1.1 Betekenis van de zon voor ons als bron van energie.

Maat: px
Weergave met pagina beginnen:

Download "1.1 Betekenis van de zon voor ons als bron van energie."

Transcriptie

1 1.1 Betekenis van de zon voor ons als bron van energie. Geschatte tijdsduur: 1 lesuur + 1 uur zelfstudie 1 Oriëntatieopdracht warmtestraling van een gloeilamp 2 Stralingsvermogen van de zon N.a.v. opdracht a kan het vermogen van de zon worden berekend. 1. In een groep kunnen de leerlingen het gemiddelde uitrekenen van de afstanden tot de gloeilamp, die hetzelfde warmtegevoel oplevert als op het strand. Gemiddeld genomen zal deze afstand tussen 7 en 8 cm liggen. We noemen deze afstand x. 2. Omdat de intensiteit van de warmtestraling afneemt met het kwadraat van de afstand kunnen de leerlingen vervolgens het vermogen van de zon uitrekenen met de relatie: zodat: P zon = 100 W x 2 = 100 W x 2 P zon 2 d zon aarde 2 d zon aarde De afstand van de zon, zoals in Binas-tabel 31 vermeld, bedraagt: d zon aarde = 1, m. Dus P zon = 100W/x 2 * (1,496*10 11 ) 2 Hieronder staan verschillende waarden voor het vermogen van de zon weergegeven, voor enkele waarden van x: x (cm) tot lamp 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 L ) W( 4,6 4,4 4,3 4,2 4,1 4,0 3,9 3,8 3,7 3,6 3,5 Litt.waarde: L = 3,90*10 26 W. (Shu, F., The Physical Universe, p. 83, ISBN X) 3 Zonneconstante a. I = P zon 4πr 2 met: P zon = 3, W r = 1, m (afstand tot de zon - binas-tabel 31) Uitkomst: I = 1, Wm 2 b. De straling van de zon wordt door de naar de zon toegekeerde zijde opgevangen. Als projectie kan je deze oppervlakte beschouwen als een schijf (een projectie van de aardbol, die de zonnestraling onderschept zie de opmerking bij opgave 17). De oppervlakte van deze schijf bedraagt: A = πr 2 met: R = 6, m (straal van de aarde (waarin de atmosfeer niet is meegerekend binas tabel 31) De hoeveelheid zonnestraling, die per jaar op de aarde valt bedraagt dan: E = , π. (6, ) 2 = 5, J. c. Via verschillende sites valt de wereldenergiebehoefte te achterhalen. Een redelijke maat daarvoor is ongeveer 4, J per jaar. Hiermee kan worden aangetoond, dat we van de zon ca maal zoveel energie ontvangen als we momenteel verbruiken! Aanbevolen oefenopgaven: 14 t/m 18 - Extra: 19

2 1.2 Kleur en temperatuur van de zon Geschatte tijdsduur: 2 lesuren + 2 uren zelfstudie 4 Oriëntatieopdracht - kleur van een gloeidraad van een lamp 5 Rood, wit, blauw en temperatuur Even een uitstapje naar onze dagelijkse leefwereld Aanbevolen oefenopgaven: 20 t/m 27 Extra: 28 t/m Lichtkracht van de zon Geschatte tijdsduur: 2 lesuren + 2 uren zelfstudie 6 Stralingsintensiteit en temperatuur a. Tabel: De oppervlakte van 1 hokje representeert een vermogen van 4, Wm 2 T (K) Aantal Hokjes I (Wm -2 ) 25,4 18,4 16,0 15,0 13,0 8,9 3,6 1, , , , , , , b. De grafiek van het totale stralingsvermogen per vierkante meter levert een exponentieel verband ertussen. 7 Logaritmisch verband I en T De grafiek van I uitgezet tegen T op dubbel logaritmisch grafiekenpapier levert de volgende rechte op (zie de figuur hiernaast): De helling van deze rechte wordt gegeven door: log I 1 log (I 2 ) log T 1 log(t 2 ) = 4,0 Omdat 4 log(a) = log(a 4 ) volgt: I ~ T 4 of: I = constante T 4 Voor de bepaling van dit verband kan, naast bovengenoemde handmatige methode, ook gebruik gemaakt worden van de grafische rekenmachine of van de modelomgeving van Coach. Voor uitgebreidere beschrijving ervan wordt verwezen naar de bijlage van deze opdracht.

3 8 Constante van Stefan-Boltzmann Voor verschillende waarden uit de tabel uit opgave 6 kan σ worden berekend met gebruikmaking van hetgeen in opgave 7 is afgeleid: σ = I T 4 = 5, Wm 2 K 1. Het verdient wellicht aanbeveling de leerlingen het gemiddelde van σ voor verschillende temperaturen uit tabel 6 te laten berekenen. 9 Verhouding van intensiteiten (identiek aan opgave 38) Uit de wet van Stefan-Boltzmann volgt: I 1200 K = = 16: 1 I 600 K Straal van de zon Het totaalvermogen van de zon, zoals bepaald in hoofdstuk 1 heeft een grootte van: L = 3, Watt In opdracht 6 is berekend, dat de zon per m 2 een stralingsintensiteit heeft van I = 6, Wm 2. Hieruit volgt voor het stralend boloppervlak van de zon: A = L I = 3, , = 6, m 2 De oppervlakte van de bol van de zon bedraagt: A = 4πR 2, zodat voor de straal van de zon geldt: R = A = 6, = 7, m (vergelijk binas tabel 32C) 4π 4π Aanbevolen oefenopgaven: 34 t/m Vingerafdruk van de zon Geschatte tijdsduur: 2 lesuren + 2 uren zelfstudie 11 Oriëntatieopdracht - het licht van de zon nader onderzocht Een nadere beschrijving van het experiment staat in de bijlage. 12 Oriëntatieopdracht TL licht Ook van verschillende gasontladingslampen, zoals verschillende kleuren spaarlampen en TL-buizen kan het spectrum op deze wijze door de leerlingen worden bekeken. Ze zullen dan zien dat het witte licht is samengesteld uit verschillende emissielijnen. 13 Soorten spectra a. Continuspectrum b. Emissiespectrum c. Absortiespectrum: continuspectrum van het stralende steroppervlak met absorptielijnen van door de steratmosfeer onderschept licht. Aanbevolen oefenopgaven: 41 t/m 44

4 1.5 Extra: De Planckformule In de bijlage staat een theoretische uiteenzetting over de wiskundige gedaante van de Planck-kromme Opgaven aan het slot van hoofdstuk 1: Zonneconstante op andere planeten Zonneconstante is de ontvangen straling per m 2 : I = P zon 4πr 2 met: P zon = 3, W r Mercurius = 5, m (binas-tabel 31) r Neptunus = 4, m Uitkomsten: = 9,3 kwm 2 I Mercurius I Neptunus = 1,5 Wm 2 15 Bakken in de zon. Neem als schatting van het oppervlak van een gezicht ca. 25x25 cm, dus ongeveer 0,0625 m 2, de rondingen eraf dus stel 0,05 m 2. De zonneconstante bedraagt 1, Wm -2 (opdracht 3). Dit levert per uur een energie op van E tot = 1, x0,05x3600 = 2, J E tot = Q = cm T met c = 4180 J/(kgºC) en T (100 20) ºC zodat volgt: M = 0,75 kg. Je kunt dus ongeveer 0,75 L water aan de kook kunt brengen. 16 Opgevangen zonne-energie door onze aarde. De zonneconstante bedraagt 1, Wm -2 (opdracht 3). Per seconde vangen we op: 1, π. (6, ) 2 = 1, W. 4,6.10 Het verbruik per seconde bedraagt: 20 = 1,5. 365x24x W Dat betekent een tijd van ongeveer 1, s of ongeveer 3,4 uur. 17 Plat of rond Laat dit experiment zien, door een bal in de lichtbundel van een beamer of overheadprojector te plaatsen: het licht dat door de bal wordt onderschept is de door de bal opgevangen stralingsenergie: geprojecteerd is dat een schijf 18 Warmtestraling Behandelen in groepsgesprek. 19 Extra opgave: a. F G = F mpz dus G M Zm a v2 = m a r 2 a vereenvoudiging: M r z = v a 2.r G Met: G = 6, Nm 2 kg 2 gravitatieconstante binas tabel 7 En v a = 2πr = 2π.1, = 3,00. T 365, ms 1 v a is de snelheid van de aarde om de zon zodat na invullen volgt: M Z = 2, kg

5 b. E G = G M Z 2 = 6, , = 3,8. R Z 6, J c. De tijdsduur welke de zon van deze beschikbare energie kan stralen, vinden we door deze energie te delen door het uitgestraalde vermogen van de zon: 3, t = 3, = 9, s 3, jaar d. Bekend is dat de leeftijd van de zon ca. 4,6 miljard jaar bedraagt, dus veel langer dan op grond van de redenering van Helmholtz en Kelvin. e. Kernfusie in het binnenste van de zon is het energieopwekkende proces: de zon heeft per seconde een massaverlies van ongeveer 5 miljoen ton per seconde welke in energie wordt omgezet Planck-kromme van de zon (is gelijk aan het begin van opgave 27) T opp = k w 2, = λ max = 5, K 21 Zonnevlekken op de zon T opp = 22 Wat is je eigen maximale golflengte? Je gemiddelde temperatuur is 37º C = 310 K Dus: λ max = k w T tabel 19) 23 Bellatrix = 2, k w 2, = λ max = 3, K = 9, m in het (nabije) infrarood (zie binas λ max = k w = 135 nm het maximum ligt in het (nabije) UVgebied; in T het zichtbare gebied zullen de kortgolvige kleuren overheersen, waardoor de ster een blauwe kleur zal hebben. = 2, Antares T opp = k w 2, = λ max = 3, K Het maximum ligt in het nabije infrarood; in het zichtbare gebied zullen de langgolvige kleuren overheersen, waardoor de ster een rode kleur zal hebben. 25 Gloeilamp (Lastig) a. R 0 = 38,5 Ω. b. P = U I = U 2 / R R = U 2 / P = / 100 = 529 Ω c. ΔR = α R 0 ΔT ,5 = 0, ,5 ΔT ΔT = 2600 K T = = 2, K d. In dit experiment kan de temperatuur van de gloeidraad van de lamp worden vergeleken met de kleur, welke zichtbaar wordt bij verschillende temperaturen in het applet Planckkromme (2) op de leerlingen ICT-disk.

