Uitwerkingen H9 van vwo B deel 3 Exponentiële functies en logaritmische functies

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Uitwerkingen H9 van vwo B deel 3 Exponentiële functies en logaritmische functies"

Transcriptie

1 Uitwrkingn H9 van vwo B dl Eponntiël functis n logaritmisch functis. y log( + 5) y log() + log (5) n y log (5) Uit d tabl blijkt dat y n y htzlfd zijn. log() + log(5) log(5) Vor in : y log( 5) ; y log() log(5) n y log 5 Ook hir zi j dat d functis y n y glijk zijn log() log(5) log 5 c. Vor in : y log( ) ; y (log()) n y.log() Opmrking : d y n d y hb ik vrwissld i.v.m. d kolommn in d tabl. Nu zi j uit d tabl dat d kolommn y n y htzlfd zijn. log( ).log()

2 . log(6) + log(0) log(6.0) log(60) log(0) log(6) log log(5) 0 6 c log() + log(0,5) log + log(0,5) log(9.0,5) log(,5) d. 5 log(5). log() log(5) log log 8.. log(6) + log() log(6 ) + log() log(6.) log 6 log(50).log(5) log(50) log(5 ) log log() 50 f log() log + log() log(6.) log(8) ( ) log(0) log log(0) log log log 5 log(0 ) log(5) log log(0) c. 00 d. 5 log() log(9) log() log() log() log log(). ( ). log(6) log(8) log 6 log log() log ( 7 ) log() log log log f. log(500) log(5) log(500) log(500) log(000) log 5. log(6) + log log 6 log(9) log() log(50) log log c. d log(7) + log log(7) + log log log log(6). log() log(6) log() log(6) log(9) log()

3 g g log( a) g a g g log log( a) log( b) g a b g g log( b) log( a) log( b) log g b b g g n g n log log log( a ) 6. g g a g n log( a) log a g g g a n a a n g g n + log() log + log() log() log( + ) + log() log( + ) log() + voldot ( ) 5 log. log(). log() log log log ( ) log( ) log 8 9 voldot!! log log() log log log() log log voldot. 6 6 c. ( ) log( + ) + log log( + ) log + log( ) log( + ) log(8 ) voldot 7 d. log + log( + ) log log() + log( + ) log log(+ ) voldot nit!!! 8 5 ( 5 ) 5.log 5 log(5) log log(5) log log(0) log 5 0 log log0 log 5 log log ( 5 ) voldot. ( ) log( ) + log( + ) log( ) log + log( + ) log( ) log.( + ) voldot 7 c. log( + ) log log( + ) + log log() log( + ) log() ( + )( ) 0 - (voldot nit) voldot. d. ( ) ( ) 9. log + log(5 ) log + log() log(5 ) log log(5 ) D (-5) voldot voldot. 6 6

4 log ( ). log() log log 5 log 5 5 log log ( 5 ) 5 voldot. + + log( + ) +. log( ) log( + ) + log() log( ) log(+ ) log( ) + ( ) ( 8)( + ) 0 8 (voldot) - (voldot nit) c. d. log log( + ) log log + log( + ) + log log + log() log( + ) + log log(8 ) log( + ) ( 5) 0 5 (voldot) 0 ( vrvalt) log log( ) log + log( ) log(9) log( ) log(9) D voldot vrvalt. 0. Ggvn : ( ) log. log 8 0 log p p p 8 0 ( p )( p+ ) 0 p p Uit a volgt log log 6 (voldot) (voldot). log() log(),6 n log() log() log() log -,585. c. log( 5) + log( ) 0 log( 5) log( ) 0 log( 5) log( ) 5 (voldot) log +. log 0 log. log 0 log log( ) - 0 ( ) 0 0 (vrvalt) (voldot). log(+ 5) log(+ 5) log(+ 5) 0 0,5 (voldot) + 5 0,5 voldot ook.

5 5 d. log. log + Stl log p p p + p p 0 (p )(p + ) 0 p p - log( ) 8 (voldot) (voldot) log( ). log log. log log() log log log( ) ( )( + 6) 0 (voldot) -6 ( voldot nit) 9 log log( ) log log( ) log log( ). log(9) log().log() log() log() log( ) ( ) ( 8)( ) 0 8 (voldot) (voldot nit) c.. log( ) +. log( ) 0 log( ).(+ ) 0 log( ) (voldot) -0,75 (voldot nit) d.. log ( + ) +. log( + ) 0 log( + ). log( log( + ) 0 log( + ) (voldot) 6 (voldot). log( + ) log( + ). log( + ) log( + ). log( + ) + log( + ) 0 log( + ).(+ ) 0 log( + ) (voldot) - (voldot) log(+ ) + 9. log(+ ) 0. log(+ ) 9. log(+ ) 0 log(+ ). 9 0 log(+ ) (voldot) (voldot) - (vrvalt) c.. log 5. log + Stl p log p + 5 p p 5 p+ 0 D ( 5) p p p p log log 9 voldon allbi.

6 6 d log +. log + 0 log. log + 0 Stl 5 log p p -p + 0 (p )(p ) 0 p p 5 log( ) 5 log( ) 5 (voldot) 5 (voldot) 5. 7 log(7) want log(7) 7 6. Ggvn: Stl +. 8 p p p 8 p p 8 0 ( p )( p ) 0 p p (voldot nit) (voldot) Stl p p p p p p p 8 0 (p )(p + ) 0 p p - - (voldot nit) log() Stl p 5 p 6 p 6p 5 p 6p+ 5 0 ( p 5)( p ) 0 p p 5 p 5 log(5) 0 voldon c Stl p p p 0 (p )(p + ) 0 p p - - (voldot nit) log() voldot d Stl p ( 8)( 6) p + p p + p p+ p p p -8 (kan nit) 6 log(6) voldot log(0) + log(0) +. log(0), log log ,8

7 7 c Stl p p p 6 0 D..(-6) p p ( kan nit) log( + 7),8 d Stl p p+ p p+ 0 p p p ,9 5 log -,9 log log(60) Stl 5 p 5 5 p+ p p+ p 0 p + p 0 0 ( p )( p+ 5) p p (kan nit) 5 log() voldot. c. d Stl p 5 p p 8p ( p 5)( p ) 0 p 5 p p 5 log(5) (voldon) Stl p 8 p 8 + p + p p p D 7 <0 gn p-oplossingn p gn -oplossingn. 0. Ggvn: f() + T (,0) + f() V,8 as y 8. y. f log(8 )

8 8 V y as, 8 y log y log(8 ) y log(8 ) log + log(8) log + T (0,) y y log log +. T (5,0) 5 y y En vrmnigvuldiging t.o.v. d -as mt factor gft dus htzlfd bld. + V as, y y. Nu gldt: y.. En translati T(-,0) gft dus htzlfd bld. c. d. V y as, y log y log Nu gldt: y log log + log() log + 5 i.p.v. Vy-as,/ kun j ook n translati T(0, 5) nmn. T (0, ) y log y log + Nu gldt: y log + log + log ( ) log + log log ( ) I.p.v. d translati T(0, ) kunnn w ook V y-as,0,5 nmn.. Ggvn f log T (,0) y log g log( ) Zi d figuur. c. Als r zo n vrmnigvuldiging is dan is ht d vrm. t.o.v. d y-as mt factor want dan gaat (,0) naar (,0) Ht punt (,) gaat zo t zin naar (5,) n dat is dus gn vrm. mt factor. En vrtical translati is uitgslotn want d puntn mt -waardn tussn 0 n hbbn gn bld di afgbld wordn op d grafik van g. y f g

9 9 d. V y as, log log( ) g h q n p -0,75 Nu gaan w h andrs schrijvn h log( ) log ( 0, 75) log() + log( 0, 75 + log( 0, 75). Ggvn c. f ; g. V, as. f n h g V -as, g.. T (,0) f g h V y as, D translati (,0) f h V y-as,-0,5 d. Erst d wgwrkn n dan volgns ondrdl c afbldn.. V, V as y as, g. y h zi ook ondrdl c. T (,).. g y + y a 8 n b 5. f n g 8 6. f n g snijdn mt d lijn A(, - ) n B(, 8 ) A(, ) n B(, 6) AB 6 0,5 5,5 6 5 log 6 S Links van ht snijpunt S kan d afstand nooit mr dan 8 zijn. Alln rchts van S wordt d afstand stds grotr. c. Dit kan als 0 < a < 8 is. 7. f n g

10 0 Snijpunt ,5 log(,5) y A,5 log(,5); 0,5 Ht snijpunt A is W gaan rst n plot makn van bid grafikn W zin dan n H.A. y - bij f() n n H.A. y bij g() Ht lijnstuk mt lngt 6 mot dus rchts van ht snijpunt A zijn. f(p) g(p) p p 9 p p p p p 8. Ggvn f log( ) n g log( + 5) Voor D f mot gldn : > 0 - > - < D f <, > Voor D g gldt : + 5 > 0 > -5 D g < -5, > Nu f() g() Erst wr n plot van f n g. Nu ht snijpunt. log( ) log( + 5) In d figuur zin w dat f ondr g ligt rchts van ht snijpunt. Dit is ht gval tot d V.A. / D oplossing is : - < < / c. Nu hbbn w moglijkhdn:. f(p) g(p) voor p - of. g(p) f (p) voor p -. log( p) log( p+ 5) log( p) log( p+ 5) + log(9) log( p) log(9 p+ 5) p 9p + 5 -p p - voldot. log( p+ 5) log( p) log( p+ 5) log( p) + log(9) log( p + 5) log(9 7 p) p p 8p p 7 voldot 9. Ggvn d functis + f( ) n g. +

