Elementaire Deeltjesfysica

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Elementaire Deeltjesfysica"

Transcriptie

1 Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 24 November, 2008 Structuur der Materie

2 Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie en impuls Symmetrieën Behoudwetten Discrete symmetrieën Feynman berekeningen Gouden regel Feynman regels Diagrammen Elektrodynamica Dirac vergelijking Werkzame doorsneden Quarks en hadronen Elektron-quark interacties Hadron productie in e + e - Zwakke wisselwerking Muon verval Unificatie Najaar 2007 Jo van den Brand 2

3 Levensduur m B Bijna alle elementaire deeltjes vervallen! d.w.z. m C m A c.m. systeem Levensduur: verschillende vervalskanalen, b.v. Vertakkingsverhouding Eenheden b.v. Najaar 2007 Jo van den Brand 3

4 Telsnelheid A + B C + D Werkzame doorsnede Reactiekans: effectief oppervlak / totaal oppervlak Najaar 2007 Jo van den Brand 4

5 Voorbeelden Foton-koolstof/lood n- 238 U Najaar 2007 Jo van den Brand 5

6 Voorbeeld: verstrooiing aan een harde bol Verstrooiing aan een massieve bol: Berekening werkzame doorsnede Geometrie b R Berekening werkzame doorsnede: (vgl. Rutherford verstrooiing) Totale werkzame doorsnede, oppervlak zoals de bundel die ziet: Najaar 2007 Jo van den Brand 6

7 Voorbeeld: Rutherford verstrooiïng Marsden en Geiger rond 1910 Alfa deeltjes: T b = 4 7 MeV Coulomb potentiaal Najaar 2007 Jo van den Brand 7

8 Rutherford verstrooiïng Coulomb potentiaal Klassieke mechanica Werkzame doorsnede Voor b b < b < b b +db b Najaar 2007 Jo van den Brand 8

9 Rutherford verstrooiïng Geldig voor b > b min =R + R t ofwel Meet interactieafstand b min versus A Eigenlijk b min R + R t + R s Najaar 2007 Jo van den Brand 9

10 Rutherford verstrooiïng Plot b min versus A 1/3 Er geldt Goede beschrijving dus - Coulombwet geldig op korte afstand (femtometers) - Sterke WW korte dracht - Alle lading zit in kleine bol Rutherford vondt Najaar 2007 Jo van den Brand 10

11 Gouden regel van Fermi In deeltjesfysica werken we voornamelijk met interacties tussen deeltjes en verval van deeltjes: overgangen tussen toestanden Overgangswaarschijnlijkheid volgt uit Fermi s Golden Rule Amplitude bevat alle dynamische informatie en berekenen we met de Feynman regels. Dit bevat de fundamentele fysica. Faseruimte bevat alle kinematische informatie en hangt af van massa s, energieën en impulsen Voor de afleiding: zie dictaat quantummechanica. Verder eisen wij een Lorentzinvariante beschrijving. Najaar 2007 Jo van den Brand 11

12 Faseruimte in 1D: Klassiek neemt elke toestand een punt met (x, p x ) in In QM hebben we rekening te Faseruimte Klassiek houden met xp h Volume van elke toestand is h Faseruimte met volume Lp bevat N cellen, N Lp 2 x h Celvolume in 3D is h (2 ) 3 3 Aantal toestanden in volume 3 3 d xd p Aantal toestanden per volume eenheid dn Toestandsdichtheid ( E) de is dn dn 1 (2 ) dn dx 3 3 d xd p 3 3 d p (2 ) 3 3 Najaar 2007 Jo van den Brand 12

13 Delta functie van Dirac In de berekeningen maken we veelvuldig gebruik van de Dirac d functie: `een oneindig smalle piek met integraal 1 Elke functie met bovenstaande eigenschappen kan d(x) representeren, bijvoorbeeld In relativistische quantummechanica zijn delta functies nuttig voor integralen over de faseruimte, bijvoorbeeld in het verval a Ze drukken dan energie en impulsbehoud uit. Najaar 2007 Jo van den Brand 13

14 Delta functie van een functie We zoeken een uitdrukking voor d( f(x) ) Stel dat f(x) een enkel nulpunt heeft voor x = x 0 Dan geldt Schrijft y = f(x) Er geldt dan Omschrijven levert Najaar 2007 Jo van den Brand 14