6 26 Internetopdracht De leerlingen kunnen bij deze opgave gebruik maken van de applet: Planckkromme(1).htm op de Leerlingen ICT-disk 27 Temperatuur van de zon (begin is identiek aan opgave 20) T opp = k w 2, = λ max = 5, K De leerlingen kunnen bij deze opgave gebruik maken van de applet: Planckkromme(1).htm op de Leerlingen ICT-disk 28 Extra opgave: De rode ondergaande zon In de atmosfeer worden van het witte zonlicht de blauwe kleurcomponenten het meest verstrooid. Vandaar de blauwe lucht. De rode componenten worden het minst verstrooid. Je kunt daardoor zeggen, dat het rode licht het meest rechtdoor gaat. Bij ondergaande zon is het traject dat het zonlicht door de atmosfeer aflegt het langst en zullen de blauwe componenten door de verstrooiing het meest verdwenen zijn: het zonlicht lijk een rode kleur te hebben. Natuurlijk heeft deze rode kleur niets te maken met de oppervlaktetemperatuur van de zon. 29 Extra opgave 1 De leerlingen kunnen bij deze opgave gebruik maken van de applet: Planckkromme(2).htm op de Leerlingen ICT-disk 30 Extra opgave 2 Voor deze opdracht moeten de leerlingen de volgende website openen: Het programma CIE Color Calculator berekent de kleurtemperatuur van een stralend object uit de verhouding van de lichtintensiteit in de kleurenbanden Rood-groenblauw. Het programma berekent, als je in de drie vakjes RGB de verhouding van de kleuren invoert en vervolgens op RGB klikt welke temperatuur bij die kleurverhouding hoort. (Van dit programma wordt alleen de rij aangegeven met RGB gebruikt. De kleurtemperatuur is dan af te lezen in het vakje naast Color Temp. Voer de waarden van de rode, de groene en de blauwe kleurenband in; klik vervolgens op de button RGB en de kleurtemperatuur wordt berekend). Je kunt dan deze verhouding in het programma RGB.exe in de verticale kleurbalken invoeren, waardoor je in het middelste vakje de bijbehorende temperatuurkleur kunt zien. Doe dit voor de temperatuur van de zon: 5800 K. Probeer ook enige andere temperaturen uit tussen 2400 K ( koele sterren ) en K (hete sterren) Als van de gloeidraad van de gloeilamp in opdracht a en b bij verschillende temperaturen een digitale opname is gemaakt, kunnen daarvan ook door hetzelfde programma de bijbehorende temperaturen worden berekend. 31 Extra opgave 3 De leerlingen kunnen bij deze opgave gebruik maken van het programma: RGB.exe op de Leerlingen ICT-disk 32 Extra opgave 4

7 Op twee manieren de temperatuur bepalen Eerste manier: Door die golflengte te bepalen, waarop de stralingsintensiteit maximaal is en met behulp van de verschuivingswet van Wien de oppervlaktetemperatuur te berekenen. Tweede manier: Door de oppervlakte onder de kromme te bepalen en daarmee met behulp van de wet van Stefan-Boltzmann de temperatuur te berekenen. 34 Gloeiend object Bij verhoging van de temperatuur neemt de uitgezonden stralingsenergie toe, dus ook de uitgezonden energie per oppervlakte. Daardoor: - Wordt de stralingkromme hoger: intensiteit neemt toe - Komt het maximum ervan meer in de richting van kortere golflengten te liggen: de kleur wordt blauwer 35 Uitgestraald vermogen van de zon Toepassen van de wet van Stefan-Boltzmann: I = σt 4 = 5, = 6, W. Percentage t.o.v. vermogen Eemscentrale: 6, = 3,8 %. Dit lijkt weinig, maar bedenk, dat dit de hoeveelheid energie is dat iedere vierkante meter zonsoppervlak per seconde uitstraalt. 2 Totale vermogen van de zon: L = 4πR zon. 6, = 3, W 36 Ster a. Aangezien voor de lichtkracht van een ster geldt: L = 4πR 2 σt 4, moeten we de oppervlakte van de ster, dus de straal R van de ster weten. b. Met de gegevens uit binas tabel 32 volgt: L Sirius A = 9, W L Sirius B = 8, W L Betelgeuze = 4, W 37 Een huiveringwekkend toekomstscenario L zon = 4πR 2 σt 4 = 5, W met: R = R Mars = 0, m. Dit is ruim 14 duizend maal zo groot als de huidige lichtkracht (3, W) 38 Spijkers (identiek aan opgave 9) De verhouding is de vierde macht van de verhouding in hun temperatuur, dus de spijker van 1200 K straalt 2 4 = 16 maal zoveel vermogen uit. 39 De ster Alpha Lupi De verhouding in temperatuur is = 3,724. Dus de verhouding in uitgestraald 5800 vermogen per m 2 is: 3,724 4 = De maan Io van Jupiter a. De temperatuur van deze vulkaan is: =593 K. Volgens de verschuivingswet van Wien geldt: λ max = k w = 4,89. T 10 6 m. b. Deze golflengte ligt in het nabije infrarood (binas tabel 19)

8 c. De oppervlakte van Io heeft gemiddeld een temperatuur van =123 K. Dus de verhouding in temperatuur bedraagt: T Pele = 593 = 4,8, dus de verhouding T rest 123 in uitgestraald vermogen per m 2 is: 4,82 4 = Absorptiespectrum van gasmengsel De figuur is helaas weggevallen. In plaats daarvan kunnen de leerlingen bij deze opgave gebruik maken van het Werkblad Spectrum van de zon.doc op de Leerlingen ICT-disk 42 Emissielijnen Door straling van de ster wordt de temperatuur van de wolk stof en gas rond de ster hoger, waardoor die wolk zelf licht gaat uitstralen. Het spectrum van een ijl gas bevat emissielijnen. Vandaar dat we in het absorptiespectrum van de ster enige emissielijnen waarnemen. 43 Lijnenspectrum van de volle maan Omdat het licht van de volle maan in zijn geheel bestaat uit weerkaatst zonlicht, zijn daarin de absorptielijnen van de zon direct zichtbaar. Het is mogelijk dat er nog absorptielijnen aan worden toegevoegd, welke behoren bij het materiaal van het maanoppervlak. Suggesties voor eigen onderzoek van leerlingen n.a.v. deze opdracht: Naar aanleiding van de vraag of het licht, dat afkomstig is van de volle maan hetzelfde is als zonlicht, kunnen leerlingen opnames van de maan analyseren op kleursamenstelling. Het zal dan blijken dat de mate van weerkaatsing in verschillende kleuren afhangt van eigenschappen van het maanoppervlak. Voor een beschrijving van de waarneemmethodiek, enige achtergrondinformatie over hoe verschillen in de kleurweerkaatsing kunnen worden geïnterpreteerd en over achterliggend onderzoek: zie het artikel van Alexander Vandenbohede: Kleur op de maan, tijdschrift Zenit, mei 2007, pp Uitgever: Stichting De Koepel 44 Lijnidentificatie (identiek aan opgave 44) De lijn bij 392 nm kan een Ca-lijn zijn De lijn bij 397 nm kan een H- of een He-lijn zijn De lijn bij 410 nm kan een H-lijn zijn De lijn bij 434 nm kan een H-lijn zijn

9 Hoofdstuk 2: Straling en materie Leerdoelen: De leerling kan - kan het foto-elektrisch effect kwalitatief toepassen; - kent het begrip foton; - kent het golfkarakter van materie en de formule voor de Broglie-golflengte; - kent het atoommodel van Bohr; - weet dat de energie behorend bij het n-de energieniveau evenredig is met 1 n 2; - kan met behulp van gegeven energieniveauschema s golflengtes en frequenties van spectraallijnen berekenen; - kan de volgende formules toepassen: λ = mv E f = f = c λ E f = E m E n Algemene vaardigheden: - Reken-/wiskundige vaardigheden - Kennisvorming - Concept en context - Invloed van natuurwetenschap en techniek - Kwantificeren Benodigde concepten, kennis en vaardigheden: - Beweging en wisselwerkingen: kracht en beweging, energieomzettingen, wisselwerkingen - Natuurwetten 2.1 Wat hebben materie en straling met elkaar? Geschatte tijdsduur: 2 lesuren + 2 uren zelfstudie 45 Golfkarakter van licht Eventueel als huiswerkopdracht opgeven! 46 Twee-spletenexperiment van Young De leerlingen kunnen bij deze opgave gebruik maken van de applet: Young(1).htm op de Leerlingen ICT-disk (Young(2).htm is de fotonenversie ervan). 47 Verschillen tussen straling en materie Eigenlijk is de conclusie dat materie en straling fundamenteel niet van elkaar verschillen: ze bestaan beide uit quantumdeeltjes. Toch lijken we wel verschillen te zien: zoals het bestaan van krachten tussen sommige deeltjes, zoals zwaartekracht,

10 elektrostatische kracht en kernkrachten. Bij materie nemen we tevens eigenschappen waar zoals stevigheid en kleur. Straling vertoont interferentieverschijnselen en materie niet (in het dagelijkse leven). Een leerzame discussie binnen een klas hierover is te vinden op : Deze staat in bewerkte vorm weergegeven in de bijlage. 48 Mobiele telefoon λ = c f 2, = = 0,34042 m 34 cm 880, Experiment: het foto-elektrisch effect Bij zichtbaar licht zie je geen snelle ontlading van het zinken plaatje en de elektroscoop, hoe fel je het erop schijnende licht ook maakt. Bij het bestralen van het plaatje met ultraviolet licht treedt wel een versnelde ontlading op: de overtollige elektronen zullen elk voldoende fotonenergie opnemen om uit het oppervlak van het zinken plaatje te treden. a. Als het zinken plaatje een positieve lading heeft, dus een tekort aan elektronen, zullen er geen elektronen uittreden, dus geen versnelde ontlading van zinken plaatje en elektroscoop. Mochten er toch nog elektronen uittreden, dan zal de lading toenemen. b. Onzuiverheden op het oppervlak, zoals verontreinigen of een laagje oxide bemoeilijkt de emissie van elektronen. Bij verwijdering ervan staat een zuiver oppervlak van zink rechtstreeks in contact met de buitenwereld. Als voorbeeld kunnen de leerlingen als extra opdracht de applet Foto-elektrisch effect.htm op de Leerlingen ICT-disk bezigen 50 Vermogen Energie per foton ℇ = f. De energie-inhoud van een blauw foton is groter dan die van een rood foton. Bij hetzelfde vermogen zal een rode lamp zodoende meer fotonen per seconde uitzenden. 51 Fotonen uit het heelal a. Er geldt: ℇ = 511 kev = , = 8, J =.c λ. Dus λ = 6, , , = 2, m b. In het gebied van de (zachte) γ-straling. 52 Webexperiment: PET-camera 53 Alledaagse verschijnselen a. Fotonen met een lagere energie-inhoud, zoals die in rood licht, zullen onvoldoende energie bezitten om de chemische reactie in het negatief op gang te brengen. Fotonen in blauw licht, hoe zwak ook, bezitten voldoende energie om de chemische reactie in het fotonegatief op gang te brengen: er ontstaat bij ontwikkeling zwarting. b. Planten zijn voor hun fotosynthese van kooldioxide en water tot suikers en zuurstof afhankelijk van fotonen met een energie-inhoud die daarvoor voldoende groot is. Fotonen van rood licht hebben onvoldoende energie, beneden een golflengte van ca. 550 nm bezitten fotonen voldoende energie voor de fotosynthese in de hogere plantensoorten.