11 Snijpunt Stl p. p. + p + p 9p p 0 p p 0 p D p p p p 6 6,5 ) log() dan y 9.,5 ) Als dan krijgn w gn oplossing. Erst wr d grafikn. Zi d figuur. W krijgn wr moglijkhdn f(p) g(p) of g(p) f(p) p+ p Vor in : y. + n y Mt intrsct vindn w p,085 of snijpunt (,5 log();,5 ). p p Vor in y. + y Mt intrsct vindn w p -0,7 n B 0. f log( ) n g log Er gldt vanuit ht ggvn: A + 6 B n A p B p + 6 f(p) g(p + 6) want y q is horizontaal n dan zijn d y-waardn htzlfd. log( p) log( p+ 6) p p+ 6 p 6 p c. Omdat in punt A gldt dat f(p) q. q f() log(8). f log n g + log( + ) : lijn y q ligt bovn ht snijpunt n stl g(r ) q f(r + 8 ) q 9 + log( r+ ) log(( r+ )) log + log( r+ ) log( r+ ) ( ) ( ) log r+ log r+ r+ r+ r+ 8r+ 9 7r 7 r voldot

12 q + log( + ) + log() : : lijn y q ligt ondr ht snijpunt n stl f(r ) q g(r + 8 ) q log( r) + log( r+ 8 + ) log( r) log + log( r+ 8) log( r) log ( r+ 8) 5 5 r r+ 6r 8r+ 5 56r 5 r voldot log log q Total oplossing : q of 5 log 8. Aangzin d afstand van d vrtical asymptotn is kan r dus links van ht snijpunt gn horizontaal lijnstukj zijn mt lngt. slchts één waard van q. Dirct volgt uit ondrdl a dat gldt : 0 < a <.. Ggvn f( ) n g 8 Erst wr d grafikn bkijkn. Zi d figuur. W zin dat r moglijkhdn zijn: ) Stl A (p, f(p)) B( p+, g(p+)) f p p p p p p Vrdr gldt dat f(p) q q p p+ p p g( p+ ) ) Nu A (p, g(p)) dan B(p +, g(p+)) p p+ p p p p g( p) f( p+ ) p q. Ggvn : f() log Snijpunt: ( ) n g log( + ) log( ) log( + ) log( ) log( + ) log log( + ) log() log() log() log() log( ) log( + ) log( ) log( + ) log( ).log( + ).log() log(). log( ) log( + ) Nu bid functis in figuur plottn (schtsn) f hft d V.A. - n n g hft d V.A. -. Nu mot f ondr g liggn aflzn gft : < > Wr tw moglijkhdn: ) Als f bovn g ligt dan

13 log( p ) log p log( p+ ) log( p+ ) log( p ). log( p+ ) log() log( p ) log( p+ ) log( p ) log( p+ ) + log() log( p ) log(( p+ ) ) p p +p + 8 p +p+9 0 D p p p 6 7 (voldot nit) p (voldot) ) Als g bovn f ligt log( p ) log( + ) log log( + ). log( + ) log( ) log() p ( p ) p p p log( p+ ) log( p ) log( p+ ) log( p ) + log() log( p+ ) log( p ) p + 6p + 9 p -p + 6p + 0 D 6.(-) p p p + 5 (voldot) p 5 (voldot) c. Nu f n g snijdn mt d horizontal lijn y q. ) Als ht links punt A op f ligt dan : A (p, f(p)) B( p+, g(p+)) log( p ) Nu gldt : f( p) g( p+ ) log( p ) log( p+ ) log( p+ ) log() log( p ) log( p+ ) log( p ) log( p+ ) p p + 8 p p -7 p voldot q f(p)g((p+) f g log + log log(5) log(8) log(5) )Als ht links punt A op g ligt dan : A (p, g(p)) B( p+, f(p+)) log(( p + ) ) g( p) f( p+ ) log( p+ ) log(( p+ ) ) log( p+ ) log() log(( p + ) ) log( p+ ) log( p+ ) log(( p + ) ) p + 6p + 9 p + p + p -9 p -,5 voldot. q g(p) g(-,5) log(,5 + ) log log() log() log() 5. Ggvn : f () n g() - B p A(0, q) ; B(p, q). Uit AB : BC : volgt dat AB : AC : C p C(p, q)

14 p p- q p p p p,5 c. q,5. 6. Ggvn : f() 6. - Als AB BC n B p C p f(p) f(p) p ( p) p p p 6 p. 6.( p). 6 p. p. 6. ( p ) 0 q. - p 7. Ggvn f log n g log( ) Stl B p C p Nu gldt: f(p) g(p) log( p) log(p ) p p -p - p,5 q f(,5) log(,5) Uit d tkning zin w dat F bovn E ligt. Vrdr is EF DE f(r).g(r ) log( r). log( r ) log( r) log( r ) r r 6r+ 9 r 7r D r r r,697 ( vrvalt) r 5,0 y q y () () A B C O D F E r 8. Ggvn f 8. Zi figuur. Stl B p n AB : BC : C p n r gldt: f(p) f(p) p 8 p. 8.( p). p p p n p 0 p p.. -p -p -p p p p 0,5 q. 9. Ggvn f( ) n g 0 Zi d figuur. Opmrking. Om bid grafikn t snijdn mot q tussn d 0 n d 0 liggn. Dat komt door d horizontal asymptotn

15 5 y 0 n y 0. Stl B p dan C p A(0, q) n B(p, f(p)) n C(p, g(p)) p p 0 p p 0 0 p p Stl p r 9 r + r r + r D r r r 5 r 6 p -5 (vrvalt) p 6 p log(6) q 6 Uit d figuur zin w nu dat d lijn r rcht van ht snijpunt van f n g ligt. D(r, 0) ; E(r, r ) n F(r, 0 r- ) mt r 0 r r r r r r r r r log y c c 0,69 c. Nu y Ht blijkt y : y constant is, waarbij d constant ongvr glijk is aan,0986 Ook nu gldt : c y (0) y (0) d afglid van y voor h h h.. ( h Δ y f + h f ). Δ h h h h h h f ' lim. h 0 h h h h h 0 Uit a: f ' lim..lim f '(0).lim lim h 0 h h 0 h h 0 h h 0 h c. f ' f '(0).

16 6. Zi figuur. Dln door 0 kan nit. c y (0,0),708 y (0,00),769 y (0,000),78 y (0,0000),78 d. Voor a,78 gldt : f() a f () a.. - c d f.. + g h..( + ) + + i..( + ) + j. ( + ) ( + )( + ) k. ( + ) ( + )( + ) l c ( ) ( + ) ( + ) ( kan nit) -

17 7.. ( ) (kan nit).( ) 0 0 c ( ) 0 0 (kan nit) - d f c ( + ) 0 0 (kan nit) d ,5 + 0,5 -,5. + ( ) + ( ) 0 Stl p p + p 0 (p + )(p - ) 0 p - p - gn oplossing 0 f. 6 + ( ).( ) + 0 Stl p p p + 0 (p )(p ) 0 p f. f '. +. ( + )..( + ) ( + ) ( + ) ( + ) g g' 8. f() + f () f(). + + f ' c. f(). + f (). +. ( + ). d... ( ). f f ' ( ) ( ).( ).. ( ). ( ) ( ) ( ) ( ). f f '

18 8 f. f() ( ). f (). + ( ) ( ) ,78 -,5 c. 0,086 d. ( + ) 0,66. 9,85 f. -6,9 50. f() -. y f () -.. (- ). Er gldt : f () 0 (- ). 0 - Nu d schts Er is sprak van n maimum. O f Maimum f(-). - Stl d vrglijking door O is : y a dan is : f (0) (-- 0). 0 - a f (0) - k : y - is d gvraagd vrglijking. 5. Ggvn d functi f door : f() ( ). Nulpuntn van f ( kan nit) f (). + ( ). ( + ). f () (kan nit ) ( + )( ) 0 - Nu d schts van f 6 min.. f() - n m f(-) 6 - y O f c. Als - dan gaat f() stds strkr naar 0 (Zi d tabl van GR) y 0 is H.A. d. f() p hft tw oplossingn als d lijn y p

19 9 5. vanaf d -as tot aan ht minimum ligt of d lijn y p ligt prcis op ht maimum 6 p -. < p 0 f( ) + Erst d raaklijn in P brknn..( + ).. f ' ( + ) + ( + ) ( + ) Stl y a + b dan a f () ( + ) k: y. + b raakpunt P(, f()) (, ( + ) + ( + ) k : y ( + ). + b b. + ( + ) + - ( + ) Nu motn w k snijdn mt d lijn y ( + ) ( + ). - ( + ) + ) (,0) Q(, Q f y ) Nu P invulln in k + (+) +- (+) (+) (+) (+). +...(+). + n P (,0) ( + ) Opp. (P P Q ). PQ ' '. PP' n dit was t bwijzn. + + y O P P' Q Q' k (+) f f '. a a. a b a b a+ b f f '.(+ ) (+ ). + g + g ' c. d.. h' (+ ). h j. j' ( + 6 )

20 0. f...( ).... ( ). k k'..( + ).. + l l ' 55. Ggvn : f n g + ' f '. f ( ) y + b Ht raakpunt is,. + b b k : y + Nu d raaklijn l bij d functi g. g ().( ) g(-) - - Vrglijking : y + b Ht raakpunt is (-, g(-)) (-, - ) invulln (-) + b b 0 D vrglijking is : y Nu k n l snijdn +. + h f + g Voor ht brik hbbn w d afglid van h nodig h' +.( ) Etrm waard h () Zi nu d schts Er is dus n minimum bij -. h(-) h( ) + Ht brik van d functi h is : [, > 56. f 0,5 + 0,5 + f '.(0,5 ) f () 0 0,5 0 ( n -macht is nooit glijk aan 0) Zi nu n schts van d grafik van f. W zin dat r n absoluut minimum bij y f O

