenoodts, M. De Cock, G. Janssens, J. Vanhaecht woensdag 17 oktober 2012 Specifieke Lerarenopleiding Natuurwetenschappen: Fysica

Nadere informatie

Ze wordt aangeduid met het woordje uitbreiding in de titelbalk. De moeilijkheidsgraad van de opgaven is aangeduid met een kleurgradatie:

Ze wordt aangeduid met het woordje uitbreiding in de titelbalk. De moeilijkheidsgraad van de opgaven is aangeduid met een kleurgradatie: Pulsar 1 leerwerkboek 2 u is bedoeld voor het eerste jaar van de tweede graad ASO met 2 lestijden fysica per week. Het is een combinatie van een leerboek met een werkboek. De leerstof wordt telkens ingeleid

Nadere informatie

3HAVO Totaaloverzicht Licht

3HAVO Totaaloverzicht Licht 3HAVO Totaaloverzicht Licht Algemene informatie Terugkaatsing van licht kan op twee manieren: Diffuus: het licht wordt in verschillende richtingen teruggekaatst (verstrooid) Spiegelend: het licht wordt

Nadere informatie

6.1 Voortplanting en weerkaatsing van licht

6.1 Voortplanting en weerkaatsing van licht Uitwerkingen opgaven hoofdstuk 6 6.1 Voortplanting en weerkaatsing van licht Opgave 1 Opgave 2 Bij diffuse terugkaatsing wordt opvallend licht in alle mogelijke richtingen teruggekaatst, zelfs als de opvallende

Nadere informatie

Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de

Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de lichtsnelheid ~300.000 km/s! Rechte lijn Pijl er in voor de richting

Nadere informatie

Ze wordt aangeduid met het woordje uitbreiding in de titelbalk.

Ze wordt aangeduid met het woordje uitbreiding in de titelbalk. Ten geleide Ten geleide Pulsar 1 leerwerkboek 2 u is bedoeld voor het eerste jaar van de tweede graad ASO met 2 lestijden fysica per week. Het is een combinatie van een leerboek met een werkboek. De leerstof

Nadere informatie

4.1.1 Lichtbronnen Benoem de onderstaande lichtbronnen. Opgelet, één van de figuren stelt geen lichtbron voor, welke?

4.1.1 Lichtbronnen Benoem de onderstaande lichtbronnen. Opgelet, één van de figuren stelt geen lichtbron voor, welke? Hoofdstuk 4: Licht 4.1 Voortplanting van licht 4.1.1 Lichtbronnen Benoem de onderstaande lichtbronnen. Opgelet, één van de figuren stelt geen lichtbron voor, welke? We zien allerlei dingen om ons heen,

Nadere informatie

Geometrische optica. Hoofdstuk 1. 1.1 Principe van Huygens. 1.2 Weerkaatsing van lichtgolven.

Geometrische optica. Hoofdstuk 1. 1.1 Principe van Huygens. 1.2 Weerkaatsing van lichtgolven. Inhoudsopgave Geometrische optica Principe van Huygens Weerkaatsing van lichtgolven 3 Breking van lichtgolven 4 4 Totale weerkaatsing en lichtgeleiders 6 5 Breking van lichtstralen door een sferisch diopter

Nadere informatie

Examen Fysica: Inleiding: Wat is fysica?

Examen Fysica: Inleiding: Wat is fysica? Fysica: Chemie: Bewegen Een kracht uitoefenen Verdampen Een elektrische stroom opwekken Optica Terugkaatsing van het licht Smelten en stollen Examen Fysica: Inleiding: Wat is fysica? Roesten Omzetting

Nadere informatie

Samenvatting Natuurkunde H3 optica

Samenvatting Natuurkunde H3 optica Samenvatting Natuurkunde H3 optica Samenvatting door een scholier 992 woorden 19 januari 2013 5,6 22 keer beoordeeld Vak Methode Natuurkunde Natuurkunde overal Hoofdstuk 3 Optica 3.1 Zien Dit hoofdstuk

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 3 Licht en Lenzen

Samenvatting Natuurkunde Hoofdstuk 3 Licht en Lenzen Samenvatting Natuurkunde Hoofdstuk 3 Licht en Lenzen Samenvatting door A. 1760 woorden 11 maart 2016 7,4 132 keer beoordeeld Vak Methode Natuurkunde Nova 1: Lichtbreking Een dunne lichtbundel - een lichtstraal

Nadere informatie

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige beweging Trilling en

Nadere informatie

jaar: 1994 nummer: 12

jaar: 1994 nummer: 12 jaar: 1994 nummer: 12 Een vrouw staat vóór een spiegel en kijkt met behulp van een handspiegel naar de bloem achter op haar hoofd.de afstanden van de bloem tot de spiegels zijn op de figuur aangegeven.