11 54 De Broglie-golflengte λ = p = mv a. Tennisbal: λ = 6, ,100.41,7 ( m s ) = 1, m onmetelijk klein! 6, b. Proton:λ = = 9,93. 1, , m nog steeds erg klein 6,63.10 c. Elektron: λ = 34 = 1,82. 9, , m gemeten! 2.2 Spectraallijnen van het waterstofatoom Geschatte tijdsduur: 1 lesuur + 1 uur zelfstudie 55 Balmerreeks Invullen n=3,4,5,6,7 in Balmerformule met m = 2 geeft: 1 1 = 1, λ m 2 n 2 n=3: λ=656 nm n=4: λ=486 nm n=5: λ=434 nm n=6: λ=410 nm n=7: λ=397 nm In tabel 20 van binas is zijn op deze golflengten de lijnen van waterstof te zien. 56 Spectraallijn n=5: energie is 13,0560 ev = 2, J n=2: energie is 10,2002 ev = 1, J Verschil: 4, J Dus. f = c λ =4, λ = 434 nm In binas tabel 21 is dit ook rechtstreeks af te lezen in het energieniveauschema 57 Fotonemissie a. Afnemen: het atoom zendt immers energie uit, dus energieverlies leidt tot een lagere energie-inhoud b. Er zijn verschillende manieren mogelijk, zoals in het energieniveauschema in Binas tabel 21 is af te lezen: 1. Elektron valt direct weer terug in toestand n=1 λ=102,6 nm 2. Elektron valt eerst terug naar toestand n=2 λ=656 nm en vervolgens terug naar toestand 1 λ=121,6 nm Er zijn zodoende drie lijnen in het spectrum zichtbaar. 58 Vergelijking met de Rydbergformule a. De Bohrformule luidt: f = E n E m De Rydbergformule: 1 = R 1 λ H 1 m 2 n 2 Combinatie van beide formules geeft: f = c λ = cr H 1 m 2 1 n 2 = E n E m met R H = 1, m 1

12 In deze formule krijgt elke reeks een andere waarde voor m. Voor de vrije, ongebonden toestand van het elektron geldt: m, dus 1 0 m 2 Voor elke toestand n geldt dan in vergelijking met de ongebonden toestand (E m = 0), dat E n = cr H 1 n2, ten opzichte van de ongebonden toestand van het elektron is E n evenredig met n 2. Het min -teken geeft aan dat de energie-inhoud van het waterstofatoom in gebonden toestand negatief is ten opzichte van de geïoniseerde toestand. b. cr H = 6, , , = 2, J In ev is dat 2, J 1, = 13,6 ev c. Zoals in vraag b is berekend: 2, J 59 Balmerreeks a. We lezen in het energieniveauschema van figuur 2.22 af: Voor overgang A geldt: f = c λ = E 3 E 2 = 1,89 ev = 3, J Dus λ = 6, , , = 656 nm Voor overgang B geldt: f = c λ = E 2 E 1 = 10,2 ev = 1, J Dus λ = 6, , , = 122 nm Voor overgang C geldt: f = c λ = E 3 E 1 = 12,09 ev = 1, J Dus λ = 6, , , = 103 nm b. In ongebonden toestand is de energie van het elektron t.o.v. de kern van het waterstofatoom gelijk aan nul. Naarmate het elektron dichter bij de kern komt, neemt de energie van het elektron af en is zodoende negatief. c. In ongebonden toestand kan het elektron elke denkbare energie-inhoud hebben. In gebonden toestand gedraagt het elektron zich volgens de quantisatieregel, zoals beschreven op pag Relatie van Rydberg a. We zien in opgave 59: E A + E B = 1, ,2 = 12,09 = E C b. In A kunnen we invullen:. f A +. f B =. f C. De gemeenschappelijke factor h kunnen we wegstrepen en dan volgt direct f A + f B = f C 61 Spectrum van waterstof a. Volgens de bevindingen van Rydberg geldt: f = 2,7 + 4, = 7, Hz. De golflengte behorende bij deze frequentie is: λ = c f = 3, , = 411 nm. b. Deze golflengte ligt in het zichtbare gebied. 2.3 Extra: Afleiding energieniveaus van het waterstofatoom Geschatte tijdsduur: 1 lesuur + 1 uur zelfstudie N.B. Deze paragraaf is als extra paragraaf ingevoegd en kan, desgewenst, worden overgeslagen

13 62 Energie elektron Vul de volgende zin aan: naarmate een elektron vanuit het oneindige een atoomkern nadert, neemt zijn elektrische energie af en wanneer die zich van een atoomkern verwijdert neemt zijn elektrische energie toe. 63 Snelheid elektron a. De elektrostatische aantrekkingskracht vormt hier de aantrekkende kracht van de kern tot het elektron: F e = k e 2 = 8,99. r , = 8, N 5, b. De elektrostatische aantrekkingskracht functioneert op het elektron als middelpuntzoekende kracht, dus F mpz = mv2 = F e = 8, v = 8, , , = 2, ms 1. Dit is ca. 0,7% van de lichtsnelheid. 64 Bohrse banen We gaan ervan uit dat het elektron zich in een baan met baanstraal r n bevindt, zodat we (2) kunnen schrijven als: mv n 2 = k e 2 r n r 2 n Dit levert: v 2 n = k e 2 (A) mr n Met gebruikmaking van (3): 2πr n = n vinden we: v mv n = n zodat v 2 n 2πmr n = n n 2 2 4π 2 m 2 r n 2 (B) Stellen we (A) gelijk aan (B) dan valt v n uit de vergelijking: k e 2 = n 2 2 mr n 4π 2 m 2 r 2 n Zodat r n = n 2 2 4π 2 km e 2 65 Bohr radius Voor n=1, de grondtoestand van het waterstofatoom, volgt: r 1 = 1 2 6, π 2 8, , , = 5, m Dit is gelijk aan a o, de Bohrstraal. Deze staat als natuurconstante in binas tabel 7. r 66 Kinetische energie We gaan weer uit van (2): Dus: E kin = ½mv 2 = k e 2 2r mv 2 r = k e 2 r 2 mv2 = k e 2 r 67 Verband elektron en elektrische energie a. E = E kin + E e = k e2 e2 e2 e2 e2 k = k 2k = k 2r r 2r 2r 2r b. Voor een deeltje onder invloed van de zwaartekracht kan op analoge wijze als voor de elektrische energie worden afgeleid:

14 E = E kin + E G = G Mm 2r Met: M de massa van de aarde m de massa van het deeltje r de afstand tot het middelpunt van de aarde 68 Totale energie elektron E = k e 2 2r = 8, , , = 2, J = 13,6 ev 69 Energieniveaus waterstofatoom We schrijven voor een elektron, dat zich in baan met straal r n bevindt: E n = k e2 e 2 1 = k 2r n 2n 2 2 = n 2. 2π2 k 2 me 4 2 4π 2 kme 2 70 Ionisatie-energie a. Invullen: 2π 2 k 2 me 4 2 = 2π2 8, , , , = 2, J b. k in Nm 2 C -2, m in kg, e in C en h in Js zodat volgt: (Nm 2 C 2 ) 2 kg (C) 4 (Js) 2 = N2 m 4 kg J 2 s 2 En J = Nm (uit W = F s) daarnaast geldt: N = kg m / s 2 zodat volgt: N 2 m 4 kg J 2 s 2 = m2 kg s 2 = kg m s 2 m = Nm = J 71 Rydbergconstante a. R H = C = 2, = 1,097. c 6, , m 1 J b. C in J, h in Js en c in m/s zodat volgt: Js m s = 1 m Opgaven aan het slot van hoofdstuk 2: Infraroodstraling f = c λ = 2, = 2, Hz 73 Zwarte gaten We passen de verschuivingswet van Wien toe: λ max = k w = 2, = 2,9 nm. T 10 6 Dit ligt in het gebied van de (zachte) röntgenstraling. 74 Compton-effect De leerlingen kunnen bij deze opgave gebruik maken van de applet: Compton.htm op de Leerlingen ICT-disk

15 75 Extra opdracht: over quantummechanica Leesopdracht Het atoom is leeg Zoals we op het plaatje op pag. 50 kunnen zien is de diameter van een atoomkern ca m. Blazen we die met dezelfde factor van op, dan heeft de atoomkern een diameter van ca. 10 cm! 77 Balmerreeks (begin identiek aan opgave 55!) a. n λ (nm) b. Het foton, dat voor ionisatie vanuit toestand n=2 nodig is, heeft een energie van E f = c.2, =5, = 3,40 ev. λ Dit is een lagere energie dan welke nodig is voor ionisatie vanuit de grondtoestand (n=1). 78 Continuümspectrum (het gaat hier over een absorptiespectrum) a. Doordat het elektron steeds verder van de atoomkern verwijderd is, liggen de energieniveaus steeds dichter op elkaar. b. Alle fotonen met een energie die groter is dan de ionisatie-energie, kunnen het elektron losmaken van de atoomkern. c. Het overschot aan energie zal het elektron als extra kinetische energie kunnen behouden. d. 13,6 ev, zoals eerder berekend. Omdat het energieverschil tussen de ongebonden toestand en de grondtoestand (n=1) groter is zullen de fotonen een grotere energie bezitten, dus zullen de bijbehorende golflengtes kleiner zijn. Beginnend in het ultraviolet (121,6 nm) en vervolgens 102,6 nm, 97,2 nm enz. 79 Energie-inhoud van fotonen λ (nm) E f (J) 5, , , , , E f (ev) 3,54 2,76 2,25 1,91 1,77 80 Golf-deeltje dualiteit a. Voorbeelden: interferentieproef van Young, het zien van een ver weg gelegen monochromatische lichtbron (zoals een natriumlamp) door het weefsel van bijv. een paraplu. b. Bij het heel kort belichten van een CCD-chip van een fotocamera lijkt het beeld gevormd te worden door spikkels. Bij langere belichting vormt zich een beeld op de CCD-chip, door een grotere hagel aan spikkels in die gebieden van de CCDchip die sterker belicht worden. Ook het foto-elektrisch effect, zoals aan het begin van 2.2 is beschreven vormt een demonstratie van deeltjesgedrag van licht.