21 mt f() Ht brik van f is dus :, P(p, 0) dan Q(p, f(p)) n R(0, f(p)) 0,5 p p+ D opprvlakt van virhok OPQR is : O (p) OP. PQ p. maimum diffrntiërn 0,5 p p+ 0,5 p p+ 0,5 p p+ O (p). + p..(0,5 p ) (0,5 p p+ ) O (p) 0 0,5p p + 0 D.0,5. O p + of p p + of p - Nu d schts bkijkn van d opprvlaktfuncti O(p) O() D maimal opprvlakt krijgn w bij p - O -^0,5 +^0,5 p 57. f a. a f ( )...( ). f () 0 0 Nu d schts Min f () 0 n m f (0) f '.( ). + ( )....( ).( + ) f a '.( a). + ( a)...( a)..( + ( a)).( a)..( + a) f a () 0 a 0 + a 0 a a Aangzin A < B gldt dus : A a B B a ( a ) ( a a). 0 c. Voor y A gldt : y B f a ( A ) f a (a ) y 0 B a D gvraagd lijn is dus d lijn y 0. ( a a). d. Voor y A gldt : y A f a ( A ) f a (a -) y A a kromm is dus d vrglijking y ( a ) ( a ) D gvraagd

22 . Snijpunt C mt d y-as 0 r.c. k f a (0).(-a). 0 +.(-a). 0 a a Nu mot gldn r.c. < 0 a a < 0 : a a 0 a(a ) 0 a 0 y a : Schts : Nu aflzn r.c. k < 0 voor 0 < a < y a^-a 58. log(). log() O a log(). log(). log() y'. log(). log() y 59. ln() ln( ) ln(,5 ),5 c. ln ) ln( - ) - d. ln() 0 (..ln(. ).ln( ). f. ln ( ) (ln( )) 9 g. ln ( ) (ln( )) 8 h. ln(7) +.ln(7) 7 + ln(9) i. 0,5.ln(5) j. ln(0). ln() 0. 0 ln( 5 ) ln() ln().ln() c ,5 0 0,5 0,5 ln().ln() d , ln(0,).ln(0,) 6. ln() + ln() ln( ) + ln() ln(9) + ln() ln(6)

23 0 ln(0) ln() ln(0) ln( ) ln(0) ln(8) ln ln(,5) c. + ln() ln( ) + ln() ln(. ) d. + ln(0) ln + ln(0) ln(0.). +.ln(6) ln + ln(6 ) ln + ln(6) ln 6. ln 6 8 f. + ln() ln( ) + ln() ln(. ) 6. ln - - klopt.ln() ln() 0,5 0,5 klopt c. ln(). klopt d. ln(- + ) klopt. ln () 0,5-0,5 ln() ln() - voldon f. ln() + ln(5) ln() ln() + ln(5) ln() ln(5 ) 5 klopt 6. + ln(5) 0 5 ln(5) + ln(5) -0,0 b. 00 ln(00) ln(00) ln(00) -,6,6 6..ln ln 0 ln.( ) 0 ln 0 0 voldon ln ln 0 ln().(ln() ) 0 ln() 0 ln() 0 ln() voldon. c..ln( + ).ln( + ).ln( + ) -.ln( + ) 0 ln( + ).( ) 0 ln( + ) klopt klopt - klopt nit.

24 d. ln ().ln() 0 Stl ln() p p p 0 (p )(p + ) 0 p p - ln() ln() - -. ln( + ) ln( ) ln() ln( + ) ln( ) + ln() ln( + ) ln(.( )) klopt. f..ln() ln() +ln( + ) ln( ) ln( + 8) ( )( + ) 0 voldot - voldot nit. 65. f( ) f '.ln(). g ( ). g'. + ( )..ln(). + ( ).ln() ( ) ( + ) ( ) c. +.ln()..ln(). h h'.ln()...ln() ( ) ( ) 66. ) f( f '.ln()..ln() ln().(. ) f () 0 ln().(. ) f(-) - - Nu d schts van f : Er is n absoluut minimum bij - Bf [-, > y f - O f() a hft tw oplossingn als d lijn door O n positiv r.c. hft totdat d lijn y a d grafik gaat rakn. Dit is ht gval als r.c. a f (0) ln().( ) ln() Draait d lijn y a wr vrdr dan hbbn w wr snijpuntn. Tw snijpuntn voor 0 < a < ln() a > ln() 67. f + y Nodig voor ht brik zijn d trm waard(n) van d functi diffrntiërn. f -0,5

25 5 f '.ln() +.ln().( ) f () 0 ln(). ( - -- ) ,5 Schts is ook nodig om t zin wat r gburt mt d grafik. Nu is : min f(-0,5) -,5 + -,5. -,5-0,5 B f, r.c. lijn k is : ln() f '.ln() +.ln().( ) ln() stl p p p p -p p + p - 0 D p p p - p 0,5 - (kan nit) 0,5 - - Vrdr gldt : f(-) raakpunt (-, ) c. Nu gldt dus : f () -.ln() +.ln().( ) Nu brknn mt d GR Vor in : y.ln() +.ln().( ) n y - mt d opti intrsct krijgn w : -, n y,86 Nu dit punt invulln in d raaklijn : y - + b,86 -. (-,) + b b -7, W wtn : ln Nu links n rchts diffrntiërn ln dln. Links is gbruik gmaakt van d kttingrgl. d dln dln Ui t a volgt: ln d d c. 69. ln g log.ln Nu diffrntiërn ln() ln() g (). ln().ln() y ln(6 ) f '.6 6 f ln f ' g ln( ) g' h log h'.ln()

26 y ln( ) y' f ln( ) f ' g ln g' h ln h' 7...( ln( ) ln ln ln f f ' + + c. f.ln f '.ln +. ln + ln( ) f log( ) f '.ln( ) f '.. ln() ln() ln f ' ( ).ln() ln..ln( ) ln d. f f '. f.ln( ) f '.ln( ) +.. ln( ) + f. ( ) ln f log..ln f '.. ln() ln() ln() ln() 7. + f ln( + ) f '.(+ ) + + g ln( ).ln() g' ln() c. ln( + ) f log( + ).ln( + ) f ' ln() ln() ln().ln()

27 7 d. ln( ) f log( ).ln( ) f '..8 ln(0) ln(0) ln(0).ln(0) 7. f.ln. ln f '.ln +..ln. ln +.ln h. log( ) h'. log( ) +... log( ) +.ln() ln().log( ) f log ( ) log( ) f '.(log( ))..ln(0).ln(0) apart : d afglid van log() : ln( ) y log( ).ln( ) y'.. ln(0) ln(0) ln(0).ln(0) c. 6.ln( f ln ( + ) ln( + ) f '.ln( + )..8 d ) 7. n ( ) ln() n n.ln( ) nln dy d nln nln n. n.. d d dy ln n n c. W krijgn : n. n. n. n n. n d W hbbn gn bprking voor n gbruikt D rgl gldt voor all n ln f ln 0 0.ln ' f snijpunt -as y 0 ln() 0 A(, 0) f () Stl k: y a + b r gldt a 0 y 0 + b n k door A(, 0) b b -0 vrglijking van k is : y 0 0

28 8 Etrm waard f () 0 0.ln() 0 ln() voldot Nu d schts Ht is n maimum m 0 f() y f c. A 0 A(0, q ), stl B p B(p, q) n O C( p, q) 0.ln( p) 0 ln( p) 0.ln( p) 5ln( p) 0.ln( p) 5ln( p) ln( p) ln( p) p p p p ln(p ) ln(p) p p p(p ) 0 p 0 (voldot nit) p q 5.ln() 76. f ln.ln. ln Raaklijn in ( ln ) A ( ln ) r.c. f ) ln ( ) f ' Stl k is : y - + b Voor punt A gldt : f( ) ln '( ln. b b + D gvraagd vrglijking is : y + Nu punt A invulln ln r.c. -6 f ' 6 6 ln 6.ln ( ) Stl ln() p ln 6p p - 0 D -.6.(-) 5 p of p p - p ln ln voldon. Nu krijgn w : n ( ) (, ) f raakpunt is, ln (,) f raakpunt is, ln 77. Ggvn: f( ) ln( + + 0)

29 f () 0 gft - f '.(+ ) Nu d schts: W zin hir n absoluut min van f(-) ln(8) Als hl goot wordt dan nmt f ook stds to. Er is gn bgrnzing. B f [ln(8), > Raaklijnn mt r.c 0, f () 0, ( 6) 0 0 raakpuntn (0, ln(0)) n (, ln(0)) + c. Dan mot gldn f () Dit kan nit gn -oplossingn. Raaklijnn mt r.c. zijn hir nit moglijk. 78. f ln n g ln Snijpunt Hirvan ln ln voldot - nit!! snijpunt,ln( ) Snijpunt mt d -as y 0 snijpunt A(, 0) Vrdr gldt: g ln ln() ln g' g'() Stl y + b door (,0) b b vrglijking is : y - + c. Bkijk vn d schts: : Lijn p is links van ht snijpunt g( p) f( p) ln ln p ln() ln( p) ln( p) ln() ln( p) + ln( p) ln() ln ( ) ln( p ) p p p - kan nit of p voldot. y g O f

30 0 : Lijn p is rchts van ht snijpunt f( p) g( p) ln( p) ln p ln( p) ln() ln( p) ln( p) + ln( p) + ln() ln( p ) ln + ln() p. p. Totaal : p of p p. voldot of p.. voldot nit. d. B is ht snijpunt mt f n C mt g. M is h t middn van f(p) n g(p) Voor ht middn ln( p) + ln ln p. p p f p + g p ln(8) gldt M p n y M d y-coördinaat van M is dus onafhanklijk van p.