Nadere informatie

Samenvatting Hoofdstuk 5. Licht 3VMBO

Samenvatting Hoofdstuk 5. Licht 3VMBO Samenvatting Hoofdstuk 5 Licht 3VMBO Hoofdstuk 5 Licht We hebben zichtbaar licht in de kleuren Rood, Oranje, Geel, Groen, Blauw en Violet (en alles wat er tussen zit) Wit licht bestaat uit een mengsel

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Licht als golf en als deeltje 24 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand Lenzen Leerplandoel FYSICA TWEEDE GRAAD ASO WETENSCHAPPEN LEERPLAN SECUNDAIR ONDERWIJS VVKSO BRUSSEL D/2012/7841/009 5.1.2 Licht B21 De beelden bij een dunne bolle lens construeren en deze aanduiden als

Nadere informatie

Tekstboek. VMBO-T Leerjaar 1 en 2

Tekstboek. VMBO-T Leerjaar 1 en 2 Tekstboek VMBO-T Leerjaar 1 en 2 JHB Pastoor 2015 Arnhem 1 Inhoudsopgave i-nask Tekstboek VMBO-T Leerjaar 1 en 2 Hoofdstuk 1 Licht 1.1 Licht Zien 3 1.2 Licht en Kleur 5 1.3 Schaduw 10 1.4 Spiegels 15 Hoofdstuk

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 2 Licht. Wat moet je leren/ kunnen voor het PW H2 Licht?

Samenvatting Natuurkunde Hoofdstuk 2 Licht. Wat moet je leren/ kunnen voor het PW H2 Licht? Wat moet je leren/ kunnen voor het PW H2 Licht? Alles noteren met significantie en in de standaard vorm ( in hoeverre dit lukt). Eerst opschrijven wat de gegevens en formules zijn en wat gevraagd wordt.

Nadere informatie

Uitwerkingen. Hoofdstuk 2 Licht. Verkennen

Uitwerkingen. Hoofdstuk 2 Licht. Verkennen Uitwerkingen Hoofdstuk 2 Licht Verkennen I a. Teken het gebouw met de zon in de tekening. De stand van de zon bepaalt waar de schaduw terecht komt. b. Maak een tekening in bovenaanzicht. Jij staat voor

Nadere informatie

Invals-en weerkaatsingshoek + Totale terugkaatsing

Invals-en weerkaatsingshoek + Totale terugkaatsing Invals-en weerkaatsingshoek + Totale terugkaatsing Leerplandoelen FYSICA TWEEDE GRAAD ASO WETENSCHAPPEN LEERPLAN SECUNDAIR ONDERWIJS VVKSO BRUSSEL D/2012/7841/009 5.1.2 Licht B10 De begrippen invallende

Nadere informatie

Uitwerkingen Hoofdstuk 2 Licht

Uitwerkingen Hoofdstuk 2 Licht Uitwerkingen Hoofdstuk 2 Licht Verkennen I a. Teken het gebouw met de zon in de tekening. De stand van de zon bepaalt waar de schaduw terecht komt. b. Een platte tekening. Jij staat voor de spiegel, de

Nadere informatie

Handleiding bij geometrische optiekset 112114

Handleiding bij geometrische optiekset 112114 Handleiding bij geometrische optiekset 112114 INHOUDSOPGAVE / OPDRACHTEN Algemene opmerkingen Spiegels 1. Vlakke spiegel 2. Bolle en holle spiegel Lichtbreking en kleurenspectrum 3. Planparallel blok 4.

Nadere informatie

hoofdstuk 5 Lenzen (inleiding).

hoofdstuk 5 Lenzen (inleiding). hoofdstuk 5 Lenzen (inleiding). 5.1 Drie soorten lichtbundels Als lichtstralen een bundel vormen kan dat op drie manieren. 1. een evenwijdige bundel. 2. een convergerende bundel 3. een divergerende bundel.

Nadere informatie

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak Wet van Snellius 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak 1 Lichtbreking Lichtbreking Als een lichtstraal het grensvlak tussen lucht en water passeert, zal de lichtstraal

Nadere informatie

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand Lenzen Leerplandoel FYSICA TWEEDE GRAAD ASO WETENSCHAPPEN LEERPLAN SECUNDAIR ONDERWIJS VVKSO BRUSSEL D/2012/7841/009 5.1.2 Licht B21 De beelden bij een dunne bolle lens construeren en deze aanduiden als

Nadere informatie

Handleiding Optiekset met bank

Handleiding Optiekset met bank Handleiding Optiekset met bank 112110 112110 112114 Optieksets voor practicum De bovenstaande Eurofysica optieksets zijn geschikt voor alle nodige optiekproeven in het practicum. De basisset (112110) behandelt

Nadere informatie

Practicum: Je kan ernaar vissen...