16 81 Paschen-serie a. Voor de vierde golflengte uit de Paschenreeks (m=3) geldt: n=7 Dus geldt met gebruikmaking van de Rydbergformule: 1 λ = R H 1 m 2 1 n 2 = 1, = 9, Zodat volgt: λ = 1005 nm b. Het pijltje loopt vanaf de lijn met n=7 naar de vierde lijn eronder (m= 3). c. Het (nabije) infrarood. 82 Golflengte a. 1 λ = R 1 H m 2 1 n 2 = 1, = 2, Zodat volgt: λ = 497 nm b. Deze golflengte ligt in het zichtbare gebied (blauw-groen) 83 Absorptie van UV-straling door wolken waterstofgas De ionisatie-energie van een waterstofatoom vanuit de grondtoestand bedraagt 13,6 ev, hetgeen gelijk is aan 2, J. Een foton met deze energie bezit een golflengte: λ = c 2, = 91,2 nm. Dit betekent dat golven met een kortere golflengte meer dan voldoende energie bezitten om watersofatomen te ioniseren: ze worden dus door de waterstofwolken onderschept. 84 Energie-overgangen binnen een atoom Overgangen mogelijk tussen 0 en 1, tussen 0 en 3 en tussen 2 en 3 ev. Tussen 0 en 1 en tussen 2 en 3 heeft een foton een energie van 1 ev. De golflengte daarvan is: 1, = c λ = 1240 nm λ Tussen 0 en 3 ev: 3x1, = c λ = 413 nm λ Deze laatste golflengte ligt in het zichtbare gebied. 85 a. F e = k Q 1Q 2 r 2 = 8, = 2, N 0,10 2 b. F e = k Q 1Q 2 = 8, , = 8, N r 2 5, c. De volgende waarden laten zich tabelleren: Afstand 0,10 1,00 10, (m) E e (J) -2, ,3-2,43-0,243-2, E e (ev) -1, , , , ,

17 Hoofdstuk 3: Onderzoek aan sterren Leerdoelen: De leerling - weet hoe de luminositeit (totale lichtkracht) van een ster afhangt van massa en temperatuur; - weet hoe de helderheid van een ster afhangt bovendien afhangt van de afstand; - kent het Hertzsprung-Russell diagram met de verschillende populaties van sterren daarin; - is in staat om eigenschappen van sterren, zoals temperatuur, stralingsvermogen, grootte, massa, snelheid, afstand en samenstelling te koppelen aan spectra, de kwadratenwet, Planck-kromme, dopplerverschuiving en luminositeit; - weet dat de sterrenkunde waarneemtechnieken gebruikt die het hele e.m. spectrum bestrijken; - kan de volgende formule toepassen: v = c Δλ λ Algemene vaardigheden: - Taalkundige vaardigheden - Reken-/wiskundige vaardigheden - Informatievaardigheden - Kennisvorming - Studie en beroep - Invloed van natuurwetenschap en techniek - Kwantificeren Benodigde concepten, kennis en vaardigheden: - Informatieoverdracht Eigenschappen van gassen en materialen 3.1 Temperatuur, helderheid en lichtkracht van sterren. Geschatte tijdsduur: 1 lesuur + 1 uur zelfstudie Vooraf: Een heldere uiteenzetting over het Hertzsprung-Russell diagram is te zien op de website: 86 α-centauri-constante a. I = P zon 4πR 2 = 3, π (4,3 9, ) 2 = 1, W/m 2 De afstand van α-centauri is als volgt berekend: 1 lichtjaar is gelijk aan , = 9, m b. Deze is uiteraard even groot als de zonneconstante op de afstand van α-centauri. Immers deze ster heeft dezelfde lichtkracht als de zon en de afstand is even groot.

18 87 Lichtkracht Ster λ max Temperatuur Bellatrix 140 nm K Betelgeuze 800 nm 3600 K Saiph 120 nm K Rigel 270 nm K 88 Lichtkracht van sterren (identiek aan opgave 107) De sterren lijken ongeveer even helder maar in Binas tabel 32 kun je de afstanden vinden, die verschillen onderling nogal. Dat betekent een groot verschil in lichtkracht: vergelijk bijvoorbeeld Aldebaran en Betelgeuze ze lijken in zekere mate even helder, maar Betelgeuze staat ca 10 maal zover weg. Als hun lichtkracht gelijk zou zijn, dan zou de helderheid van Betelgeuze ca 100 maal groter moeten zijn dan die van Aldebaran! 89 Fluitketelanalogie a. Van kookplatenpaar a zal de heetste (de linkerplaat) het theewater het eerste doen koken Van kookplatenpaar b zal de grootste (de rechterplaat) het theewater het eerste doen koken Van kookplatenpaar c zal de linkerplaat (die het grootst en het heetste is) het theewater het eerste doen koken b. Kookplatenpaar d laat ons in het ongewisse: weliswaar is de rechterkookplaat groter, maar ook minder heet; de linkerplaat is heter maar kleiner. 90 Helderheid en kleur van de sterren in Orion Opgevangen stralingsintensiteit Oppervlaktetemperatuur van de ster Grootte van de ster X ( L = A σ T 4 ) Afstand van de ster X ( I = P / (4πr 2 ) ) Kleur X (Stefan Boltzmann) X (Wet v. Wien)

19 91 Diameter van sterren a. Lagere temperatuur maar een grotere lichtkracht: ster B Een hogere temperatuur en een kleinere lichtkracht: ster C b. Ster B moet de grootste diameter hebben: de lichtkracht is even groot als die van ster A, maar zijn temperatuur is veel lager. Volgens Stefan-Boltzmann straalt iedere m 2 oppervlakte van ster B veel minder dan die van A. Bij gelijke lichtkracht moet ster B dus een groter stralend oppervlak hebben. Ster C moet de kleinste diameter hebben: de lichtkracht is even groot als die van ster D, maar zijn temperatuur is veel hoger. Volgens Stefan-Boltzmann straalt iedere m 2 oppervlakte van ster C veel meer dan die van ster D. Bij gelijke lichtkracht moet ster C dus een kleiner stralend oppervlak hebben. Voor een nadere verklaring met behulp van het HR-diagram: zie bijlage 92 HR-diagram a. De ster rechtsboven heeft een iets lagere temperatuur dan de zon, maar zijn lichtkracht is groter. Dus moet deze ster wel groter zijn dan de zon. b. De drie sterren linksonder hebben een (veel) hogere temperaturen dan de zon, maar hun lichtkracht is (veel) kleiner. Dus moeten deze sterren een (veel) kleinere straal hebben dan de zon. 3.2 Spectra van sterren. Geschatte tijdsduur: 1 lesuur + 1 uur zelfstudie 93 Diepte van een spectraallijn De diepte van een spectraallijn wordt bepaald door het aantal fotonen dat is onderschept door het absorberende gas; hoe dichter het gas of hoe groter de gaswolk, des te minder licht van de betreffende golflengte wordt opgevangen, dus des te dieper wordt de spectraallijn. 94 Classificatie van sterspectra De leerlingen kunnen bij deze opgave gebruik maken van de applet: Werkblad- Classificatie van sterspectra.doc op de Leerlingen ICT-disk Bovendien kunnen leerlingen als extra opdracht het programma: CLEA_SPE.EXE op de Leerlingen ICT-disk bezigen. 95 Spectraallijnenpatroon en temperatuur Zoals in de opmerkingen boven de opgave staat vermeld, bepaalt de temperatuur van een ster de aanwezigheid van moleculen, atomen en geïoniseerde atomen. Uit hetgeen is besproken in hoofdstuk 2, zullen hogere temperaturen hogere energie-overgangen in atomen mogelijk maken, dus een anders spectraalijnenpatroon. Dus er is wel degelijk een verband tussen temperatuur van een ster en zijn spectraaltype. 96 Dopplereffect a. Doe-opdracht b. Licht heeft een golfkarakter en een deeltjes karakter. Het doppler-effect kan je alleen verklaren met het golfkarakter. Licht bestaat uit deeltjes is een verkeerde uitspraak!

20 97 Dopplerverschuiving (identiek aan opgave 116) Omdat de golflengte λ in een spectrum goed is te meten, drukken we de snelheid van de bron uit in λ in plaats van in de frequentie f: λ = c. We vullen dit in: f c f w = f bron. c + v bron Zodat we de vergelijking krijgen: c = c c. λ w λ bron c + v bron Eén c links en rechts wegstrepen en kruislings vermenigvuldigen geeft: c + v bron. λ bron = cλ w Hieruit volgt: v bron = c. λ w λ bron = Δλ λ bron λ bron 98 Relatieve snelheid lichtbron We nemen aan dat de schaal tussen de H-lijn op 486 nm en de Na-lijn op 589 nm lineair is. We bepalen de afstand van de verschoven H-lijn in relatie tot de afstand tussen de H-lijn en de Na-lijn en vinden dan een verschuiving van ongeveer 4 mm. Tussen de H en Na lijn zit 47,5 mm wat overeenkomt met: = 103 nm. Dus 4 mm 9 nm. Zodoende berekenen we: Δλ 9 v bron = c. = 3, = 5,6. λ bron ms 1. Omdat de lijnen een roodverschuiving vertonen, beweegt de bron van ons af. 99 Discussieopdracht. a. Aangezien alle golflengten iets naar het rood zijn verschoven, zal ook die golflengte van het maximum van de kromme naar een iets grotere golflengte zijn verschoven: in de verschuivingswet van Wien: λ max. T = k w, zal een iets groter vastgestelde λ max bij berekening leiden tot een iets lagere T. b. De kromme zal in zijn geheel iets naar rechts schuiven, de intensiteit bij een bepaalde golflengte hangt af van het aantal fotonen bij die golflengte en de energie per foton. Omdat bij roodverschuiving de energie per foton afneemt zal de Planckkromme ook lager worden. Het oppervlakt onder de kromme neemt dus af. Volgens de wet van Stefan-Boltzmann, zal de temperatuur bij berekening ervan dus lager zijn. 100 Invloed stereigenschappen op het spectrum Natuurkundige eigenschap van de steratmosfeer heeft invloed op. De dichtheid van het gas in een steratmosfeer De temperatuur van de Steratmosfeer Radiale snelheid van de Ster De temperatuur van het steroppervlak Het pulseren van de ster (uitzetten en inkrimpen) Breedte van de spectraal-lijnen X (bewegen van atomen) Diepte van de spectraal-lijnen X (X) (zie opg. 96) Verschuiving van de spectraallijnen X X

21 3.3 Waarneemtechnieken in het e.m. spectrum. Geschatte tijdsduur: 1 lesuur + 1 uur zelfstudie 101 Mount Palomar De verhouding van opgevangen hoeveelheid licht wordt bepaald door de verhouding van de oppervlakte A tussen de telescoopspiegel en de pupil van het oog: A telecoop = πr 2 telescoopspiegel = ( ) 2 = A pupil πg pupil 102 Hubble telescoop De atmosfeer onderschept, mede door zijn verontreinigingen, toch een (klein) deel van het zichtbare licht en verstrooit deze, waardoor de atmosfeer rond een object zelf iets lichter wordt - hierdoor worden zwakke objecten moeilijker zichtbaar. Bovendien zorgt de atmosfeer door zijn temperatuurbewegingen voor een onrustig beeld: de lichtstralen worden telkens een beetje van richting veranderd (wat bijvoorbeeld goed is te zien wanneer we boven een door de zon verwarmde weg naar de horizon kijken: we zien dan voorwerpen in de richting van de horizon op en neer dansen ). Een ander belangrijke verstoorder in de atmosfeer is het verstrooide licht afkomstig van steden, huizen, staatverlichting etc.. Buiten de atmosfeer spelen deze factoren geen rol. 103 Discussieopdracht a. De vlammen boven de zonnevlek zijn in het zichtbare gebied niet te zien maar wel in het kortgolvige gebied: dit betekent dat het maximum van hun stralingskromme zich in dat gebied moet bevinden, hetgeen duidt op en veel hogere temperatuur. b. Zonnevlekken zijn gebieden op de zon met een iets lagere temperatuur: het maximum van hun stralingskromme ligt dus in het nabije infrarood, waardoor de vlek relatief donker lijkt in vergelijking met de omgeving. 104 Satelliet UV-straling en Röntgenstraling worden door de atmosfeer geblokkeerd. Daarom zijn deze opnamen alleen per satelliet mogelijk. 105 Overdag waarnemen. a. Alle objecten die zichtbaar licht uitstralen en helder genoeg zijn, zoals sterren, gaswolken, sterrenstelsels. b. Alleen objecten die straling uitzenden in het radiovenster. Overdag zijn geen objecten buiten het zonnestelsel waar te nemen in het optische gebied omdat de atmosfeer te helder is. Andere golflengtegebieden zijn in het geheel niet waarneembaar wegens blokkade ervan door de atmosfeer. c. Radio-antennes, zoals radiotelescopen en LOFAR cm straling. Omdat bij deze straling sparake is van en emissielijn in het radiovenster, kan verschuiving van de golflengte of frequentie ervan als gevolg van het Doppler-effekt worden gemeten. Met gebruikmaking van de Doppler-formule kan de snelheid van de wolk worden berekend.