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 5 Exponentiële functies

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 5 Exponentiële functies D Wagnings Mthod 5&6 VWO wiskund B Uitgbridr antwoordn Hoofdstuk 5 Eponntiël functis Paragraaf Eponntiël functis a. J mag wl van n artikl van 00 uro uitgaan. Bij d n krijg j: 00 0 0 99 Bij d andr: 00 90

Nadere informatie

13 Afgeleide en tweede afgeleide

13 Afgeleide en tweede afgeleide Afglid n twd afglid a f ( + gft f ( + + + ( + f ( gft ( - - + ƒ ma is f ( B f, ] b f ( + + ( + ( + + f ( gft ( + + + f ( dus ht buigunt is, c f ( Zi d figuur + a hft één olossing voor a a a ƒ d b( + hft

Nadere informatie

Extra oefening hoofdstuk 1

Extra oefening hoofdstuk 1 Etra ofning hoofdstuk = ( ) = = v v v dr 7 7 7 v a = + v als v 7 v v dus als = 7 7 7 7 dv waaruit volgt dat v = 7 km/uur. v = 7 gft R = 7, 7 mg/min. a f ' = = ' = + = ( + ) ' = = ( ) = f f d f ' ln ln

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Corrctivoorschrift VWO 008 tijdvak wiskund B Ht corrctivoorschrift bstaat uit: Rgls voor d boordling Algmn rgls 3 Vakspcifik rgls 4 Boordlingsmodl 5 Inzndn scors Rgls voor d boordling Ht wrk van d kandidatn

Nadere informatie

Hoofdstuk 9: Exponentiële en logaritmische functies. 9.1 Logaritmische en exponentiële vergelijkingen. Opgave 1: a. y2 b. y2 c. y1. Opgave 2: c.

Hoofdstuk 9: Exponentiële en logaritmische functies. 9.1 Logaritmische en exponentiële vergelijkingen. Opgave 1: a. y2 b. y2 c. y1. Opgave 2: c. Hoodstk 9: Eonntiël n ritmisch nctis 9. Logritmisch n onntiël vrglijkingn Ogv :. y n y b. y n y c. y n y Ogv :. 6 6 b. 6 c. 9 d. 8 8 7. 6 6 6 6. Ogv :. 6 8 b. 8 8 c. d. 9. 6 8 6 7 7. Ogv :. 6 9 b. c. 7

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: integralen en afgeleiden. 16 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: integralen en afgeleiden. 16 september dr. Brenda Casteleyn Voorbriding tolatingsamn arts/tandarts Wiskund: intgraln n afglidn 16 sptmbr 017 dr. Brnda Castlyn Mt dank aan: Athnum van Vurn Ln Goyns (http://usrs.tlnt.b/tolating) 1. Inliding Dit ofningnovrzicht is

Nadere informatie

Eindexamen wiskunde B1 vwo 2008-I

Eindexamen wiskunde B1 vwo 2008-I Eindamn wiskund B vwo 008-I Boordlingsmodl Vraag Antwoord Scors Landing maimumscor 4 y' 4,8 0 3 + 4,8 0 5 y '(0) 0 (dus in (0, 8) hft ht vligtuig n horizontal bwgingsrichting) y '(00) 0,48+ 0,48 0 (dus

Nadere informatie

Deelexamen Calculus 1 21/10

Deelexamen Calculus 1 21/10 Dlxamn Calculus 1 21/10 1. Ggvn d functi y(x) waarvoor y y = x+1 (a) Brkn d afglid y voor n punt (x, y) dat voldot aan ht functivoorschrift. (b) Gbruik d gvondn uitdrukking om d vrglijking van d raaklijn

Nadere informatie

4.3. Toepassingen van logaritmische en exponentiële functies

4.3. Toepassingen van logaritmische en exponentiële functies 4.3. Topassingn van logaritmisch n ponntiël functis 4.3.. Limitn van logaritmisch n ponntiël functis Voorbld : a b a b H lna a lna lnb b lnb b log a Voorbld : Dit is n niuw onbpaald vorm! W wtn wl dat

Nadere informatie

Machten. Inhoud Machten

Machten. Inhoud Machten Mchtn Inhoud Mchtn Mchtn n mchtsvrhffn Evn n onvn mchtn Vrmnigvuldign vn mchtn Dln vn mchtn Mcht vn n mcht Mchtn vn productn 7 Mchtn vn rukn Sustiturn vrvngn vn n lttr door n gtl Wortls n mchtn mt grokn

Nadere informatie

Deel 1 Vijfde, herziene druk

Deel 1 Vijfde, herziene druk drs. J.H. Blanksoor drs. C. d Jood ir. A. Sluijtr Togast Wiskund voor ht hogr brosondrwijs Dl Vijfd, hrzin druk Uitwrking hrhalingsogavn hoofdstuk 6 ThimMulnhoff, Amrsfoort, Togast Wiskund, dl Uitwrking

Nadere informatie

Voorbeeld ISSO-publicatie 53

Voorbeeld ISSO-publicatie 53 Voorbld ISSO-publicati 53 6. VOORBEELD Ht (kantoorgbouw is wrggvn in figuur 6.1. Fig. 6.1 Gvlaanzicht n plattgrond van ht kantoorgbouw. Ht (kantoorgbouw kan wordn bstmpld als n middlgroot modulnkantoor.

Nadere informatie

H. 9 Het getal e / Logaritmen

H. 9 Het getal e / Logaritmen H. 9 Ht tal / Loaritmn 9.1 Ht tal Ht tal is n spciaal tal in d wiskund, nt zoals ht tal π. Ht is als volt dfinird: 1 1 1 1 1 1 = + + + + + + 1 1 1 14 145 Als w dit uitrknn, dan wordt d waard van ht tal

Nadere informatie

Voorbeelden ISSO-publicatie 57

Voorbeelden ISSO-publicatie 57 Voorbldn ISSO-publcat 7. VOORBEELDEN Voorbld Ht btrft n nuw, vrjstaand, doosvormg hal mt als hoofdafmtngn 80 0 7, m. D dur hft n afmtng van 4 mtr n n U-waard van W/(m K. D wandn hbbn n U-waard van 0, W/(m

Nadere informatie

Kennismaking met Photoshop

Kennismaking met Photoshop Hoofdstuk Knnismaking mt Photoshop Hoofdstuk, ht bgin van onz boind tocht doorhn Photoshop. Waarschijnlijk was j tot nu to gwoon om mt programma s van Microsoft t wrkn. Z hbbn allmaal n zlfd look n fl.

Nadere informatie

Hoofdstuk 6 Machtsfuncties. Kern 1 Even en oneven exponenten. 4VWO B, uitwerkingen Hoofdstuk 6, Machtsfuncties1

Hoofdstuk 6 Machtsfuncties. Kern 1 Even en oneven exponenten. 4VWO B, uitwerkingen Hoofdstuk 6, Machtsfuncties1 VWO B, uitwrkingn Hoostuk, Mahtsuntis Hoostuk Mahtsuntis Krn Evn n onvn ponntn a Ht gwiht van kuus staat uit ht gwiht van rin. Er zijn rin. Als ri r m lang is, an wgt ir ri 0, r gram. Ht total gwiht wort

Nadere informatie

Sports Center. 22 juni 2011

Sports Center. 22 juni 2011 Titl procs: Klachtnblid Tilburg Univrsity Procsignaar: Ing Schprs Paraaf kwalititsfunctionaris Vrsi nr.: 2 Bsprokn mt: M.T. d.d. 13 april 2011 Vastgstld in M.T. d.d. 22 juni 2011 Pndragon d.d. 10 aug.

Nadere informatie

Hoofdstuk 1 - Functies differentiëren

Hoofdstuk 1 - Functies differentiëren V-a V-a Hoostuk - Funtis irntiërn lazij Na sonn h in m 000 900 800 A 0 0 t in s 80 97 m/s t 0 : h 00 000 00 7 m/s t 0 0 0 t 80 : h 0 00 00, m/s t 80 00 80 O, 00 0, 7 0, 00 Voor n voor is hlling 0, 7. (

Nadere informatie

1.1 Doel. levertijd. 1 Voorraad 13. 2 Opslag van een hoeveelheid geneesmiddelen. Behalve voor het

1.1 Doel. levertijd. 1 Voorraad 13. 2 Opslag van een hoeveelheid geneesmiddelen. Behalve voor het Voorraad 1 Lrdoln Aan ht ind van dit hoofdstuk wt j: z wat ht dol is van ht aanhoudn van n voorraad; z wat voorraadvorming btknt; z wat d buffrfuncti van n voorraad is; z dat ht houdn van n gnsmiddlnvoorraad

Nadere informatie

Buurtparkjes en speelplekken

Buurtparkjes en speelplekken Oktobr 2014 PAGINA 1 In dit nummr Buurtparkjs n splplkkn Niuwbouw Vinknstraat n Parkitstraat bijna klaar! Start wrkzaamhdn opnbar ruimt. Aanlg niuw rioolstlsl Schoon grondwatr Crossbaan, ht succs Binnnkort

Nadere informatie

Hoofdstuk 1 - Functies differentiëren

Hoofdstuk 1 - Functies differentiëren Hoostuk - Funtis irntiërn lazij V-a Na sonn h in m 000 900 A 800 0 0 t in s 80 97 m/s t 0 : h 00 000 00 7 m/s t 0 0 0 t 80 : h 0 00 00, m/s t 80 00 80 V-a O, 00 0, 7 0, 00 Voor n voor is hlling 0, 7. (