15 Voorbeeld: Delta functie van een functie Meerdere nulpunten: Opgave: Vereenvoudig de uitdrukking Oplossing: Er geldt Nulpunten voor x 1 = 1 en x 2 = -2 Afgeleide Dus en Najaar 2007 Jo van den Brand 15

16 Voorbeeld: Delta functie van een functie Deeltjesverval a in CM systeem Bereken I I d ( m E d p a d ( m p d p a 1 E2) m1 p1 m2 ) 1 a p 1 p 2 Er geldt Stel df d p p dit is je functie f(x) dit is x p E p E1 E2 E1E2 1 m1 p1 m2 p p p * p is de waarde van de impuls waarvoor f ( p1 ) 0 E Dan I E E1E2 1 * 1 E 2 p Najaar 2007 Jo van den Brand 16

17 Gouden regel van Fermi revisited Gouden regel van Fermi: niet-relativistisch Faseruimte is dichtheid van de eindtoestanden ( E f ) dn dn ( E ) d( E E ) de We schrijven (met E i = E f ) De gouden regel luidt nu Met impulsbehoud en a f de E de f 2 2 fi M fi d ( E Ei ) dn Najaar 2007 Jo van den Brand 17 i Integreer over alle mogelijke toestanden met elke energie, merk op dat 3 (2 ) d p d p ( ) ( ) (2 ) (2 ) fi M fi d Ea E1 E2 d pa p1 p2 3 3 dn d p (2 ) energiebehoud impulsbehoud toestandsdichtheid 3

18 Lorentzinvariante faseruimte In niet-relativistische QM normeren we op 1 deeltje / volume eenheid Relativistische contraheert volume met E / mc 2 * dv 1 Deeltjesdichtheid neemt toe met Conventie: Gebruik ' E / mc Normeer op 2E deeltjes / volume eenheid 3 2E c Lorentzinvariant matrixelement 2 a a a a a a/ dv 2E c *' ' LI ˆ 2E1 2E2 2En fi ' 1 ' 2 ' n1 ' n fi M H M c c c Najaar 2007 Jo van den Brand 18

19 Lorentzinvariante vervalsnelheid Beschouw het verval n E 1 Deeltje i heeft vierimpuls p i = (E i /c, p i ) Energie E i is een functie van p i vanwege tijddilatatie We gaan er van uit dat deeltje 1 in rust is, dus p 1 = (m 1 c, 0) S is het product van statistische factoren: 1/j! voor elke groep van j identieke deeltjes in de eindtoestand Formule geeft de differentiële vervalsnelheid, waarbij de impuls van deeltje 2 in het gebied d 3 p 2 rond de waarde p 2 ligt, etc. In het algemeen integreren we over de impulsen in de eindtoestand. Bijvoorbeeld voor Najaar 2007 Jo van den Brand 19

20 Voorbeeld: 0 Bereken vervalsnelheid voor met m 1 = m 2 = 0; amplitude M(p 2, p 3 ) Herschrijf delta functie Er geldt en dus Sferische coördinaten Hoekintegratie We vinden Er geldt S = ½ voor 0 Najaar 2007 Jo van den Brand 20

21 Bereken vervalsnelheid voor Tweedeeltjesverval Er geldt. Integreer over p 3 Sferische coördinaten en hoekintegratie. Met = p 2 vinden we We moeten nu nog over de delta functie integreren Dat kan in principe met We doen het nu echter met een andere methode Najaar 2007 Jo van den Brand 21

22 Tweedeeltjesverval We hebben Verander van variabele Er geldt Mits m 1 > m 2 + m 3, anders niet in het integratie interval! Merk op dat 0 de waarde van (= p 2 ) is waarvoor E = m 1 c 2 Je vindt Uiteindelijk Bij meer dan 2 deeltjes moet je integreren over het matrixelement Najaar 2007 Jo van den Brand 22

23 Gouden regel voor verstrooiing Beschouw de botsing n Formule geeft de differentiële werkzame doorsnede, waarbij de impuls van deeltje 3 in het gebied d 3 p 3 rond de waarde p 3 ligt, etc. In het algemeen integreren we over de impulsen in de eindtoestand en zijn we bijvoorbeeld geinteresseerd in enkel de hoekverdeling van deeltje 3. Uitdrukking volgt uit Telsnelheid n 1 (v 1 + v 2 ) n 2 fi / (v 1 + v 2 ) Vervolgens wordt de fluxfactor Lorentzinvariant geschreven F 2 E E ( v v ) F 4 ( p1 p2 ) ( m1m 2c2 ) In LAB Najaar 2007 Jo van den Brand 23