22 Opgaven aan het slot van hoofdstuk 3: 3.1 Verband tussen helderheid, grootte en afstand van sterren. 107 Huiswerkopdracht (identiek aan opgave 88) Mooi te zien met het gratis programma Stellarium ( 108 Twee sterren. Volgens de wet van Stefan-Boltzmann straalt de hete ster per m = 625 maal zoveel energie uit als de koude ster. Bij gelijke lichtkracht is de oppervlakte van de hete ster 625 keer zo klein als die van de koude ster. 109 De dubbelster Sirius. Sirius A heeft een 23 keer zo sterke lichtkracht als die van de zon. Sirius B een 9, zo sterke lichtkracht. Hun onderlinge lichtkrachtverhouding is zodoende: 23 9, = ca. 2, Intensiteit van Sirius A De afstand van de zon is 0, m, de afstand van Sirius A m. Dus per m 2 vangen we van Sirius een vermogen op van 0, , = 4, W. De aarde, welke een geprojecteerd oppervlak heeft van: πr a 2 = π (6, ) 2 = 1, m 2 vangt zodoende van Sirius A een vermogen op van: 4, , = 5, W = 0,59 MW!! 111 Lichtkracht van Sirius A Sirius A heeft een lichtkracht die ongeveer 23 maal zo groot is als die van de zon (in het visuele gebied). Nemen we aan dat dit voor alle straling geldt in het e.m. spectrum, dan is de lichtkracht van Sirius A gelijk aan 9, W. 112 Supernova waargenomen a. 4, lichtjaar = 4, =4, m. b. De ster werd, volgens het artikel, honderd miljard keer zo helder als onze zon, d.w.z. hij had op dat moment een lichtkracht van , = W. Volgens de kwadratenwet geldt, dat het op aarde ontvangen vermogen per m 2 gelijk is aan: I = P br on 4πR 2 = π.4, = 1, Wm 1. De naar de ster toegekeerde helft van de aarde ontving een totaalvermogen van: π 6, , = 0,2 W! c. De supernova-ster had een oppervlak van 4π(150 0, ) 2 = 1, m 2. D.w.z. per m 2 straalt deze ster een vermogen uit van 3, , = 2, Jm 2. Wanneer we dit gelijkstellen aan σt 4, dan vinden we een temperatuur van T = 2, , = 2, K. d. Volgens de verschuivingswet ven Wien is de golflengte met de maximale intensiteit gelijk aan: λ max = k w T = 2, , = 10,7 nm. Moet dus worden waargenomen met een satelliet voor het ver UV/zachte röntgengebied van het e.m. spectrum.

23 113 Bepaling van de diameter van een ster uit het HR-diagram Voor de lichtsterkte van een ster geldt: L = 4πR 2 σt 4. Dus R α 2 : R β 2 = L α : L β. Uit de figuur valt af te lezen: log L α = 3,50 en log L β = 1,80 Zodoende volgt: L L log L α = log L β L α L L β L = log L α L log L β L = 3,50 1,80 = 5,3 Zodat: log L α L β = 5,3 of: L α L β = 10 5,3 = 2, Dus: R α R β = 2, = 4, m. a. w. R α = 4, R β 3.2 Onderzoek aan spectra van sterren. 114 Lijnidentificatie (identiek aan opgave 44) 394 nm: calcium 397 nm: waterstof 410 nm: waterstof 434 nm: waterstof Verder nog minder diepe lijnen: 403 nm: He-lijn 405 nm: K- of Fe-lijn 408 nm: Sr-lijn 415 nm: Fe-lijn 420 nm: Fe-lijn 423 nm: Ca-lijn 425 nm: Fe-lijn 426 nm: Fe-lijn 427 nm: Fe-lijn 442 nm: Fe-lijn 447 nm: He-lijn 115 Dopplereffect in sterspectrum a. Omdat de spectraallijnen ten opzichte van de standaardlijnen in de richting van langere golflengten zijn verschoven (roodverschuiving), beweegt de ster van ons af. b. Om de snelheid te kunnen bepalen maken we gebruik van de Dopplerformule. We bepalen de verschuiving van 486 nm lijn. In de figuur is deze lijn verschoven over 1½ mm. De afstand tussen de 656 en de 486 nm lijnen bedraagt 57,5 mm, zodat: Δλ = 1, = 4,4 nm. Dit ingevuld in Dopplerformule levert: 57,5 v bron = c Δλ λ b = ,4 486 = 2,7 106 ms 1 (ca. 1 % van de lichtsnelheid). 116 Dopplerverschuiving uitgedrukt in de golflengte. Zie opgave Draaiende ster a. Omdat aan de ene kant de atmosfeer van de ster naar ons toe beweegt (v) en aan de andere kant van ons af (-v), zal de 500 nm lijn zowel iets naar het rood als naar het blauw worden verschoven. Maar ook de snelheden tussen v en v komen voor, dus de lijn van 500 nm zal worden verbreed. b. Als de snelheid, waarmee de ster om zijn as draait, toeneemt wordt het gebied breder.

24 c. Als de ster van de waarnemer af beweegt, schuift het hele gebied in de richting van langere golflengten (roodverschuiving). 118 Pulserende ster a. Als het oppervlak van de ster zich van ons af beweegt, is sprake van een roodverschuiving van de spectraallijnen. Dat is dus het geval tussen de tijdstippen 0 dagen en 2,3 dagen; 4,3 en 8,3 dagen etc. Gedurende de resterende tijdsintervallen vertonen de spectraallijnen een violetverschuiving. b. De waargenomen golflengte van de lijn 486 nm berekenen we met de Dopplerformule bij maximale roodverschuiving geldt: v bron = c. Δλ = ms 1 dus Δλ = v bron λ = = 0,057 nm λ b c Een verschuiving naar het rood van 0,057 nm! 3.3 Waarneemtechnieken. 119 Snelheid van een waterstofwolk met de 21-cm lijn gemeten Dit probleem kunnen we benaderen vanuit de dopplerverschuiving in frequentie of in golflengte: we kiezen voor de frequentie. Een golflengte van 21 cm komt overeen met een frequentie van f = c = = 1429 MHz. Bij De frequentie van de lijn bij de λ 0,21 betreffende wolk is dus gelijk aan 1428 MHz, hetgeen overeenstemt met een golflengte van 21,015 cm. De snelheid van de waterstofwolk is dan gelijk aan: v bron = c. Δλ λ = 0, = 2,1 105 ms 1 Een frequentieafname (dus een toename van λ betekent dat de waterstof wolk van ons af beweegt cm straling van een melkwegstelsel Met de Dopplerformule is te berekenen dat in dit melkwegstelsel snelheden voorkomen tussen 2, m/s (van ons af) en -2, m/s (naar ons toe). Dit kan erop duiden dat de waterstofwolken om de kern van het stelsel draaien cm straling van een melkwegstelsel De gemiddelde afwijking bedraagt 2,25 mm. Dit betekent dat het stelsel als geheel een snelheid van ons af heeft van 3, m/s. Ten opzichte van het middelpunt van dat stelsel vertonen de waterstoflijnen een verschuiving van: 3,00-2,25 mm = 0,75 mm en een verschuiving van 1,50-2,25 = -0,75 mm. Ten opzichte van het centrum betekent dat: snelheden van +/- 1, m/s. Kennelijk roteert het waterstof in het stelsel. 122 Infraroodopname van onze melkweg a. Omdat de golflengte groot is (2000 nm) kunnen nauwkeuriger dopplerverschuivingen van spectraallijnen worden gemeten. b. Omdat door de atmosfeer IR-straling grotendeels wordt geabsorbeerd, kunnen we alleen op grote hoogten (nabij) infrarood straling waarnemen. c. Infrarood en radiostraling hebben een lagere energie-inhoud dan zichtbaar licht en kortere golflengten. Hierdoor kunnen we met IR-straling laag-energetische processen bestuderen, zoals die voorkomen in atomen en moleculen.

Begripsvragen: Elektromagnetische straling

Begripsvragen: Elektromagnetische straling Handboek natuurkundedidactiek Hoofdstuk 4: Leerstofdomeinen 4.2 Domeinspecifieke leerstofopbouw 4.2.8 Astrofysica Begripsvragen: Elektromagnetische straling 1 Meerkeuzevragen Stralingskromme 1 [H/V] Het

Nadere informatie

Zon en Sterren. Elektromagnetische straling en materie voor 5 VWO. Paul Feldbrugge Kirsten Stadermann

Zon en Sterren. Elektromagnetische straling en materie voor 5 VWO. Paul Feldbrugge Kirsten Stadermann Zon en Sterren Elektromagnetische straling en materie voor 5 VWO Paul Feldbrugge Kirsten Stadermann Context Concept Voor hele goede leerlingen t/m minder goede leerlingen Moeilijk onderwerp: ligt ver uit

Nadere informatie

13 Zonnestelsel en heelal

13 Zonnestelsel en heelal 13 Zonnestelsel en heelal Astrofysica vwo Uitwerking basisboek 13.1 INTRODUCTIE 1 [W] Sterspectra 2 [W] Elektromagnetische straling 13.2 OPPERVLAKTETEMPERATUUR VAN STERREN 3 [W] Experiment: Spectra 4 [W]

Nadere informatie

Je weet dat hoe verder je van een lamp verwijderd bent hoe minder licht je ontvangt. Een

Je weet dat hoe verder je van een lamp verwijderd bent hoe minder licht je ontvangt. Een Inhoud Het heelal... 2 Sterren... 3 Herzsprung-Russel-diagram... 4 Het spectrum van sterren... 5 Opgave: Spectraallijnen van een ster... 5 Verschuiving van spectraallijnen... 6 Opgave: dopplerverschuiving...

Nadere informatie

STERREN & STRALING VWO

STERREN & STRALING VWO STERREN & STRALING VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan

Nadere informatie

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur).

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

Exact Periode 5. Dictaat Licht

Exact Periode 5. Dictaat Licht Exact Periode 5 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische

Nadere informatie

Zonnestraling. Samenvatting. Elektromagnetisme

Zonnestraling. Samenvatting. Elektromagnetisme Zonnestraling Samenvatting De Zon zendt elektromagnetische straling uit. Hierbij verplaatst energie zich via elektromagnetische golven. De golflengte van de straling hangt samen met de energie-inhoud.