Nadere informatie

Nieuwsbrief Leerlingen. In deze nieuwsbrief. Schooljaar 2014-2015 Januari nr. 5

Nieuwsbrief Leerlingen. In deze nieuwsbrief. Schooljaar 2014-2015 Januari nr. 5 Niuwsbrif Lrlingn Vrbouwingsplannn Achtr d schrmn wordt hard gwrkt aan d vrbouwingsplannn voor d school. Inmiddls is r n Voorlopig Ontwrp vastgstld n is d omgvingsvrgunnig aangvraagd bij d gmnt. Indin

Nadere informatie

Verdelingen Een beschrijving van standaard kansfuncties

Verdelingen Een beschrijving van standaard kansfuncties Vrdlingn En bschrijving van standaard kansfunctis Ministri van Vrkr n Watrstaat Dirctoraat-Gnraal Rijkswatrstaat ouwdinst Rijkswatrstaat Rapport KOWR-5- Vrdlingn En bschrijving van standaard kansfunctis

Nadere informatie

Verdeling van personen volgens rijbewijsbezit

Verdeling van personen volgens rijbewijsbezit 2 Rijbwijsbzit Tabl. Vrdling van prsonn volgns rijbwijsbzit Cumulativ Cumulativ RYBEWYS Frquncy Prcnt Frquncy Prcnt ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ja 50.3 67.7 50.3 67.7 nn 243.739

Nadere informatie

Audio-, visuele- en computerapparatuur Lijfsieraden Bijzondere bezittingen

Audio-, visuele- en computerapparatuur Lijfsieraden Bijzondere bezittingen Inbodlwaardmtr www.raal.nl Audio-, visul- n computrapparatuur Hirondr valln: all bld-, gluids-, ontvang- n zndapparatuur; all soortn computrapparatuur (incl. splcomputrs); all bij bovnstaand apparatuur

Nadere informatie

De middens van de intervallen zijn 0,2; 0,6; 1; 1,4 en 1,8. O ( V ) f (0,2) 0,4 + f (0,6) 0,4 + f (1) 0,4 + f (1,4) 0,4 + f (1,8) 0,4

De middens van de intervallen zijn 0,2; 0,6; 1; 1,4 en 1,8. O ( V ) f (0,2) 0,4 + f (0,6) 0,4 + f (1) 0,4 + f (1,4) 0,4 + f (1,8) 0,4 G&R vwo B dl Intglkning C von Schwtznbg /6 D twd bnding is d bst Omdt d gik vn dlnd is, is ht minimum vn o lk intvl d unctiwd in d chtgns vn ht intvl En zo is ht mimum vn o lk intvl d unctiwd in d linkgns

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 6 De integraal

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 6 De integraal D Wgnings Mthod & VWO wiskund B Uitgrid ntwoordn Hoofdstuk D intgrl Prgrf Opprvlkt ondr n grfik. km. ls t< : w(t t ls t< : in uur km glopn n t uur km/u, dus (t glopn, dus w(t t ls t : w(t (t t c., n. t

Nadere informatie

Hoofdstuk 12A - Breuken en functies

Hoofdstuk 12A - Breuken en functies Hoostuk A - Brukn n untis Hoostuk A - Brukn n untis Voorknnis V-a g 9 h 9 9 i 0 j 9 0 0 V-a 0 nt is 0,0. J trkt ht aantal likjs kr 0,0 van uro a. W(0) 0,0 0 Z ht nog uro op klantnkaart staan. 0,0 0,0 :

Nadere informatie

Gelijknamige breuken kun je eenvoudig bij elkaar optellen of van elkaar aftrekken:

Gelijknamige breuken kun je eenvoudig bij elkaar optellen of van elkaar aftrekken: Brukn optlln n ftrkkn Vrknnn Opgv 1 Ton n Hns stlln smn n grot pizz. Ton t d hlft vn d pizz op, Hns t 3 dl vn d pizz. 8 Wlk dl vn d pizz tn z smn op? Wlk dl vn d pizz t Ton mr op dn Hns? nm: Imgs/R1003.jpg

Nadere informatie

Buurtvereniging De Hoef. Nieuwsbrief. December 2014

Buurtvereniging De Hoef. Nieuwsbrief. December 2014 Buurtvrniging D Hof Niuwsbrif 10 Dcmbr 014 F n g a d t s F n ij Inhoud Voorwoord Van d bstuurstafl Trugblik n vooruitblik activititn Niuwtjs n tips Intrnt n Facbook Inbraakprvnti En vilig n schoon bgin

Nadere informatie

Richtlijnen ontwerpen nieuwe balie

Richtlijnen ontwerpen nieuwe balie Richtlijnn ontwrpn niuw bali Dz chcklijst bvat d blangrijkst aspctn di gldn voor ht ontwrpn van n bali. 1. Bpaal wlk typ bali ht mst gschikt is. 2. Zorg voor n glijk ooghoogt tussn mdwrkr n klant. 3. Zorg

Nadere informatie

Rekenen met procenten

Rekenen met procenten W4 Rknn mt procntn Dolstllingn Na ht doorlopn van dz modul kan d studnt rknn mt procntn, zoals: d btw n d brutoprijs brknn bij n ggvn nttoprijs; bpaln hovl procnt n bdrag is van n andr bdrag; d procntul

Nadere informatie

herkennen herkennen fsdfdsfdssfdq

herkennen herkennen fsdfdsfdssfdq hrknnn hrknnn hrknnn fsdfdsfdssfdq : n t s p op h s k Wor h n k r h o? n t s p j 1 hrknnn rknnn DOELGROEP WAAR EN WANNEER? INHOUD DUUR All liding Op SB s, gwstavondn, Workshopwknd, nz. Dri ondrdln: pstn

Nadere informatie

Van Contrafeytsel* tot Selfie

Van Contrafeytsel* tot Selfie Van Contrafytsl* tot Slfi *portrt, bltnis. Rubns Privé toont d allrmooist n mst intim portrttn di Rubns ooit gmaakt hft. D wrkn dindn als hrinnring, nt als foto s vandaag n bijna 400 jaar latr zittn dz

Nadere informatie

Aanvoer van afval en grondstoffen. Op 10 januari zal het eerste afval voor BAVIRO worden aangevoerd. Dit gaat met containervrachtwagens

Aanvoer van afval en grondstoffen. Op 10 januari zal het eerste afval voor BAVIRO worden aangevoerd. Dit gaat met containervrachtwagens Nummr 7 Pagina 1 van 2 Dcmbr 2010 BAVIRO Niuwsbrif Nr. 7 SITA REnrgy, Potndrf 2, 4703 RK Roosndaal. 0165-534492 communicati@baviro.nl www.baviro.nl Gacht lzr, Via dz niuwsbrif informrn wij u ovr d voortgang

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 172 Vriping - Gin 1a ll puntn op milloolijn van liggn vn vr van punt als van punt. ll puntn i ihtr ij punt liggn, zulln us aan n kant van milloolijn liggn n all puntn i ihtr ij punt liggn, zulln aan anr

Nadere informatie

Uitwerkingen elektriciteitsleer HAVO4

Uitwerkingen elektriciteitsleer HAVO4 HVO4-Na itwrkingn ktricititsr HVO4. a. En ktrisch stroom is n vrpaatsing van (ngatif) gadn dtjs (ktronn). b. gsotn c. ovrschot (r zijn tv ngatif gadn dtjs (ktronn)) d. para. van pus naar min. f. D stroomstrkt

Nadere informatie

vavo 2016/17 (certificate

vavo 2016/17 (certificate vavo 2016/17 gmn l A t z g t Vo o r i js w r d n O n Volwassn r n diploma w jaa in één of t vo, havo of vwo a vmbo-tl /m aarvan of dln d n). (crtificat mick (20) zakt voor zijn havo n koos rvoor t gaan

Nadere informatie

RC-KRING. Vakoverschrijdend Practicum. 2 de Kandidatuur Burgerlijk Ingenieur. Prof. dr. Gaston Van Den Berge

RC-KRING. Vakoverschrijdend Practicum. 2 de Kandidatuur Burgerlijk Ingenieur. Prof. dr. Gaston Van Den Berge 2 d Kandidatuur Burgrlijk Ingniur Vakovrschrijdnd Practicum Prof. dr. Gaston Van Dn Brg -KRING Practicumopstlling nr. 4 dondrdag 03 maart 2005 Kon Vrdgm 152 Knny Van Huvrswijn 151 Wrktuigkund-Elktrotchnik

Nadere informatie

Integralen. onbepaalde integralen. oneigenlijke integralen. gemiddelde functiewaarde op een interval

Integralen. onbepaalde integralen. oneigenlijke integralen. gemiddelde functiewaarde op een interval Intgrln onld intgrln onignlijk intgrln gmiddld funtiwrd o n intrvl Onld intgrl En onld intgrl wordt ogshrvn ls: f ( d ) wrin f() n willkurig funti is. En r gldt: f ( d ) = F( ) + Wrij F() d rimitiv funti

Nadere informatie

ASSESSMENT. Assessment. Wat is een assessment? Belang voor deelnemers Belang voor de werkgever Vijf stappen Waarom kiezen voor HRD Group? Interesse?

ASSESSMENT. Assessment. Wat is een assessment? Belang voor deelnemers Belang voor de werkgever Vijf stappen Waarom kiezen voor HRD Group? Interesse? Assssmnt Assssmnt Wat is n assssmnt? Blang voor dlnmrs Blang voor d wrkgvr Vijf stappn Waarom kizn voor HRD Group? Intrss? Bnt u gïntrssrd in onz assssmnts? Nm dan grust contact mt ons op. T 030-6911138

Nadere informatie

Christmas time 2.0! Lesbrief

Christmas time 2.0! Lesbrief Lsbrif Christms tim 2.0! En updt vn ht succsvoll Tumult krstspl vn vorig jr. In smnwrking mt Musicbox is d muzikrond nu n krstmuzikquiz gwordn di j klssikl ls fsluiting vn ht spl dot: vl plzir n lvst hl

Nadere informatie

TENTAMEN. Thermodynamica en Statistische Fysica (TN )

TENTAMEN. Thermodynamica en Statistische Fysica (TN ) TENTAMEN Thrmodynamica n Statistisch Fysica (TN - 141002) 3 april 2007 09:00-12:30 Ht gbruik van ht diktaat is NIET togstaan. Zt op lk papir dat u inlvrt uw naam. Bgin idr opgav bovnaan n niuw pagina.