Practicum: Je kan ernaar vissen... Naam :.. Klas. nr : Datum: Vak: Fysica Leerkracht: Practicum: Je kan ernaar vissen... Een vis vangen met je handen is niet zo eenvoudig als het lijkt. Laten we eens kijken waarom. 1) Breking op een rijtje.

Nadere informatie

hoofdstuk 5 Lenzen (inleiding).

hoofdstuk 5 Lenzen (inleiding). hoofdstuk 5 Lenzen (inleiding). 5.1 Drie soorten lichtbundels Als lichtstralen een bundel vormen kan dat op drie manieren. 1. een evenwijdige bundel. 2. een convergerende bundel 3. een divergerende bundel.

Nadere informatie

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Reflectie en breking. J. Kuiper. Transfer Database

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Reflectie en breking. J. Kuiper. Transfer Database Noorderpoort Beroepsonderwijs Stadskanaal Reader Reflectie en breking J. Kuiper Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet Onderwijs, Beroepsonderwijs

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Spiegels en Lenzen September 2015 Theaterschool OTT-2 1 September 2015 Theaterschool OTT-2 2 Schaduw Bij puntvormige lichtbron ontstaat een scherpe schaduw. Vraag Hoe groot is de schaduw van een voorwerp

Nadere informatie

Hoofdstuk 4: Licht. Natuurkunde Havo 2011/2012.

Hoofdstuk 4: Licht. Natuurkunde Havo 2011/2012. Hoofdstuk 4: Licht Natuurkunde Havo 2011/2012 www.lyceo.nl Hoofdstuk 4: Licht Natuurkunde 1. Kracht en beweging 2. Licht en geluid 3. Elektrische processen 4. Materie en energie Beweging Trillingen en

Nadere informatie

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Lenzen. J. Kuiper. Transfer Database

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Lenzen. J. Kuiper. Transfer Database Noorderpoort Beroepsonderwijs Stadskanaal Reader Lenzen J. Kuiper Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair nderwijs, Algemeen Voortgezet nderwijs, Beroepsonderwijs en Volwasseneneducatie

Nadere informatie

T1 Wat is licht? FIG. 3 Zo teken je een lichtstraal. De pijl geeft de richting van het licht aan.

T1 Wat is licht? FIG. 3 Zo teken je een lichtstraal. De pijl geeft de richting van het licht aan. T1 Wat is licht? Lichtbron, lichtstraal en lichtsnelheid Licht ontstaat in een lichtbron. Een aantal bekende lichtbronnen zijn: de zon en de sterren; verschillende soorten lampen (figuur 1); vuur, maar

Nadere informatie

Extra oefenopgaven licht (1) uitwerkingen

Extra oefenopgaven licht (1) uitwerkingen Uitwerking van de extra opgaven bij het onderwerp licht. Als je de uitwerking bij een opgave niet begrijpt kun je je docent altijd vragen dit in de les nog eens uit te leggen! Extra oefenopgaven licht

Nadere informatie

Invals en weerkaatsingshoek + Totale reflectie

Invals en weerkaatsingshoek + Totale reflectie Invals en weerkaatsingshoek + Totale reflectie Leerplandoelen FYSICA TWEEDE GRAAD ASO WETENSCHAPPEN LEERPLAN SECUNDAIR ONDERWIJS VVKSO BRUSSEL D/2012/7841/009 5.1.2 Licht B10 De begrippen invallende straal,

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 5 en 6

Samenvatting Natuurkunde Hoofdstuk 5 en 6 Samenvatting Natuurkunde Hoofdstuk 5 en 6 Samenvatting door een scholier 1748 woorden 7 februari 2005 6 53 keer beoordeeld Vak Methode Natuurkunde Scoop Samenvatting Natuurkunde H5 Spiegels en lenzen +

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 4 november Brenda Casteleyn, PhD

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 4 november Brenda Casteleyn, PhD Voorbereiding toelatingsexamen arts/tandarts Fysica: Licht als golf en als deeltje 4 november 2017 Brenda Casteleyn, PhD Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

Eureka! 1A. Copyright EUREKA 1A. Eureka! bestaat in de tweede graad uit: Thema 2 Materiemodel

Eureka! 1A. Copyright EUREKA 1A. Eureka! bestaat in de tweede graad uit: Thema 2 Materiemodel N AT U U R W E T E N S C H A P P E N V O O R S T W Eureka! bestaat in de tweede graad uit: Thema 1 Zintuigen Thema 2 Materiemodel Eureka! 2A Thema 1 Terreinstudie Thema 2 Samenleven en relaties tussen

Nadere informatie

Een lichtbundel kan evenwijdig, divergent (uit elkaar) of convergent (naar elkaar) zijn.