Nadere informatie

Exact Periode 5 Niveau 3. Dictaat Licht

Exact Periode 5 Niveau 3. Dictaat Licht Exact Periode 5 Niveau 3 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is

Nadere informatie

2.1 Wat is licht? 2.2 Fotonen

2.1 Wat is licht? 2.2 Fotonen 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

GEEF STERRENKUNDE DE RUIMTE! SPECTROSCOPISCH ONDERZOEK VAN STERLICHT INTRODUCTIE

GEEF STERRENKUNDE DE RUIMTE! SPECTROSCOPISCH ONDERZOEK VAN STERLICHT INTRODUCTIE LESBRIEF GEEF STERRENKUNDE DE RUIMTE! Deze NOVAlab-oefening gaat over spectroscopisch onderzoek van sterlicht. Het is een vervolg op de lesbrief Onderzoek de Zon. De oefening is bedoeld voor de bovenbouw

Nadere informatie

13 Zonnestelsel en heelal

13 Zonnestelsel en heelal 13 Zonnestelsel en heelal Astrofysica vwo Werkblad 53 PLANCKKROMMEN In deze opdracht ontdek je met een computermodel hoe de formule achter de planckkrommen eruit ziet. De theoretische planckkrommen zijn

Nadere informatie

Atoomfysica uitwerkingen opgaven

Atoomfysica uitwerkingen opgaven Atoomfysica uitwerkingen opgaven Opgave 1.1 Wat zijn golven? a Geef nog een voorbeeld van een golf waaraan je kunt zien dat de golf zich wel zijwaarts verplaatst maar de bewegende delen niet. de wave in

Nadere informatie

Exact Periode 5.2. Licht

Exact Periode 5.2. Licht Exact Periode 5.2 Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische

Nadere informatie

Spectroscopie. ... de kunst van het lichtlezen... Karolien Lefever. u gebracht door. Instituut voor Sterrenkunde, K.U. Leuven

Spectroscopie. ... de kunst van het lichtlezen... Karolien Lefever. u gebracht door. Instituut voor Sterrenkunde, K.U. Leuven Spectroscopie... de kunst van het lichtlezen... u gebracht door Instituut voor Sterrenkunde, K.U. Leuven Spectroscopie en kunst... Het kleurenpalet van het elektromagnetisch spectrum... Het fingerspitzengefühl

Nadere informatie

Inleiding Astrofysica College 2 15 september 2014 13.45 15.30. Ignas Snellen

Inleiding Astrofysica College 2 15 september 2014 13.45 15.30. Ignas Snellen Inleiding Astrofysica College 2 15 september 2014 13.45 15.30 Ignas Snellen Samenvatting College 1 Behandelde onderwerpen: Sterrenbeelden; dierenriem; planeten; prehistorische sterrenkunde; geocentrische

Nadere informatie

Hoe meten we STERAFSTANDEN?

Hoe meten we STERAFSTANDEN? Hoe meten we STERAFSTANDEN? Frits de Mul voor Cosmos Sterrenwacht nov 2013 Na start loopt presentatie automatisch door 1 Hoe meten we STERAFSTANDEN? 1. Afstandsmaten in het heelal 2. Soorten sterren 3.

Nadere informatie

Hoe meten we STERAFSTANDEN?

Hoe meten we STERAFSTANDEN? Hoe meten we STERAFSTANDEN? (soorten sterren en afstanden) Frits de Mul Jan. 2017 www.demul.net/frits 1 Hoe meten we STERAFSTANDEN? (soorten sterren en afstanden) 1. Afstandsmaten in het heelal 2. Soorten

Nadere informatie

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm.

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Domein F: Moderne fysica Subdomein: Atoomfysica 1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Bereken de energie van het foton in ev. E = h c/λ (1) E = (6,63 10-34 3 10 8 )/(589

Nadere informatie

Elektromagnetische straling en materie. Zon en Sterren VWO 5

Elektromagnetische straling en materie. Zon en Sterren VWO 5 Elektromagnetische straling en materie Zon en Sterren VWO 5 Over deze lessenserie De materiële wereld zoals we die met onze zintuigen waarnemen is de wereld van de meters, de kilogrammen en de seconden.

Nadere informatie

Fysische modellen De Aarde zonder en met atmosfeer

Fysische modellen De Aarde zonder en met atmosfeer Fysische modellen De Aarde zonder en met atmosfeer J. Kortland Cdb, Universiteit Utrecht Inleiding Bij het ontwerpen van een computermodel van de broeikas Aarde maak je gebruik van fysische modellen. Deze

Nadere informatie

HOE VIND JE EXOPLANETEN?

HOE VIND JE EXOPLANETEN? LESBRIEF GEEF STERRENKUNDE DE RUIMTE! ZOEKTOCHT EXOPLANETEN Deze NOVAlab-oefening gaat over een van de manieren om planeten buiten ons zonnestelsel op te sporen. De oefening is geschikt voor de bovenbouw

Nadere informatie

De Broglie. N.G. Schultheiss

De Broglie. N.G. Schultheiss De Broglie N.G. Schultheiss Inleiding Deze module volgt op de module Detecteren en gaat vooraf aan de module Fluorescentie. In deze module wordt de kleur van het geabsorbeerd of geëmitteerd licht gekoppeld

Nadere informatie

Keuzeopdracht natuurkunde voor 5/6vwo

Keuzeopdracht natuurkunde voor 5/6vwo Exoplaneten Keuzeopdracht natuurkunde voor 5/6vwo Een verdiepende keuzeopdracht over het waarnemen van exoplaneten Voorkennis: gravitatiekracht, cirkelbanen, spectra (afhankelijk van keuze) Inleiding Al

Nadere informatie

Frequentie = aantal golven per seconde op gegeven plek = v/λ = ν. Golflengte x frequentie = golfsnelheid

Frequentie = aantal golven per seconde op gegeven plek = v/λ = ν. Golflengte x frequentie = golfsnelheid Golflengte, frequentie Frequentie = aantal golven per seconde op gegeven plek = v/λ = ν λ v Golflengte x frequentie = golfsnelheid Snelheid van het licht Manen van Jupiter (Römer 1676) Eclipsen van Io

Nadere informatie

Nederlandse samenvatting

Nederlandse samenvatting Nederlandse samenvatting Spiraalstelsels Het heelal wordt bevolkt door sterrenstelsels die elk uit miljarden sterren bestaan. Er zijn verschillende soorten sterrenstelsels. In het huidige heelal zien we

Nadere informatie

Astrofysica. Ontstaan En Levensloop Van Sterren

Astrofysica. Ontstaan En Levensloop Van Sterren Astrofysica Ontstaan En Levensloop Van Sterren 1 Astrofysica 9 avonden Deeltjestheorie als rode draad Energie van sterren Helderheden Straling en spectrografie HR diagram Diameters en massa 2 Astrofysica

Nadere informatie

1 Welk van onderstaande schakelingen is geschikt om de remspanning te meten?

1 Welk van onderstaande schakelingen is geschikt om de remspanning te meten? Domein F: Moderne Fysica Subdomein: Atoomfysica 1 Welk van onderstaande schakelingen is geschikt om de remspanning te meten? 2 Bekijk de volgende beweringen. 1 In een fotocel worden elektronen geëmitteerd

Nadere informatie

Ruud Visser Postdoc, Sterrewacht Leiden

Ruud Visser Postdoc, Sterrewacht Leiden Ruud Visser Postdoc, Sterrewacht Leiden 30 oktober 2009 Sterrewacht Leiden Astrochemiegroep Prof. Ewine van Dishoeck Prof. Harold Linnartz Dr. Michiel Hogerheijde 5 postdocs 12 promovendi (aio s) Stervorming

Nadere informatie

Uitwerkingen VWO deel 1 H2 (t/m par. 2.5)

Uitwerkingen VWO deel 1 H2 (t/m par. 2.5) Uitwerkingen VWO deel 1 H2 (t/m par. 2.5) 2.1 Inleiding 1. a) Warmte b) Magnetische Energie c) Bewegingsenergie en Warmte d) Licht (stralingsenergie) en warmte e) Stralingsenergie 2. a) Spanning (Volt),

Nadere informatie

Sterrenstof. OnzeWereld, Ons Heelal

Sterrenstof. OnzeWereld, Ons Heelal Sterrenstof OnzeWereld, Ons Heelal Mesopotamie: bestudering van de bewegingen aan het firmament vooral voor astrologie. Veel van de kennis, ook over bedekkingen (waaronder maans- en zonsverduisteringen)

Nadere informatie

Werkstuk Natuurkunde Negen planeten

Werkstuk Natuurkunde Negen planeten Werkstuk Natuurkunde Negen planeten Werkstuk door een scholier 1608 woorden 3 januari 2005 5,7 93 keer beoordeeld Vak Natuurkunde Planeten Ontstaan van het zonnestelsel Vlak na een explosie, de Big Bang

Nadere informatie

Inleiding Astrofysica Tentamen 2009/2010: antwoorden

Inleiding Astrofysica Tentamen 2009/2010: antwoorden Inleiding Astrofysica Tentamen 2009/200: antwoorden December 2, 2009. Begrippen, vergelijkingen, astronomische getallen a. Zie Kutner 0.3 b. Zie Kutner 23.5 c. Zie Kutner 4.2.6 d. Zie Kutner 6.5 e. Zie

Nadere informatie

Correctievoorschrift Schoolexamen Moderne Natuurkunde

Correctievoorschrift Schoolexamen Moderne Natuurkunde Correctievoorschrift Schoolexamen Moderne Natuurkunde Natuurkunde 1, VWO 6 9 maart 004 Tijdsduur: 90 minuten Regels voor de beoordeling: In zijn algemeenheid geldt dat het werk wordt nagekeken volgens

Nadere informatie

Eindexamen natuurkunde 1-2 vwo 2002-II

Eindexamen natuurkunde 1-2 vwo 2002-II Eindexamen natuurkunde - vwo 00-II Opgave Sellafield Maximumscore voorbeeld van een antwoord: U ( n) Cs ( x n) Rb. 9 0 55 0 7 (Het andere element is dus Rb.) berekenen van het atoomnummer consequente keuze

Nadere informatie

Fysica 2 Practicum. Er bestaan drie types van spectra voor lichtbronnen: lijnen-, banden- en continue spectra.