Nadere informatie

KALENDER VOOR ADVENT EN KERST

KALENDER VOOR ADVENT EN KERST KALENDER VOOR ADVENT EN KERST Modrs van Jzus Tamar Rachab Ruth Batsba Maria 27 NOVEMBER 1 JANUARI 2011 Stunpunt Liturgi Dputatn Krkmuzik n Dputatn Erdinst Kon. Wilhlminalaan 3-5 3818 HN Amrsfoort t. 033-4569892

Nadere informatie

Hoofdstuk 6 - Formules met breuken en machten

Hoofdstuk 6 - Formules met breuken en machten Morn wiskun 9 iti Havo A l Hoofstuk 6 - Formuls mt rukn n mahtn lazij 46 V-a 4 6 = 774, us 4 6 = 774 Dit laatst antwoor kun j ook shrijvn als 7, 74 = 7, 74 6, 7, 9 7 : 9 = 9, 644 4, 9 is n hl klin gtal,

Nadere informatie

Hoofdstuk 6 - Formules met breuken en machten

Hoofdstuk 6 - Formules met breuken en machten Morn wiskun 9 iti Havo A l Hoofstuk - Formuls mt rukn n mahtn lazij 4 V-a 4 774, us 4 774 Dit laatst antwoor kun j ook shrijvn als 7, 74 7, 74, 7, 9 7 : 9 4 9, 44 9 is n hl klin gtal, namlijk, mt nulln

Nadere informatie

Budgetplan Persoonsgebonden budget AWBZ Vergoedingsregeling persoonlijke zorg

Budgetplan Persoonsgebonden budget AWBZ Vergoedingsregeling persoonlijke zorg Budgtplan Prsoonsgbondn budgt AWBZ Vrgodingsrgling prsoonlijk zorg 1. Mijn prsoonlijk ggvns Achtrnaam aanvragr: Gboortdatum: BSN: - - 2. Mijn indicati Ik bn gïndicrd voor vrblijf. Mijn indicati is ZZP

Nadere informatie

Eneco EcoStroom en AardGas

Eneco EcoStroom en AardGas Enco EcoStroom n AardGas In dit documnt vindt u trug: En maandlijks kostnbrkning voor n gmiddld Ndrlands huishoudn mt n standaardvrbruik van 3.100 kwh n 1.400 m 3 Tarivn n voorwaardn btrffnd Enco EcoStroom

Nadere informatie

EXAMENOPGAVEN KADER. Ga naar www.examenbundel.nl Doe daar de quickscan voor wiskunde Hoe ver ben je al????

EXAMENOPGAVEN KADER. Ga naar www.examenbundel.nl Doe daar de quickscan voor wiskunde Hoe ver ben je al???? EXAMENOPGAVEN KADER Ga naar www.xamnbundl.nl Do daar d quickscan voor wiskund Ho vr bn j al???? BOSLOOP (KB 2005 1 tijdvak) En atltikvrniging hft n bosloop gorganisrd. Er zijn dri afstandn uitgzt: 2300

Nadere informatie

WAARIN SAMENWERKEN: Mr. J.M.A-H. Luns, k Excellentie,

WAARIN SAMENWERKEN: Mr. J.M.A-H. Luns, k Excellentie, R A A D VAN N E D E R L A N D S E W E R K G E V E R S V E R B O N D E N WAARIN SAMENWERKEN: VERBOND VAN NEDERLANDSCHE WERKGEVERS CENTRAAL SOCIAAL WERKGEVERS-VERBOND NEDERLANDS KATHOLIEK WERKGEVERS VERBOND

Nadere informatie

Eneco EcoStroom en AardGas

Eneco EcoStroom en AardGas Enco EcoStroom n AardGas In dit documnt vindt u trug: En maandlijks kostnbrkning voor n gmiddld Ndrlands huishoudn mt n standaardvrbruik van 3.350 kwh n 1.600 m 3 Tarivn n voorwaardn btrffnd Enco EcoStroom

Nadere informatie

Differentiaalvergelijkingen

Differentiaalvergelijkingen Diffrntiaalvrglijkingn Afdlingn MIWB & ENGINEERING A. F. Blomsma M. D. Poot Oplidingn SCHEEPSBOUWKUNDE WERKTUIGBOUWKUNDE Diffrnrntiaalvrglijkingn INHOUD:. Diffrntiaalrkning 3. Vraagstukkn Diffrntiaalrkning

Nadere informatie

Deeltentamen Meet en Regeltechniek 14 juni 1996

Deeltentamen Meet en Regeltechniek 14 juni 1996 Dltntamn Mt n Rglthnik 4 juni 996 R028 C:\Job\MC-word\Tntamn\Tnt9606.do Ggvn: Van n vrwarmingytm van n kamr zijn d volgnd ggvn bknd: t 'Tkamr K Q0dW Q0 Qin Quit Quit K2' Tkamr Qin K3' Trad ' Tkamr ³ 0

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a Statistik Ongvr 6 miljon guln at is ruim miljar guln. 0 kg marihuana in 99 is onwaarshijnlijk winig. Zkr vrglkn mt anr jarn. D juist waar is 9 0 7 9 6. In 99 is r voor ruim 07 miljon guln onrshpt. Dit

Nadere informatie

aas]6 recreatiepark» Aan het College van B. 8L W. van de gemeente Oosterhout, Postbus 10150, 4900 G B Oost erhout. .JBIIIIIII -osterhout ^» C Ù

aas]6 recreatiepark» Aan het College van B. 8L W. van de gemeente Oosterhout, Postbus 10150, 4900 G B Oost erhout. .JBIIIIIII -osterhout ^» C Ù -ostrhout.jbiiiiiii IN. 1207403 ^» C Ù 19 MRT2Ũ12 aas]6 rcratipark» Aan ht Collg van B. 8L W. van d gmnt Oostrhout, Postbus 10150, 4900 G B Oost rhout. Dorst, 15 maart 2012. Btrft: hffingsmaatstaf rioolhffing.

Nadere informatie

Calamiteitenprotocol instellingen zorg voor jeugd, de gemeenten in de provincie Utrecht en de gemeenten Weesp en Wijdemeren

Calamiteitenprotocol instellingen zorg voor jeugd, de gemeenten in de provincie Utrecht en de gemeenten Weesp en Wijdemeren Calamititnprotocol instllingn zorg voor jugd, d gmntn in d provinci Utrcht n d gmntn Wsp n Wijdmrn Inliding Calamititn in d jugdhulp kunnn hlaas nit altijd voorkomn wordn. Z hbbn n grot impact op btrokknn

Nadere informatie

bra nd in IJs s elbro ek

bra nd in IJs s elbro ek s ki o l it b v! D nog olr co bin Ro Aa a a hhh!! n d bra nd in IJs s lbro k D balk valt op mi jn b n. Ik ka n ni t m r w g. Mi jn kl k ni jpt dic ht n ik prob r om hulp t ro p n. Ma ar r komt alln n s

Nadere informatie

Key performance indicatoren 2014

Key performance indicatoren 2014 Ky prformanc indicatorn 1 Ggvns volgns ht EPRA rfrntistlstl Primtr D ggvns wordn brknd op basis van d informati waarovr Cofinimmo als ignaar n Cofinimmo Srvics als bhrdr van haar vastgodpark bschikkn.

Nadere informatie

12c u 1000 = =

12c u 1000 = = G&R vwo C dl 3 9 Rij C. vo Schwartzbrg 1/10 1a A hoort bij rij IV; B hoort bij rij II; C hoort bij rij III D hoort bij rij I. 1b Bij rij I: 36, 49, 64; bij rij II: 8000, 16000, 3000; bij rij III: 17, 19,

Nadere informatie

Duco verhoogt uw EPA label!

Duco verhoogt uw EPA label! Rnovrn n Vntilrn Intgral vntilati-oplossingn voor rnovati Duco vrhoogt uw EPA labl! W inspir at www.duco.u NATUURLIJKE VENTILATIE Vntilati vraagt om n aalconcpt! Vrbtring van vntilati n vrmindring van

Nadere informatie

Stoer, ik kan het heus wel! Zomerprogramma. Zomertour 2015. Buitenschoolse opvang Ondersteboven. 20 juli tot en met 28 augustus 2015

Stoer, ik kan het heus wel! Zomerprogramma. Zomertour 2015. Buitenschoolse opvang Ondersteboven. 20 juli tot en met 28 augustus 2015 Zomrprogramma Buitnschools opvang Ondrstbovn KION Zomrtour 2015 Brikbaarhid in d vakanti T 024 348 07 30 E bsoondrstbovn@ kion.nl Graag vóór 9.00 uur afmldn 20 juli tot n mt 28 augustus 2015 Stor, ik kan

Nadere informatie

Brochure. Laat de natuur je weerstand versterken! DIGESBIOSE - ECHINABELL TECHOMIN - TUSSABELL - SALVIABELL

Brochure. Laat de natuur je weerstand versterken! DIGESBIOSE - ECHINABELL TECHOMIN - TUSSABELL - SALVIABELL INFO Brochur Laat d natuur j wrstand vrstrkn! DIGESBIOSE - ECHINABELL - TECHOMIN - TUSSABELL - SALVIABELL Digsbios n Echinabll: ht dubbl wapn voor j immunitit Laat d natuur j wrstand vrstrkn! i n god wrstand