24 Elastische verstrooiing in het CM systeem Beschouw de botsing in CM systeem Dan geldt p p E E / c p ( ) ( ) ( ) p p m m c E E p c / p 2 = -p 1 Dus Herschrijf de delta functie Integreer over impuls delta functie: 4 3 p p E c m c p Najaar 2007 Jo van den Brand Gebruik 1 i i 24

25 Elastische verstrooiing in het CM systeem We vinden Het matrixelement hangt in principe van alle impulsen af. Echter en p p 2, dus geldt M ( p, p ) 1. Omdat vastligt, geldt M( p, ). 4 3 Gebruik We vinden p p 3 p Najaar 2007 Jo van den Brand 25

26 Lorentzinvariante werkzame doorsnede Voor elastische verstrooiing geldt Dan geldt elastisch 2 2 c 2 64 s E S M m Dit geldt ook in de limiet i i p p * * i f 2 fi d * Merk op dat de differentiële werkzame doorsnede NIET Lorentinvariant is 2 d c SM d 8 fi 2 ( E E ) 1 2 De hoeken refereren naar het CM systeem! 2 p p f i 2 2 * c p f 2 d S M fi d 64 s p 2 * i * * * d d(cos ) d Voor een algemeen geldige vergelijking: druk d uit in viervectoren * Vierimpuls overdracht t q ( p p ) Najaar 2007 Jo van den Brand 26

27 Lorentzinvariante werkzame doorsnede Druk * d uit in termen van de Lorentzinvariant dt t ( p p ) p p 2p p m m 2p p In CM frame: p E p (,0,0, ) (, sin,0, cos ) * * * p E p p * * * * * * * * * * cos * p p E E p p 2 2 * * * * * t m m 2E E 2 p p cos Dit geeft en dus * * * * * * * dtd dt 2 p1 p3 cos d d(cos ) d * 2 p p c p3 2 * c 2 * d 2 S M * fi d S M 2 * 2 fi d dt 64 s p 264 sp 1 1 * * 1 3 Integratie over * d geeft d 2 fi dt * 64 sp1 Najaar 2007 Jo van den Brand 27 c 2 2 SM 2 Lorentzinvariant

28 Fluxfactor voor A + B c.m. stelsel: P 1 =(E 1,+p) P 2 =(E 2,p) note: v p E lab stelsel: P 1 =(E, p) P 2 =(m 2,0) Najaar 2007 Jo van den Brand 28

29 Toy-model: ABC theorie Drie deeltjes: A, B en C Ieder deeltje is zijn eigen antideeltje Spin van de deeltjes is 0 m A > m B + m C Najaar 2007 Jo van den Brand 29

30 Feynman regels Berekening van de amplitude -im: Hiervoor is de dynamica van wisselwerking nodig. In het vervolg zullen we de amplitudes berekenen voor elektromagnetische, sterke en zwakke wisselwerkingen. Om een idee te krijgen eerst de amplitude voor een hypothetisch model, 3 toy-model: Feynman regels ABC theorie: A p 1 p 2 p 3 ig B C Najaar 2007 Jo van den Brand 30 B A p 2 p 1 q ig C ig p 3 p 4 B A

31 Levensduur ( 3 toy-model) Het matrixelement is [g]=[gev] im ig A g B C De vervalsbreedte wordt met Fermi s regel: En de levensduur van deeltje A is dus 1 De impuls van B (of C) kan bepaald worden, in c.m. systeem: Najaar 2007 Jo van den Brand 31

32 Verstrooiing A+A B+B ( 3 toy-model) A p 2 p 4 C (A) q B Tweede diagram! A p 2 C q (B) p4 B A p 1 p 3 B A p 1 p 3 B (A): (B): (A+B): Najaar 2007 Jo van den Brand 32

33 Verstrooiing A+A B+B ( 3 toy-model) In het c.m. stelsel Veronderstel m A =m B =m en m C =0 A B B A c.m. frame Twee identieke deeltjes in eindtoestand (dus een extra factor ½!=½) Werkzame doorsnede: Najaar 2007 Jo van den Brand 33