Fysica 2 Practicum. Er bestaan drie types van spectra voor lichtbronnen: lijnen-, banden- en continue spectra. Fysica 2 Practicum Atoomspectroscopie 1. Theoretische uiteenzetting Wat hebben vuurwerk, lasers en neonverlichting gemeen? Ze zenden licht uit met mooie heldere kleuren. Dat doen ze doordat elektronen

Nadere informatie

Hoofdstuk 8. Samenvatting. 8.1 Sterren en sterrenhopen

Hoofdstuk 8. Samenvatting. 8.1 Sterren en sterrenhopen Hoofdstuk 8 Samenvatting Een verlaten strand en een onbewolkte lucht, zoals op de voorkant van dit proefschrift, zijn ideaal om te genieten van de sterren: overdag van de Zon de dichtstbijzijnde ster en

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle  holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/18643 holds various files of this Leiden University dissertation. Author: Voort, Frederieke van de Title: The growth of galaxies and their gaseous haloes

Nadere informatie

6 Het atoommodel van Bohr. banner. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. https://maken.wikiwijs.nl/51935

6 Het atoommodel van Bohr. banner. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. https://maken.wikiwijs.nl/51935 banner Auteur Laatst gewijzigd Licentie Webadres Its Academy 08 mei 2015 CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie https://maken.wikiwijs.nl/51935 Dit lesmateriaal is gemaakt met Wikiwijs van

Nadere informatie

Radioastronomie Marijke Haverkorn

Radioastronomie Marijke Haverkorn Radioastronomie Marijke Haverkorn Sterrenkunde onderzoekt alle soorten straling in het electromagnetisch spectrum gamma röntgen ultraviolet infrarood radio zichtbaar licht Eén melkwegstelsel, vele gezichten

Nadere informatie

T2b L1 De ruimte of het heelal Katern 1

T2b L1 De ruimte of het heelal Katern 1 Het heelal of de kosmos is de ruimte waarin de zon, de maan en de sterren zich bevinden. Het heelal bestaat uit een oneindig aantal hemellichamen waarvan er steeds nieuwe ontdekt worden. De hemellichamen

Nadere informatie

- KLAS 5. c) Bereken de snelheid waarmee een elektron vrijkomt als het groene licht op de Rbkathode

- KLAS 5. c) Bereken de snelheid waarmee een elektron vrijkomt als het groene licht op de Rbkathode NATUURKUNDE - KLAS 5 PROEFWERK H7 --- 26/11/10 Het proefwerk bestaat uit 3 opgaven; totaal 32 punten. Opgave 1: gasontladingsbuis (4 p) In een gasontladingsbuis (zoals een TL-buis) zijn het gassen die

Nadere informatie

1. 1 Wat is een trilling?

1. 1 Wat is een trilling? 1. 1 Wat is een trilling? Een trilling is een beweging die steeds wordt herhaald. Bijvoorbeeld een massa m dat aan een veer hangt. In rust bevindt m zich in de evenwichtsstand. Als m beweegt noemen we

Nadere informatie

NATUURKUNDE. a) Bereken voor alle drie kleuren licht de energie van een foton in ev.

NATUURKUNDE. a) Bereken voor alle drie kleuren licht de energie van een foton in ev. NATUURKUNDE KLAS 5, INHAALPROEFWERK H7, 02/12/10 Het proefwerk bestaat uit 2 opgaven met samen 32 punten. (NB. Je mag GEEN gebruik maken van de CALC-intersect-functie van je GRM!) Opgave 1: Kwiklamp (17

Nadere informatie

Stevin vwo deel 2 Uitwerkingen hoofdstuk 10 Atomen ( ) Pagina 1 van 10

Stevin vwo deel 2 Uitwerkingen hoofdstuk 10 Atomen ( ) Pagina 1 van 10 Stevin vwo deel 2 Uitwerkingen hoofdstuk 10 Atomen (26-08-2011) Pagina 1 van 10 Opgaven 10.1 Fotonen 1 a Tael 19B: 920 nm is infrarood en 12 m is SHF (super high frequeny) 8 3,00 10 λ 6 = = = 0,333 m f

Nadere informatie

Sterrenkunde Ruimte en tijd (3)

Sterrenkunde Ruimte en tijd (3) Sterrenkunde Ruimte en tijd (3) Zoals we in het vorige artikel konden lezen, concludeerde Hubble in 1929 tot de theorie van het uitdijende heelal. Dit uitdijen geschiedt met een snelheid die evenredig

Nadere informatie

7. Hoofdstuk 7 : De Elektronenstructuur van Atomen

7. Hoofdstuk 7 : De Elektronenstructuur van Atomen 7. Hoofdstuk 7 : De Elektronenstructuur van Atomen 7.1. Licht: van golf naar deeltje Frequentie (n) is het aantal golven dat per seconde passeert door een bepaald punt (Hz = 1 cyclus/s). Snelheid: v =

Nadere informatie

QUANTUM- & ATOOMFYSICA VWO

QUANTUM- & ATOOMFYSICA VWO QUANTUM- & ATOOMFYSICA VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven

Nadere informatie

7 Emissie en Absorptiespectra. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie.

7 Emissie en Absorptiespectra. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. Auteur Its Academy Laatst gewijzigd Licentie Webadres 18 December 2014 CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie http://maken.wikiwijs.nl/51936 Dit lesmateriaal is gemaakt met Wikiwijs Maken

Nadere informatie

Interstellair Medium. Wat en Waar? - Gas (neutraal en geioniseerd) - Stof - Magneetvelden - Kosmische stralingsdeeltjes

Interstellair Medium. Wat en Waar? - Gas (neutraal en geioniseerd) - Stof - Magneetvelden - Kosmische stralingsdeeltjes Interstellair Medium Wat en Waar? - Gas (neutraal en geioniseerd) - Stof - Magneetvelden - Kosmische stralingsdeeltjes Neutraal Waterstof 21-cm lijn-overgang van HI Waarneembaarheid voorspeld door Henk

Nadere informatie

Stevin vwo Antwoorden hoofdstuk 14 Straling van sterren ( ) Pagina 1 van 6

Stevin vwo Antwoorden hoofdstuk 14 Straling van sterren ( ) Pagina 1 van 6 Stevin vwo Antwoorden hoofdstuk 14 Straling van sterren (2016-05-23) Pagina 1 van 6 Als je een ander antwoord vindt, zijn er minstens twee mogelijkheden: óf dit antwoord is fout, óf jouw antwoord is fout.

Nadere informatie

Nederlandse samenvatting

Nederlandse samenvatting Nederlandse samenvatting Als je op een heldere nacht op een donkere plek naar de sterrenhemel kijkt, zie je honderden sterren. Als je vaker kijkt, valt het op dat sommige sterren zich verplaatsen langs

Nadere informatie

Eindexamen vwo natuurkunde pilot 2012 - I

Eindexamen vwo natuurkunde pilot 2012 - I Eindexamen vwo natuurkunde pilot 0 - I Opgave Lichtpracticum maximumscore De buis is aan beide kanten afgesloten om licht van buitenaf te voorkomen. maximumscore 4 De weerstanden verhouden zich als de

Nadere informatie

Ruud Visser Promovendus, Sterrewacht Leiden

Ruud Visser Promovendus, Sterrewacht Leiden Ruud Visser Promovendus, Sterrewacht Leiden 19 februari 2009 Sterrewacht Leiden Astrochemiegroep Prof. Ewine van Dishoeck Prof. Harold Linnartz Dr. Michiel Hogerheijde 5 postdocs 12 promovendi (aio s)

Nadere informatie

Clusters van sterrenstelsels

Clusters van sterrenstelsels Nederlandse samenvatting In dit proefschrift worden radiowaarnemingen en computer simulaties van samensmeltende clusters van sterrenstelsels besproken. Om dit beter te begrijpen wordt eerst uitgelegd wat

Nadere informatie

Nederlandse samenvatting

Nederlandse samenvatting Op een heldere avond kunnen we aan de hemel een witte, op sommige plekken onderbroken band van licht tegenkomen. Wat we zien zijn miljoenen sterren die samen de schijf van ons eigen sterrenstelsel, de

Nadere informatie

Sterrenstelsels: een aaneenschakeling van superlatieven

Sterrenstelsels: een aaneenschakeling van superlatieven : een aaneenschakeling van superlatieven Wist u dat! Onze melkweg is een sterrenstelsel! Het bevat zo n 200000000000 sterren! Toch staat de dichtstbijzijnde ster op 4 lichtjaar! Dit komt overeen met 30.000.000

Nadere informatie

Schoolexamen Moderne Natuurkunde

Schoolexamen Moderne Natuurkunde Schoolexamen Moderne Natuurkunde Natuurkunde 1,2 VWO 6 24 maart 2003 Tijdsduur: 90 minuten Deze toets bestaat uit 3 opgaven met 16 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

De Zon. N.G. Schultheiss

De Zon. N.G. Schultheiss 1 De Zon N.G. Schultheiss 1 Inleiding Deze module is direct vanaf de derde of vierde klas te volgen en wordt vervolgd met de module De Broglie of de module Zonnewind. Figuur 1.1: Een schema voor kernfusie

Nadere informatie

Eindexamen vwo natuurkunde I

Eindexamen vwo natuurkunde I Opgave Lichtpracticum maximumscore De buis is aan beide kanten afgesloten om licht van buitenaf te voorkomen. De buis is van binnen zwart gemaakt om reflecties van het licht in de buis te voorkomen. inzicht

Nadere informatie

Eindexamen havo natuurkunde pilot II

Eindexamen havo natuurkunde pilot II Eindexamen havo natuurkunde pilot 0 - II Aan het juiste antwoord op een meerkeuzevraag worden scorepunten toegekend. Opgave Parasaurolophus maximumscore antwoord: resonantie maximumscore Voor de grondtoon

Nadere informatie

natuurkunde vwo 2016-I

natuurkunde vwo 2016-I natuurkunde vwo 06-I Gekleurde LED s maximumscore uitkomst: R =, 0 Ω voorbeeld van een bepaling: Bij een stroom door de LED van 0,60 ma is de spanning over de LED,64 V. Voor de spanning over de weerstand

Nadere informatie

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel Uitwerking Opgave Zonnestelsel 2005/2006: 1 1 Het Zonnestelsel en de Zon 1.1 Het Barycentrum van het Zonnestelsel Door haar grote massa domineert de Zon het Zonnestelsel. Echter, de planeten hebben een

Nadere informatie

Eindexamen natuurkunde pilot vwo II

Eindexamen natuurkunde pilot vwo II Eindexamen natuurkunde pilot vwo 0 - II Beoordelingsmodel Opgave Wega maximumscore 3 Voor het verband tussen de temperatuur van de ster en de golflengte waarbij de stralingsintensiteit maximaal is, geldt:

Nadere informatie

Eindexamen natuurkunde 1-2 vwo I

Eindexamen natuurkunde 1-2 vwo I Eindexamen natuurkunde - vwo 009 - I Beoordelingsmodel Opgave Mondharmonica maximumscore 3 In figuur 3 zijn minder trillingen te zien dan in figuur De frequentie in figuur 3 is dus lager Het lipje bij

Nadere informatie

Nederlandse samenvatting

Nederlandse samenvatting Nederlandse samenvatting 9.1 De hemel Wanneer s nachts naar een onbewolkte hemel wordt gekeken is het eerste wat opvalt de vele fonkelende sterren. Met wat geluk kan ook de melkweg worden gezien als een

Nadere informatie

3 Het Foto Elektrisch Effect. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. http://maken.wikiwijs.nl/51931

3 Het Foto Elektrisch Effect. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. http://maken.wikiwijs.nl/51931 Auteur Its Academy Laatst gewijzigd Licentie Webadres 08 May 2015 CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie http://maken.wikiwijs.nl/51931 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein.