Nadere informatie

Nieuwsbrief. Thema s Trefwoord. Kalender. jaargang 10 - nummer 16-29 oktober 2015

Nieuwsbrief. Thema s Trefwoord. Kalender. jaargang 10 - nummer 16-29 oktober 2015 Niuwsbrif jaargang 10 - nummr 16-29 oktobr 2015 Thma s Trfwoord Wk 45 Thma: Arm n rijk D proft Amos zit ho in ht noordn van ht land d arm mnsn stds armr n d rijkn stds rijkr wordn. Dat vrschil zorgt voor

Nadere informatie

CBS Nije-Kroost 18 april 2013 www.cbsnijekroost.nl

CBS Nije-Kroost 18 april 2013 www.cbsnijekroost.nl CBS Nij-Kroost 18 april 2013 www.cbsnijkroost.nl Vanuit d gropn Niuw lrlingn: in grop 1/2c: Rol Vnmans Gropn 1 n 2 Wi wil in d mivakanti ons poppnmubilair schildrn? Graag vn contact opnmn mt juf Lia. Op

Nadere informatie

CREA-ATELIERS. van de gemeentelijke. www.facebook.com/cultuurdienstlochristi. foursquare.com/jeugdlochristi

CREA-ATELIERS. van de gemeentelijke. www.facebook.com/cultuurdienstlochristi. foursquare.com/jeugdlochristi CREA-ATELIERS knutsln, tknn n kokn van d gmntlijk cultuur- n jugddinst www.jugdlochristi.b/cra www.facbook.com/jugddinstlochristi www.facbook.com/cultuurdinstlochristi www.uitmtvlig.b twittr.com/jugdlochristi

Nadere informatie

Hoofdstuk 6 - Differentiaalvergelijkingen oplossen

Hoofdstuk 6 - Differentiaalvergelijkingen oplossen Hoofsuk 6 - Diffrniaalvrglijkingn oplossn 6 Shin van varialn lazij a, 5 (, 5) us (, 5 ), 5 us volo D kromm gaa oor (0, ) us, 5, 5 0, 5, klop H onrs l van kromm vanaf pun (, 5; 0 ) a Als j a iffrnir, an

Nadere informatie

MINISTERIE VAN BUITENLANDSE ZAKEN

MINISTERIE VAN BUITENLANDSE ZAKEN MINISTERIE VAN BUITENLANDSE ZAKEN MINISTERRAAD / Tk ^ " 'S GRAVENHAGE S7 - - ^ 3 1 MEI 19W ƒ / AAN: D M i n i s t r - P r s i d n t V o o r z i t t r van d Raad van M i n i s t r s Dinstondrdl; Ondrwrp:

Nadere informatie

Uitwerkingen 1. Opgave 1. v gem = 2,2 m/s. Oplossing: Opgave 2. v gem = 0,83 m/s = = Oplossing: Opgave 3. Δt = 11 s. Gevraagd: Oplossing: v gem.

Uitwerkingen 1. Opgave 1. v gem = 2,2 m/s. Oplossing: Opgave 2. v gem = 0,83 m/s = = Oplossing: Opgave 3. Δt = 11 s. Gevraagd: Oplossing: v gem. Uitwrkingn 1 Opg 1 Δt 480 s, m/s Δs, m/s 480 s 1056 m s Opg Δs 9 m 0,83 m/s Δt 9 m 0,83 m/s 34,9 s Opg 3 Opg 4 Opg 5 Opg 6 Δs 15 m Δt 11 s Δs 5 m Δt 4,3 s 15 m 11s 5 m 4,3 s 1,36 m/s 5,8 m/s 340 m/s Δs

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a V-a V-a V-a V-a V-a a Hoofstuk - Grafikn Voorknnis D tmpratuur zou an vanaf 9 uur s ohtns tot uur s miags xat glijk lijvn n at is rg onwaarshijnlijk. In grafik loopt tmpratuur vanaf C om 9 uur omhoog

Nadere informatie

Jongeren Stem. Wat speelt er? Wat zou jij kiezen? Inhoud. Interview burgemeester... 2. Wie zijn wij?... 2

Jongeren Stem. Wat speelt er? Wat zou jij kiezen? Inhoud. Interview burgemeester... 2. Wie zijn wij?... 2 Jongrn Stm Wat splt r? Wat zou jij kizn? Inhoud Bst lzrs, Intrviw burgmstr... 2 Wi zijn wij?... 2 En jugdkrant voor én door jongrn; zo mot ht zijn!... 2 Ho zit ht nu?... 3 Intrviws kandidatn... 4 Links

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorknnis V-1a Pia ot rst 2 3 = 6 n vrvolgns 18 : 6 = 3. Pia nkt at z rst mot vrmnigvulign n an pas ln, maar at is nit waar. Minn ot rst 4 + 6 = n vrvolgns 3 =. Arno ot rst 6 3 = 18 n vrvolgns 4 + 18 =

Nadere informatie

Derde editie. Tweede Fase. du français garan

Derde editie. Tweede Fase. du français garan r z j i w mthod Drd diti Twd Fas aîtris m n n o b n U! d D accor ti! du français garan Drd diti Twd Fas lrn voor d praktijk én succs op d xamns. Mt d niuw, drd diti van wrkn lrlingn daar nog dolgrichtr

Nadere informatie

60, 97, 157,... (steeds de voorgaande 2 getallen optellen).

60, 97, 157,... (steeds de voorgaande 2 getallen optellen). 1a G&R vwo A dl 9 Rij Goiomtri C. vo Schwartzbrg 1/1 110, 116, 1,... (stds 6 rbij). 1b 607,5, 911,5, 166,875... (stds kr 1,5). 1c 1d 51, 66, 8,... (stds mr rbij). 60, 97, 7,... (stds d voorgaad gtall optll).

Nadere informatie

Schadeformulier Reisverzekering

Schadeformulier Reisverzekering Schadformulir Risvrzkring Om uw schad snllr t kunnn bhandln vragn wij u: - ht formulir zo volldig n duidlijk moglijk in t vulln - rlvant bijlagn zoals originl bwijsstukkn n nota s m t sturn. Hft u ruimtgbrk?

Nadere informatie

LEERJAAR 3 MUZISCHE VORMING

LEERJAAR 3 MUZISCHE VORMING VOORBEELDMATERIAAL HOEKENBOX LEERJAAR 3 MUZISCHE VORMING P. 02-03 Bldopvoding STOELEN D lrlingn ontwrpn n stol voor n figuur uit n sprookj. P. 04-05 Dramatisch Spl TABLEAU VIVANT mt KEITH HARING D lrlingn

Nadere informatie

En wat gaan we doen? Vakantiewerking. Vakantiewerking. Geetbets. Geetbets 2014. l e. ppe n

En wat gaan we doen? Vakantiewerking. Vakantiewerking. Geetbets. Geetbets 2014. l e. ppe n En wat gaan w don? 30/6 30/6 04/07: Muzik n dans Zingn mt K3, dansn mt mvrouw d pauw, springn tot w r bij nr valln, bwgn, luistrn naar mooi muzikal sprookjs n vrtlln, fantasrn, musicals makn,... Vakantiwrking

Nadere informatie

stofomschrijving toetsing weegfactoren oktober 2014

stofomschrijving toetsing weegfactoren oktober 2014 stofomschrijving totsing wgfactorn klas 4 BB oktobr 2014 Cohort Lrjaar Afdling Btrft ht vak 2013 4 vmbo BB Biologi priod tots lrststofomschrijving indtrmn totsvorm totsduur afnam in totswk (j/n) ovrgan

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Corrctivoorschrift VWO 008 tijdvak wiskund B Ht corrctivoorschrift bstaat uit: Rgls voor d boordling Algmn rgls 3 Vakspcifik rgls 4 Boordlingsmodl 5 Inzndn scors Rgls voor d boordling Ht wrk van d kandidatn

Nadere informatie

Rechtsbijstandverzekering

Rechtsbijstandverzekering Rchtsbijstandvrzkring Ht kan hoog oplopn En uit d hand glopn ruzi mt d burn. En conflict mt uw wrkgvr. En lvrancir di zijn blofts nit waar kan makn. En huisbaas di ht nit zo nauw nmt mt ht ondrhoud van

Nadere informatie

Traverso's bouwen, spelen en ontwerpen - deel 2: kennismaken met fluiten in een lage barokstemming - Jan Bouterse

Traverso's bouwen, spelen en ontwerpen - deel 2: kennismaken met fluiten in een lage barokstemming - Jan Bouterse Travrso's bouwn, spln n ontwrpn - dl 2: knnismakn mt fluitn in n lag barokstmming - Jan Boutrs Vooraf: in dl 1 van dz sri ging ik in op ht bgin van mij travrso-avonturn, d aanschaf van n godkop fabriksfluit

Nadere informatie

BESCHRIJVING PROCEDURE

BESCHRIJVING PROCEDURE Wrkinstructi : HSEW Blz. : 1 van 7 INDEX 1 SCOPE 2 DOEL 3 BESCHRIJVING PROCEDURE 3.1 Introducti 3.2 Vrpakking radioactiv matrialn 3.2.1 Radioactif bsmtt installati-ondrdln 3.2.2 Radioactif afval: 3.2.3

Nadere informatie

Inschrijvingsdocumenten voor de aanvraag van een sociale woongelegenheid bij de Sociale Huisvesting regio Landen cvba-so voor het jaar 2015.