Een lichtbundel kan evenwijdig, divergent (uit elkaar) of convergent (naar elkaar) zijn. Samenvatting door R. 1705 woorden 27 januari 2013 5,7 4 keer beoordeeld Vak Natuurkunde 3.2 Terugkaatsing en breking Lichtbronnen Een voorwerp zie je alleen als er licht van het voorwerp in je ogen komt.

Nadere informatie

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld 6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld Lichtbronnen: Directe lichtbronnen produceren zelf licht Indirecte lichtbronnen reflecteren licht. Je ziet een voorwerp als er licht

Nadere informatie

a) Bepaal door middel van een constructie de plaats van het beeld van de scherf en bepaal daaruit hoe groot Arno de scherf door de loep ziet.

a) Bepaal door middel van een constructie de plaats van het beeld van de scherf en bepaal daaruit hoe groot Arno de scherf door de loep ziet. NATUURKUNDE KLAS 5 ROEWERK H14-05/10/2011 PROEWERK Deze toets bestaat uit 3 opgaven (totaal 31 punten). Gebruik van eigen grafische rekenmachine en BINAS is toegestaan. Veel succes! ZET EERST JE NAAM OP

Nadere informatie

Spiegel. Herhaling klas 2: Spiegeling. Spiegel wet: i=t Spiegelen met spiegelbeelden. NOVA 3HV - H2 (Licht) November 15, NOVA 3HV - H2 (Licht)

Spiegel. Herhaling klas 2: Spiegeling. Spiegel wet: i=t Spiegelen met spiegelbeelden. NOVA 3HV - H2 (Licht) November 15, NOVA 3HV - H2 (Licht) Herhaling klas 2: Spiegeling Spiegel wet: i=t Spiegelen met spiegelbeelden Spiegelen van een object (pijl), m.b.v. het spiegelbeeld: Spiegel 1 2 H.2: Licht 1: Camera obscura (2) Eigen experiment: camera

Nadere informatie

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld 6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld Lichtbronnen: Directe lichtbronnen produceren zelf licht Indirecte lichtbronnen reflecteren licht. Je ziet een voorwerp als er licht

Nadere informatie

Het tekenen van lichtstralen door lenzen (constructies)

Het tekenen van lichtstralen door lenzen (constructies) Het tekenen van lichtstralen door lenzen (constructies) Zie: http://webphysics.davidson.edu/applets/optics/intro.html Bolle (positieve) lens Een bolle lens heeft twee brandpunten F. Evenwijdige (loodrechte)

Nadere informatie

Theorie beeldvorming - gevorderd

Theorie beeldvorming - gevorderd Theorie beeldvorming - gevorderd Al heel lang geleden ontdekten onderzoekers dat als licht op een materiaal valt, de lichtstraal dan van richting verandert. Een voorbeeld hiervan is ook te zien in het

Nadere informatie

5.1 Voortplanting en weerkaatsing van licht

5.1 Voortplanting en weerkaatsing van licht Uitwerkingen opgaven hoofdstuk 5 5.1 Voortplanting en weerkaatsing van licht Opgave 10 16 x 4,03 10 a afstand = lichtsnelheid tijd; s = c t t = = = 8 c 2,9979 10 b Eerste manier 1 lichtjaar = 9,461 10

Nadere informatie

Newton 4vwo Natuurkunde Hoofdstuk 3 Lichtbeelden

Newton 4vwo Natuurkunde Hoofdstuk 3 Lichtbeelden Newton 4vwo Natuurkunde Hoofdstuk 3 Lichtbeelden Hoofdstukvragen: Het hoofdstuk gaat over de lichtbeelden die je met spiegels, lenzen en prisma s kunt maken. Hoe ontstaat bij een spiegel een beeld? En

Nadere informatie

Samenvatting door een scholier 1922 woorden 10 februari keer beoordeeld. Natuurkunde

Samenvatting door een scholier 1922 woorden 10 februari keer beoordeeld. Natuurkunde Samenvatting door een scholier 1922 woorden 10 februari 2012 6 129 keer beoordeeld Vak Methode Natuurkunde Nova 1 Zien Lichtbronnen zien Lichtbronnen: Voorwerpen die zelf licht geven Lichtstralen: de straal

Nadere informatie

Natuur-/scheikunde Klas men

Natuur-/scheikunde Klas men Natuur-/scheikunde Klas 1 2015-2016 men 1 Wat zie ik? Over fotonen. Je ziet pas iets (voorwerp, plant of dier) wanneer er lichtdeeltjes afkomstig van dat voorwerp je oog bereiken. Die lichtdeeltjes noemen

Nadere informatie

Oefen-vt vwo4 B h6/7 licht 2007/2008. Opgaven en uitwerkingen vind je op www.agtijmensen.nl