Nadere informatie

PLANETENSTELSELS IN ONZE MELKWEG. Opgaven

PLANETENSTELSELS IN ONZE MELKWEG. Opgaven VOLKSSTERRENWACHT BEISBROEK VZW Zeeweg 96, 8200 Brugge - Tel. 050 39 05 66 www.beisbroek.be - E-mail: info@beisbroek.be PLANETENSTELSELS IN ONZE MELKWEG Opgaven Frank Tamsin en Jelle Dhaene De ster HR

Nadere informatie

Eindexamen vwo natuurkunde pilot 2014-II

Eindexamen vwo natuurkunde pilot 2014-II Opgave Skydiver maximumscore 3 Voor de zwaartekracht geldt: Fz = mg = 00 9,8=,96 0 N. Als je dit aangeeft met een pijl met een lengte van 4,0 cm, levert opmeten: 3 3 F I =, 0 N, met een marge van 0,3 0

Nadere informatie

natuurkunde vwo 2018-II

natuurkunde vwo 2018-II Mechanische doping maximumscore 5 uitkomst: V =,7 0 m 4 3 voorbeeld van een berekening: Er geldt: Enuttig = Pt = 50 0,5 = 5 Wh. Enuttig 5 Dus geldt: Ein = = = 56 Wh. η 0,80 De batterij heeft een energiedichtheid

Nadere informatie

Werkstuk Nederlands De Ruimte werkstuk

Werkstuk Nederlands De Ruimte werkstuk Werkstuk Nederlands De Ruimte werkstuk Werkstuk door Denise 1472 woorden 24 maart 2019 0 keer beoordeeld Vak Nederlands Het zonnestelsel Inhoudsopgave Inleiding Onderzoeksvraag Het ontstaan Planeten De

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Inleiding Astrofysica College 3 10 oktober Ignas Snellen

Inleiding Astrofysica College 3 10 oktober Ignas Snellen Inleiding Astrofysica College 3 10 oktober 2016 15.45 17.30 Ignas Snellen Straling, energie en flux Astrofysica: licht, atomen en energie Zwartlichaamstralers (black body) Stralingswetten Een object dat

Nadere informatie

Het eetbare zonnestelsel groep 5-7

Het eetbare zonnestelsel groep 5-7 Het eetbare zonnestelsel groep 5-7 Hoe groot is de aarde? En hoe groot is de zon in vergelijking met de aarde? Welke planeet staat het dichtst bij de zon en welke het verst weg? Deze les leren de leerlingen

Nadere informatie

Hoofdstuk 9: Radioactiviteit

Hoofdstuk 9: Radioactiviteit Hoofdstuk 9: Radioactiviteit Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 9: Radioactiviteit Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Licht als golf en als deeltje 24 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Inleiding Astrofysica

Inleiding Astrofysica Inleiding Astrofysica Hoorcollege III 24 september 2018 Samenvatting hoorcollege II n Praktische aspecten: n aangemeld op Blackboard? n Wetten van Kepler n Baan van een planeet is een ellips n Perkenwet

Nadere informatie

Afstanden in de astrofysica

Afstanden in de astrofysica Afstanden in de astrofysica Booggraden, boogminuten en boogseconden Een booggraad of kortweg graad is een veel gebruikte eenheid voor een hoek. Een booggraad is per definitie het 1/360-ste deel van een

Nadere informatie

Nederlandse samenvatting

Nederlandse samenvatting Hoofdstuk 10 Nederlandse samenvatting 10.1 Actieve melkwegstelsels Melkwegstelsels bestaan uit vele miljarden sterren die door zwaartekracht bijeen gehouden worden. Het licht van de meeste melkwegstelsels

Nadere informatie

1 f T De eenheid van trillingstijd is (s). De eenheid van frequentie is (Hz).

1 f T De eenheid van trillingstijd is (s). De eenheid van frequentie is (Hz). 1. 1 Wat is een trilling? Een trilling is een beweging die steeds wordt herhaald. Bijvoorbeeld een massa m dat aan een veer hangt. In rust bevindt m zich in de evenwichtsstand. Als m beweegt noemen we

Nadere informatie

10 Materie en warmte. Onderwerpen. 3.2 Temperatuur en warmte.

10 Materie en warmte. Onderwerpen. 3.2 Temperatuur en warmte. 1 Materie en warmte Onderwerpen - Temperatuur en warmte. - Verschillende temperatuurschalen - Berekening hoeveelheid warmte t.o.v. bepaalde temperatuur. - Thermische geleidbaarheid van een stof. - Warmteweerstand

Nadere informatie

Sterrenkundig Practicum 2 3 maart Proef 3, deel1: De massa van het zwarte gat in M87

Sterrenkundig Practicum 2 3 maart Proef 3, deel1: De massa van het zwarte gat in M87 Proef 3, deel1: De massa van het zwarte gat in M87 Sterrenkundig Practicum 2 3 maart 2005 Vele sterrenstelsels vertonen zogenaamde nucleaire activiteit: grote hoeveelheden straling komen uit het centrum.

Nadere informatie

Sterren en sterevolutie Edwin Mathlener

Sterren en sterevolutie Edwin Mathlener Sterren en sterevolutie Edwin Mathlener 100 000 lichtjaar convectiezone stralingszone kern 15 miljoen graden fotosfeer 6000 graden Kernfusie protonprotoncyclus E=mc 2 Kernfusie CNO-cyclus Zichtbare

Nadere informatie

13 Zonnestelsel en heelal

13 Zonnestelsel en heelal 13 Zonnestelsel en heelal Astrofysica vwo Werkblad 51 LEVENSLOOP VAN STERREN In deze opdracht ga je na hoe de levensloop van een ster eruit ziet, en wat dat betekent voor het leven op aarde. Uit het HRD

Nadere informatie

toelatingsexamen-geneeskunde.be

toelatingsexamen-geneeskunde.be Fysica juli 2009 Laatste update: 31/07/2009. Vragen gebaseerd op het ingangsexamen juli 2009. Vraag 1 Een landingsbaan is 500 lang. Een vliegtuig heeft de volledige lengte van de startbaan nodig om op

Nadere informatie

Werken met eenheden. Introductie 275. Leerkern 275

Werken met eenheden. Introductie 275. Leerkern 275 Open Inhoud Universiteit Appendix B Wiskunde voor milieuwetenschappen Werken met eenheden Introductie 275 Leerkern 275 1 Grootheden en eenheden 275 2 SI-eenhedenstelsel 275 3 Tekenen en grafieken 276 4

Nadere informatie

Mooie opgaven met mooie contexten. Maar je moet het wel snappen. Standaard aanpak van bekende opgaven werkt hier niet. Je moet de aanpak wel zien.

Mooie opgaven met mooie contexten. Maar je moet het wel snappen. Standaard aanpak van bekende opgaven werkt hier niet. Je moet de aanpak wel zien. Verslag examenbespreking pilot-examen VWO 2014 (eerste tijdvak) Utrecht, 20 mei 2014 Eerste resultaten: Totaal 36 kandidaten. Gemiddeld 39,7 punten. Algemene opmerkingen: Slechts twee leerlingen van te

Nadere informatie

VWO GYMNASIUM. natuurkunde

VWO GYMNASIUM. natuurkunde 5 VWO GYMNASIUM natuurkunde Inhoud Voorwoord 4 7 Elektrische en magnetische velden 5 Praktijk Zonnestormen 6 De elektromagnetische gitaar Theorie 1 Vrije ladingen en elektrische spanning 14 2 Elektrische

Nadere informatie

Hoofdstuk 1 Beweging in beeld. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 1 Beweging in beeld. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 1 Beweging in beeld Gemaakt als toevoeging op methode Natuurkunde Overal 1.1 Beweging vastleggen Het verschil tussen afstand en verplaatsing De verplaatsing (x) is de netto verplaatsing en de

Nadere informatie

Variabele Sterren. Instability strip: Cepheiden RR Lyrae W Virginis sterren. Rode reuzen op de z.g. instability strip in het HR diagram

Variabele Sterren. Instability strip: Cepheiden RR Lyrae W Virginis sterren. Rode reuzen op de z.g. instability strip in het HR diagram Variabele Sterren Cepheiden Lyrae W Virginis sterren ode reuzen op de z.g. instability strip in het H diagram De pulsatie en variabiliteit onstaan doordat in de buitenlagen van zulke sterren de He + nogmaals

Nadere informatie

Tentamen Inleiding Astrofysica

Tentamen Inleiding Astrofysica Tentamen Inleiding Astrofysica 19 December 2017, 10.00-13.00 Let op lees onderstaande goed door! Dit tentamen omvat 5 opdrachten, die maximaal 100 punten opleveren. De eerste opdracht bestaat uit tien

Nadere informatie

Ik doe mijn spreekbeurt over de ruimte omdat ik het een interessant onderwerp vind en ik er graag meer over wilde weten.

Ik doe mijn spreekbeurt over de ruimte omdat ik het een interessant onderwerp vind en ik er graag meer over wilde weten. Boekverslag door J. 1981 woorden 29 juli 2003 6.3 208 keer beoordeeld Vak Nederlands Ik doe mijn spreekbeurt over de ruimte omdat ik het een interessant onderwerp vind en ik er graag meer over wilde weten.

Nadere informatie

Inleiding Astrofysica college 6

Inleiding Astrofysica college 6 Inleiding Astrofysica college 6 Onze zon en de sterren De opbouw van de zon Binnen in de ster: opaciteit - Hoe lichtdoorlatend is het gas? Veel tegenwerking zorgt voor een heter gas. In de zon botst een

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/33101 holds various files of this Leiden University dissertation Author: Kazandjian, Mher V. Title: Diagnostics for mechanical heating in star-forming galaxies

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle  holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/31602 holds various files of this Leiden University dissertation Author: Cuylle, Steven Hendrik Title: Hydrocarbons in interstellar ice analogues : UV-vis

Nadere informatie

Samenvatting. Sterrenstelsels

Samenvatting. Sterrenstelsels Samenvatting Sterrenstelsels De Melkweg, waarin de Zon één van de circa 100 miljard sterren is, is slechts één van de vele sterrenstelsels in het Heelal. Sterrenstelsels, ook wel de bouwstenen van het

Nadere informatie

11/15/16. Inleiding Astrofysica College 8 14 november Ignas Snellen. De melkweg

11/15/16. Inleiding Astrofysica College 8 14 november Ignas Snellen. De melkweg Inleiding Astrofysica College 8 14 november 2016 15.45 17.30 Ignas Snellen De melkweg 1 De melkweg Anaxagoras (384-322 BC) en Democritus (500-428 BC): Melkweg bestaat uit verwegstaande sterren Galilei

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

De ruimte. Thema. Inhoud

De ruimte. Thema. Inhoud Thema De ruimte Inhoud 1. Het heelal 2. Het ontstaan van het heelal en het zonnestelsel 3. Sterren en sterrenstelsels 4. De zon 5. De planeten van ons zonnestelsel 6. De stand van de aarde de maan de zon

Nadere informatie

Eindexamen havo natuurkunde II

Eindexamen havo natuurkunde II Eindexamen havo natuurkunde 0 - II Opgave Parasaurolophus maximumscore antwoord: resonantie maximumscore voorbeeld van een berekening: Voor de grondtoon bij een halfgesloten pijp geldt dat de lengte van

Nadere informatie