Inschrijvingsdocumenten voor de aanvraag van een sociale woongelegenheid bij de Sociale Huisvesting regio Landen cvba-so voor het jaar 2015. Inschrijvingsdocumntn voor d nvrg vn n socil woonglgnhid bij d Socil Huisvsting rgio Lndn cvb-so voor ht jr 0. IN TE VULLEN DOCUMENTEN Documnt: Inschrijving prsonn Kuzlijst - formulir: Inschrijving: kuz

Nadere informatie

1. Inleiding 5 1.1 Doelstelling 5 1.1 Vraagstelling 5. 6. Tekortkomingen van het onderzoek 25

1. Inleiding 5 1.1 Doelstelling 5 1.1 Vraagstelling 5. 6. Tekortkomingen van het onderzoek 25 Ondrzok uitgvord in opdracht van: Fysiothrapi Cntrum Zuidwold Door: Drs. Irn Kloostrman Oktobr, 2006 Voorwoord Dit ondrzok is gdaan in opdracht van Fysiothrapi Cntrum Zuidwold. Ongvr 1 jaar gldn hbbn zij

Nadere informatie

Hierbij de Stijl Nieuwsbrief van september. Elke maand wordt de nieuwsbrief verstuurd Deze verschijnt in de laatste week van de maand.

Hierbij de Stijl Nieuwsbrief van september. Elke maand wordt de nieuwsbrief verstuurd Deze verschijnt in de laatste week van de maand. Bst Stijlldn, bst Oudrs Hirbij d Stijl Niuwsbrif van sptmbr. Elk maand wordt d niuwsbrif vrstuurd Dz vrschijnt in d laatst wk van d maand. Waarom n niuwsbrif? Als stijlmstrs vindn w ht blangrijk dat alls

Nadere informatie

Eneco EcoStroom 2 jaar 3 e kwartaal 2014 tot 1-10-2016 voor particuliere klanten

Eneco EcoStroom 2 jaar 3 e kwartaal 2014 tot 1-10-2016 voor particuliere klanten Enco EcoStroom 2 jaar 3 kwartaal 2014 tot 1-10-2016 voor particulir klantn Wat is EcoStroom? Enco EcoStroom is miliuvrindlijk lktricitit di wordt opgwkt uit duurzam bronnn als zon, wind n watr. Voor ht

Nadere informatie

Derde editie. onderbouw

Derde editie. onderbouw r z j i w mthod Drd diti ondrbouw ir! la f t m d o h t En m municrn mt n m Motivrn n lrn co modrn n h sc ti ak pr op t ch mthod gri Drd diti ondrbouw D mthod is vrdr ontwikkld n aangpast. Dat is t zin

Nadere informatie

Oefenopgaven Schoolexamen 1 Scheikunde 6 VWO 1/5

Oefenopgaven Schoolexamen 1 Scheikunde 6 VWO 1/5 Ofnopgavn Schoolxamn 1 Schikun 6 VWO 1/5 Hoofstuk 10 nrgi n vnwicht 1 Eén van ractis i plaatsvint in n zwavlzuurfabrik, is racti tussn zwavlioxi n zuurstof uit lucht. Hirbij wort zwavltrioxi gvorm. All

Nadere informatie

VOORBEELDEN TOELATINGSONDERZOEK WISKUNDE

VOORBEELDEN TOELATINGSONDERZOEK WISKUNDE VOORBEELDEN TOELATINGSONDERZOEK WISKUNDE MET UITWERKINGEN Omrkingn H gbruik van n zakrknmachin vnul m grafich, maar zondr mbolich rknmoglijkhdn i ogaan Mn din alijd d anwoordn volldig o lichn n d unan

Nadere informatie

Actievoorwaarden: Ontvang Toon van Eneco met gratis installatie, i.c.m. Garantieprijs Eneco Ecostroom en gas 3 jaar

Actievoorwaarden: Ontvang Toon van Eneco met gratis installatie, i.c.m. Garantieprijs Eneco Ecostroom en gas 3 jaar Activoorwaardn: Ontvang Toon van Enco mt gratis installati, i.c.m. Garantiprijs Enco Ecostroom n gas 3 jaar 1. Dz acti wordt gorganisrd door Enco Rtail B.V., gvstigd t Rottrdam aan d Martn Mswg 5, hirna

Nadere informatie

stofomschrijving toetsing weegfactoren oktober 2014

stofomschrijving toetsing weegfactoren oktober 2014 stofomschrijving totsing wgfactorn klas 4 KB oktobr 2014 Cohort Lrjaar Afdling Btrft ht vak 2013 4 vmbo KB Biologi PROGRAMMA van TOETSING n AFSLUITING priod tots lrststofomschrijving indtrmn totsvorm totsduur

Nadere informatie

Leiden Leadership Programme: Leiderschap in Praktijk

Leiden Leadership Programme: Leiderschap in Praktijk Lidn Ladrhip Programm: Lidrchap in Praktijk Programma 15.35 Vic Rctor Magnificu Ritj van Dam 15.45 Kort ovrzicht van ht programma door Sytk Midma 15.50 Informati ovr d Praktijkopdracht n Sminar door Nikol

Nadere informatie

Ma. 17-3 Ma. 24-3 2 e paasdag. Di. 11-3 Di. 18-3 Di. 25-3. Woe. 19-3 Opening vernieuwde school. Do. 20-3 Do. 27-3

Ma. 17-3 Ma. 24-3 2 e paasdag. Di. 11-3 Di. 18-3 Di. 25-3. Woe. 19-3 Opening vernieuwde school. Do. 20-3 Do. 27-3 Niuwsdruppls Maart 2008 Ma. 3-3 Schoolarts hl dag Ma. 10-3 prsonlsvrgadring Ma. 17-3 Ma. 24-3 2 paasdag Ma. 31-3 Di. 4-3 Voorlichtingsavond 'alcohol' voor oudrs gr.8 gn doorgang vanwg lag animo Di. 11-3

Nadere informatie

Openingstijden Dinsdag t/m zondag 10.00-17.00 uur Gesloten op maandag, 1e Kerstdag, 1 januari en 30 april

Openingstijden Dinsdag t/m zondag 10.00-17.00 uur Gesloten op maandag, 1e Kerstdag, 1 januari en 30 april Opningstijdn Dinsdag t/m zondag 10.00-17.00 uur Gslotn op maandag, 1 Krstdag, 1 januari n 30 april Togangsprijzn Volwassnn 8,00 65 + / CJP 5,00 Jongrn t/m 18 jaar Musumkaart Vrindn van ht musum Vrniging

Nadere informatie

Future4U. Experimentlessen voor havo en vwo. wat je zo ek t! E xa

Future4U. Experimentlessen voor havo en vwo. wat je zo ek t! E xa Futur4U ct wat j zo k t! E xa! n d l r w a èt b d k d t n O Exprimntlssn voor havo n vwo Futur4U Exprimntlssn Lifstyl & Dsign D zvn Futur4U-lssn zijn rop gricht havo- n vwo-scholirn actif knnis t latn

Nadere informatie

de nationale E-bike verzekering

de nationale E-bike verzekering Ht comfort gaat altijd door mt d national E-bik vrzkring D spcial n voordlig vrzkring voor all lktrisch trapondrstund fitsn Dri, vir of vijf ar vrzkrd tgn difstal of cascoschad (incl. difstal) voor n nmalig

Nadere informatie

Baderie Almere 50+ TOERNOOI

Baderie Almere 50+ TOERNOOI Badri Almr 50+ TOERNOOI 1 novmbr 2014 n 2 novmbr 2014 Hir had uw advrtnti kunnn staan. Info: info@bv-almr.nl Plaats: Evnt: Bowling Vrniging Almr organisrt op Zatrdag 1 Novmbr n Zondag 2 Novmbr 2014 Badri

Nadere informatie

Tevens is op basis van het DO 2e fase een partiёle herziening bestemmingsplan Weusthag opgesteld. Deze is in procedure gebracht.

Tevens is op basis van het DO 2e fase een partiёle herziening bestemmingsplan Weusthag opgesteld. Deze is in procedure gebracht. SAMENVATTING RAADSVOORSTEL ZAAKNUMMER BEHANDELEND AMBTENAAR SECTOR PORT. HOUDER 1001631 Hstr, Paula RU-PS Jannk Oud Alink ONDERWERP Krditaanvraag uitvoring 2 fas projct Infra Wusthag AGENDANUMMER SAMENVATTING

Nadere informatie

Tekla Structures Referentiehandleiding voor Geavanceerde opties. Productversie 21.1 augustus 2015. 2015 Tekla Corporation

Tekla Structures Referentiehandleiding voor Geavanceerde opties. Productversie 21.1 augustus 2015. 2015 Tekla Corporation Tkla Structurs Rfrnthandldng voor Gavancrd opts Productvrs 21.1 augustus 2015 2015 Tkla Corporaton Inhoudsopgav 1 Rfrnt Handldng Gavancrd opts...17 1.1 ën n ht daloogvnstr Gavancrd opts...17 2 Alfabtsch

Nadere informatie

Autisme en ontwikkelingsleeftijden

Autisme en ontwikkelingsleeftijden Autism n ontwikklingslftijdn Dr. Martin F. Dlfos PICOWO, Th Nthrlands UAEG, Univrsitis Autism Exprtis Group Em.Lctor Virtul Ontwikkling van d Jugd, TSE/HES Vis. Prof. Intrnational Univrsity Sarajvo, Bosnia-Hrzgovina

Nadere informatie

Hoofdstuk 2 Limieten toepassen

Hoofdstuk 2 Limieten toepassen Hoofdstuk Liit topass. Covrgti ladzijd a Er ot gld dat u > u dus u u >. u u ( ) >, wat ( ) ( ) ( ) u adrt aar voor Uit, 999 volgt dus vaaf zij d tr grotr da,999. a ( ) voor dus u D klist is u d grootst

Nadere informatie