Oefen-vt vwo4 B h6/7 licht 2007/2008. Opgaven en uitwerkingen vind je op www.agtijmensen.nl Opgaven en uitwerkingen vind je op www.agtijmensen.nl Oefen-vt vwo4 h6/7 licht 007/008. Lichtbreking (hoofdstuk 6). Een glasvezel bestaat uit één soort materiaal met een brekingsindex van,08. Laserstraal

Nadere informatie

Exact periode 3.2. Recht evenredig Omgekeerd evenredig Lambert Beer Lenzen en toepassingen

Exact periode 3.2. Recht evenredig Omgekeerd evenredig Lambert Beer Lenzen en toepassingen Exact periode 3.2?! Recht evenredig Omgekeerd evenredig Lambert Beer Lenzen en toepassingen 1 Lo41 per 3 exact recht evenredig, oefenen presentatie recht evenredig Deze link toont uitleg over recht evenredig

Nadere informatie

Lenzen. N.G. Schultheiss

Lenzen. N.G. Schultheiss Lenzen N.G. Schultheiss Inleiding Deze module volgt op de module Spiegels. Deze module wordt vervolgd met de module Telescopen of de module Lenzen maken. Uiteindelijk kun je met de opgedane kennis een

Nadere informatie

R.T. Nadruk verboden 57

R.T. Nadruk verboden 57 Nadruk verboden 57 Natuurkunde. Les 29 29,1. Beeldvorming bij de bolle spiegel Fig. 29,1. Fig. 29,2. Fig. 29,3. Bij de bolle spiegel geldt eveneens de formule + =. We rekenen hierbij alle afstanden voor

Nadere informatie

Overal Natuurkunde 3V Uitwerkingen Hoofdstuk 6 Licht

Overal Natuurkunde 3V Uitwerkingen Hoofdstuk 6 Licht Overal Natuurkunde 3V Uitwerkingen Hoofdstuk 6 Licht 6. Licht en beeld A a Primair licht is afkomstig uit een lichtbron en wordt ook wel direct licht genoemd. Secundair licht is niet direct afkomstig uit

Nadere informatie

JANNEKE SCHENK. Over de REGENBOOG. Regenbogen en andere lichtverschijnselen aan de hemel, natuurkundig verklaard voor iedereen

JANNEKE SCHENK. Over de REGENBOOG. Regenbogen en andere lichtverschijnselen aan de hemel, natuurkundig verklaard voor iedereen JANNEKE SCHENK Over de REGENBOOG Regenbogen en andere lichtverschijnselen aan de hemel, natuurkundig verklaard voor iedereen inhoud 6 13 69 99 121 129 137 147 177 195 215 286 288 Inleiding Meten aan de

Nadere informatie

Proefbeschrijving optiekset met bank 112110

Proefbeschrijving optiekset met bank 112110 112114 Optieksets voor practicum De bovenstaande optieksets zijn geschikt voor alle nodige optiekproeven in het practicum. De basisset () behandelt de ruimtelijke optiek en de uitbreidingset (112114) de

Nadere informatie

2 Terugkaatsing en breking

2 Terugkaatsing en breking 2 Terugkaatsing en breking Instapvragen bij 2 Hoeveel weet je al van de onderstaande vragen? Noteer je voorlopig antwoord. - Voorwerpen die geen licht geven kunnen we toch zien. Hoe komt dat? - Hoe komt

Nadere informatie

PULSAR 1 Leerwerkboek 2 uur

PULSAR 1 Leerwerkboek 2 uur PULSAR 1 Leerwerkboek 2 uur Plantyn De site www.knooppunt.net geeft je toegang tot het digitale lesmateriaal bij dit boek. Activeer jouw licentie aan de hand van de onderstaande code. Tijdens de activatie

Nadere informatie

Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE NAAM: NATUURKUNDE KAS 5 ROEFWERK H14 13/05/2009 PROEFWERK Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE Opgave

Nadere informatie

Suggesties voor demo s lenzen

Suggesties voor demo s lenzen Suggesties voor demo s lenzen Paragraaf 1 Toon een bolle en een holle lens. Demo convergerende werking van een bolle lens Laat een klein lampje (6 V) steeds dichter bij een bolle lens komen. Geef de verschillende

Nadere informatie

Tussen een lichtbron en een scherm staat een voorwerp. Daardoor ontstaat een schaduw van het voorwerp op het scherm. lichtbron

Tussen een lichtbron en een scherm staat een voorwerp. Daardoor ontstaat een schaduw van het voorwerp op het scherm. lichtbron Licht: Inleiding Opdracht 1. Schaduw van een lichtbrn Tussen een lichtbrn en een scherm staat een vrwerp. Daardr ntstaat een schaduw van het vrwerp p het scherm. a) Laat zien waar licht p het scherm valt

Nadere informatie

Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7

Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7 Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7 Opgave 1 Iris krijgt een bril voorgeschreven van 4 dioptrie. Zij houdt de bril in de zon en probeert de stralen te bundelen om zodoende een stukje

Nadere informatie

Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens.

Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens. Uitwerkingen 1 Opgave 1 Bolle en holle. Opgave 2 Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens. Opgave 4 Divergente, convergente en evenwijdige. Opgave 5 Een bolle

Nadere informatie

1 Lichtbreking. Hoofdstuk 2. Licht. Leerstof. Toepassing. 3 a Zie figuur 2. b Zie figuur 2. c Zie figuur t a bij B b bij A

1 Lichtbreking. Hoofdstuk 2. Licht. Leerstof. Toepassing. 3 a Zie figuur 2. b Zie figuur 2. c Zie figuur t a bij B b bij A BASISSTOF Hoofdstuk 2 Licht Hoofdstuk 2 Licht 1 Lichtbreking Leerstof 1 a de normaal b de hoek van inval c de hoek van breking 2 a Als licht van lucht naar perspex gaat, wordt het licht altijd naar de

Nadere informatie

Labo Fysica. Michael De Nil

Labo Fysica. Michael De Nil Labo Fysica Michael De Nil 4 februari 2004 Inhoudsopgave 1 Foutentheorie 2 1.1 Soorten fouten............................ 2 1.2 Absolute & relatieve fouten..................... 2 2 Geometrische Optica

Nadere informatie

Hoofdstuk 2 De sinus van een hoek

Hoofdstuk 2 De sinus van een hoek Hoofdstuk 2 De sinus van een hoek 2.1 Hoe hoog zit m n ventiel? Als een fietswiel ronddraait zal, de afstand van de as tot het ventiel altijd gelijk blijven. Maar als je alleen van opzij kijkt niet! Het

Nadere informatie

Reflectie. Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing

Reflectie. Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing Inhoud Reflectie... 2 Opgave: Lichtbundel op cilinder... 3 Lichtstraal treft op grensvlak... 4 Opgave: Breking en interne reflectie I... 6 Opgave: Breking en interne reflectie II... 7 Opgave: Multi-Touch

Nadere informatie

7.1 Beeldvorming en beeldconstructie

7.1 Beeldvorming en beeldconstructie Uitwerkingen opgaven hoofdstuk 7 7.1 Beeldvorming en beeldconstructie Opgave 1 Het beeld van een dia bij een diaprojector wordt gevormd door een bolle lens. De voorwerpsafstand is groter dan de brandpuntsafstand.

Nadere informatie

3hv h2 kortst.notebook January 08, H2 Licht

3hv h2 kortst.notebook January 08, H2 Licht 3hv h2 kortst.notebook January 08, 209 H2 Licht Wanneer een lichtstraal van het ene materiaal het andere ingaat kan de richting van de lichtstraal veranderen. Hoe de straal afbuigt heeft te maken met de

Nadere informatie

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur Tentamen Optica 19 februari 2008, 14:00 uur tot 17:00 uur Zet je naam en studierichting bovenaan elk vel dat je gebruikt. Lees de 8 opgaven eerst eens door. De opgaven kunnen in willekeurige volgorde gemaakt

Nadere informatie

SPIEGELTJE, SPIEGELTJE AAN DE WAND LICHT EN ZIEN

SPIEGELTJE, SPIEGELTJE AAN DE WAND LICHT EN ZIEN SPIEGELTJE, SPIEGELTJE AAN DE WAND LICHT EN ZIEN HOOFDSTUK 1 LICHT 1.1 Lichtbronnen en donkere lichamen p xx 1.2 Interactie van het licht met voorwerpen p xx 1.3 Rechtlijnige voortplanting van het licht

Nadere informatie

Een refractor bestaat hoofdzakelijk uit twee lenzen, beide (bolvormige) positieve lenzen.

Een refractor bestaat hoofdzakelijk uit twee lenzen, beide (bolvormige) positieve lenzen. Werkstuk door een scholier 1485 woorden 28 februari 2002 5,6 104 keer beoordeeld Vak Natuurkunde Sterrenkijker 1. Telescopen met refractor-werking Een sterrenkijker, ofwel telescoop, is een soort van grote

Nadere informatie

jaar: 1990 nummer: 08

jaar: 1990 nummer: 08 jaar: 1990 nummer: 08 De figuur toont een blok op een helling. Door de wrijving glijdt het blok niet naar beneden zolang de hellingshoek kleiner is dan een bepaalde waarde Vervang nu het blok door een

Nadere informatie

Optica Optica onderzoeken met de TI-nspire

Optica Optica onderzoeken met de TI-nspire Optica onderzoeken met de TI-nspire Cathy Baars, Natuurkunde, Optica 1. Inhoud Optica... 1 1. Inhoud... 2 2. Spiegeling... 3 2.1 Algemene introductie en gebruik TI-nspire... 3 2.2 Spiegeling... 4 2.3 Definiëren

Nadere informatie

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft.

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft. Opgave 1 Een auto Met een auto worden enkele proeven gedaan. De wrijvingskracht F w op de auto is daarbij gelijk aan de som van de rolwrijving F w,rol en de luchtwrijving F w,lucht. F w,rol heeft bij elke

Nadere informatie

Opgave 1 Geef van de volgende zinnen aan of ze waar (W) of niet waar (NW) zijn. Omcirkel je keuze.

Opgave 1 Geef van de volgende zinnen aan of ze waar (W) of niet waar (NW) zijn. Omcirkel je keuze. Naam: Klas: Repetitie licht 2-de klas HAVO Opgave 1 Geef van de volgende zinnen aan of ze waar () of niet waar () zijn. Omcirkel je keuze. Een zéér kleine lichtbron (een zogenaamde puntbron) verlicht een

Nadere informatie

Dossier OPTICA. Handleiding voor leerkrachten. Gericht naar jongeren uit het secundair onderwijs

Dossier OPTICA. Handleiding voor leerkrachten. Gericht naar jongeren uit het secundair onderwijs Dossier OPTICA Handleiding voor leerkrachten Gericht naar jongeren uit het secundair onderwijs Inhoudsopgave Inhoudsopgave Inhoudsopgave... 2 Introductie... 4 Voorbereiding van het bezoek... 5 1. Leerstof...

Nadere informatie

LENZEN. 1. Inleiding

LENZEN. 1. Inleiding LENZEN N.G. SCHULTHEISS. Inleiding Deze module volgt op de module Spiegels. Deze module wordt vervolgd met de module Telescopen o de module Lenzen maken. Uiteindelijk kun je met de opgedane kennis een

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Golven & Optica 3AA70 Dinsdag 23 juni 2009 van 14.00 tot 17.00 uur Dit tentamen bestaat uit 4 vraagstukken en 5 pagina s met

Nadere informatie

TENTAMEN. x 2 x 3. x x2. cos( x y) cos ( x) cos( y) + sin( x) sin( y) d dx arcsin( x)

TENTAMEN. x 2 x 3. x x2. cos( x y) cos ( x) cos( y) + sin( x) sin( y) d dx arcsin( x) FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde Kenmerk: 46055907/VGr/KGr Vak : Inleiding Optica (4602) Datum : 29 januari 200 Tijd : 3:45 uur 7.5 uur TENTAMEN Indien U een onderdeel

Nadere informatie

1 Bolle en holle lenzen

1 Bolle en holle lenzen Lenzen 1 Bolle en holle lenzen 2 Brandpuntsafstand, lenssterkte 3 Beeldpunten bij een bolle lens 4 Naar beeldpunten kijken (bij bolle lens) 5 Voorwerpsafstand, beeldafstand, lenzenformule 6 Voorwerp, beeld,

Nadere informatie

3HV H2 breking.notebook October 28, 2015 H2 Licht

3HV H2 breking.notebook October 28, 2015 H2 Licht 3HV H2 breking.notebook October 28, 2015 H2 Licht 3HV H2 breking.notebook October 28, 2015 L1 L2 Wanneer een lichtstraal van het ene materiaal het andere ingaat kan de richting van de lichtstraal veranderen.

Nadere informatie

Inhoud. 1 Inleiding 13. 1 energie 19

Inhoud. 1 Inleiding 13. 1 energie 19 Inhoud 1 Inleiding 13 1 onderzoeken van de natuur 13 Natuurwetenschappen 13 Onderzoeken 13 Ontwerpen 15 2 grootheden en eenheden 15 SI-stelsel 15 Voorvoegsels 15 3 meten 16 Meetinstrumenten 16 Nauwkeurigheid

Nadere informatie

3.0 Licht Camera 3.2 Lens 3.3 Drie stralen 3.4 Drie formules 3.5 Oog

3.0 Licht Camera 3.2 Lens 3.3 Drie stralen 3.4 Drie formules 3.5 Oog 3.0 Licht 2 www.natuurkundecompact.nl 3.1 Camera 3.2 Lens 3.3 Drie stralen 3.4 Drie formules 3.5 Oog 1 3.1 Camera www.natuurkundecompact.nl Van ongrijpbaar naar grijpbaar Spiegelbeeld (2hv 5.3) Even groot

Nadere informatie

Practicum: Ik zie dubbel?!

Practicum: Ik zie dubbel?! Naam :.. Klas. nr : Datum: Vak: Fysica Leerkracht: Practicum: Ik zie dubbel?! 1) 1,2,3... zie jij wat ik zie? Waar in je omgeving kom je allemaal weerkaatsing tegen? Wat zie je op de prentjes? Ken je nog

Nadere informatie

1.3 Spot aandoen. In het licht kijken. Dan dimmen.

1.3 Spot aandoen. In het licht kijken. Dan dimmen. KLEURENLEER DAG 1 1. LICHT ACHTER DUISTER (warme kleuren: oranje, rood,...) 1.1 De ruimte is verduisterd. Aquarium met water gevuld. Daarachter lamp (zaklamp). De kinderen kijken doorheen het aquarium

Nadere informatie

Inhoud. Hoofdstuk 3 BREKING 3.1 R

Inhoud. Hoofdstuk 3 BREKING 3.1 R Inhoud Hoofdstuk 1 INLEIDING 1.1 Lichtbronnen en donkere voorwerpen 6 1.2 Ondoorschijnende, doorschijnende en doorzichtige voorwerpen 9 1.3 Voortplanting van licht 10 1.4 Schaduwvorming 12 1.5 De camera

Nadere informatie

FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde TENTAMEN

FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde TENTAMEN FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde Vak : Inleiding Optica (146012) Datum : 5 november 2010 Tijd : 8:45 uur 12.15 uur TENTAMEN Indien U een onderdeel van een vraagstuk

Nadere informatie

Opgave 1: Constructies (6p) In figuur 1 op de bijlage staat een voorwerp (doorgetrokken pijl) links van de lens.

Opgave 1: Constructies (6p) In figuur 1 op de bijlage staat een voorwerp (doorgetrokken pijl) links van de lens. NATUURKUNDE KAS 5 ROEWERK H4-06/0/00 PROEWERK Deze toets bestaat uit 4 opgaven (totaal 3 punten). Gebruik van eigen grafische rekenmachine en BINAS is toegestaan. Veel succes! ZET EERST JE NAAM OP DE Opgave

Nadere informatie

UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na

UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na UITWERKINGEN KeCo-Examentraining SET-C HAVO5-Na UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na EX.O... Lichtstraal A verplaatst zich van lucht naar water, dus naar een optisch dichtere stof toe. Er

Nadere informatie

Kernvraag: Hoe verplaatst licht zich en hoe zien we dat?

Kernvraag: Hoe verplaatst licht zich en hoe zien we dat? Kernvraag: Hoe verplaatst licht zich en hoe zien we dat? Naam: Groep: http://www.cma-science.nl Activiteit 1 Hoe verplaatst licht zich? 1. Als je wel eens de lichtstraal van een zaklamp hebt gezien, weet

Nadere informatie

Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing

Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing Inhoud Reflectie...2 Opgave: bundel op cilinder...3 Opgave: Atomic Force Microscope (AFM)...3 straal treft op grensvlak...5 Opgave: door een dikke lens...8 Opgave: Stralengang door een vloeistoflens...9

Nadere informatie

Intermoleculaire krachten. Waterdruppels kleven aan de kraan of aan een bloemblad. Kwik vormt gemakkelijk grote druppels die niet aan het glas kleven.

Intermoleculaire krachten. Waterdruppels kleven aan de kraan of aan een bloemblad. Kwik vormt gemakkelijk grote druppels die niet aan het glas kleven. Thema 17 Cohesie en adhesie 1 Intermoleculaire krachten Waterdruppels kleven aan de kraan of aan een bloemblad. Kwik vormt gemakkelijk grote druppels die niet aan het glas kleven. waterdruppels kleven

Nadere informatie

2. Bekijk de voorbeelden bij Ziet u wat er staat? Welke conclusie kun je hier uit trekken?

2. Bekijk de voorbeelden bij Ziet u wat er staat? Welke conclusie kun je hier uit trekken? Hoofdstuk 3 Lichtbeelden 1 Werkboek natuurkunde 3H Inleiding: Zien Op de site van het boek vind je bij Ogentest verschillende links over zien, brillen en lenzen. Je kunt er ook je ogen testen. 1. Doe een

Nadere informatie

Samenvatting NaSk Hoofdstuk t/m 4.5

Samenvatting NaSk Hoofdstuk t/m 4.5 Samenvatting NaSk Hoofdstuk 2 + 4.1 t/m 4.5 Samenvatting door Sietske 852 woorden 4 augustus 2013 2,1 4 keer beoordeeld Vak Methode NaSk Natuur- en scheikunde actief 2.1 Woordweb à voor overzicht wat nodig

Nadere informatie

LESPAKKET HOLLANDS LICHT NAAM:. KLAS:..

LESPAKKET HOLLANDS LICHT NAAM:. KLAS:.. LESPAKKET HOLLANDS LICHT NAAM:. KLAS:.. INLEIDING Voor je ligt het lespakket over Hollands Licht. Hier draait het om de mythe dat het licht in Holland iets heel bijzonders is, beroemd geworden dankzij

Nadere informatie