34 Verstrooiing A+B A+B ( 3 toy-model) A B p 2 p 4 C (A) q p 1 p 3 B A Twee diagrammen dragen bij! A B p 2 p 1 (B) q C B p 4 p 3 A (A): (B): (A+B): Najaar 2007 Jo van den Brand 34

35 Verstrooiing A+B A+B ( 3 toy-model) B In het c.m. stelsel Veronderstel m A =m B =m en m C =0 A A B c.m. frame Werkzame doorsnede: Najaar 2007 Jo van den Brand 35

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Kernenergie. FEW Cursus. Jo van den Brand 30 Maart 2010

Kernenergie. FEW Cursus. Jo van den Brand 30 Maart 2010 Kernenergie FEW Cursus Jo van den Brand 30 Maart 2010 Overzicht Docent informatie Jo van den Brand Email: jo@nikhef.nl URL: www.nikhef.nl/~jo 0620 539 484 / 020 444 7900 Kamer: T2.69 Rooster informatie

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

1 Uitgewerkte opgaven: relativistische kinematica

1 Uitgewerkte opgaven: relativistische kinematica 1 Uitgewerkte opgaven: relativistische kinematica 1. Impuls van een π + meson Opgave: Een π + heeft een kinetische energie van 200 MeV. Bereken de impuls in MeV/c. Antwoord: Een π + meson heeft een massa

Nadere informatie

De wisselwerkingen tussen elementaire deeltjes worden experimenteel bestudeerd aan de hand van botsingen tussen deeltjes of het verval van deeltjes.

De wisselwerkingen tussen elementaire deeltjes worden experimenteel bestudeerd aan de hand van botsingen tussen deeltjes of het verval van deeltjes. De wisselwerkingen tussen elementaire deeltjes worden experimenteel bestudeerd aan de hand van botsingen tussen deeltjes of het verval van deeltjes. Deze wisselwerkingen geschieden via de kortstondige

Nadere informatie

Het Standaardmodel. HOVO college Teylers 20 maart 2012 K.J.F.Gaemers

Het Standaardmodel. HOVO college Teylers 20 maart 2012 K.J.F.Gaemers Het Standaardmodel HOVO college Teylers 20 maart 2012 K.J.F.Gaemers 20 maart 2012 HOVO 2012 I 2 20 maart 2012 HOVO 2012 I 3 C12 atoom 6 elektronen 6 protonen 6 neutronen 20 maart 2012 HOVO 2012 I 4 20

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 3 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Rutherford verstrooiing

Rutherford verstrooiing Rutherford verstrooiing Hoofdstuk 1 van Das & Ferbel Lange afleiding van in 1.2 niet, maar 1.3 en 1.4 zijn belangrijk en 1.7 slaan we over Deeltjesfysica I Hoorcollege 2 1 3 typen straling Er werden drie

Nadere informatie

Quantummechanica en Relativiteitsleer bij kosmische straling

Quantummechanica en Relativiteitsleer bij kosmische straling Quantummechanica en sleer bij kosmische straling Niek Schultheiss 1/19 Krachten en krachtdragers Op kerndeeltjes werkt de zwaartekracht. Op kerndeeltjes werkt de elektromagnetische kracht. Kernen kunnen

Nadere informatie

Deeltjes en velden. HOVO Cursus. Jo van den Brand 26 september

Deeltjes en velden. HOVO Cursus. Jo van den Brand 26 september Deeltjes en velden HOVO Cursus Jo van den Brand 26 september 2013 jo@nikhef.nl Docent informatie Overzicht Jo van den Brand & Gideon Koekoek Email: jo@nikhef.nl en gkoekoek@gmail.com 0620 539 484 / 020

Nadere informatie

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016 Kwantummechanica HOVO cursus Jo van den Brand Lecture 4: 13 oktober 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: jo@nikhef.nl 0620 539 484 / 020

Nadere informatie

versie 21 februari 2013 Quantumtheorie J.W. van Holten NIKHEF Amsterdam LION Universiteit Leiden

versie 21 februari 2013 Quantumtheorie J.W. van Holten NIKHEF Amsterdam LION Universiteit Leiden versie 21 februari 2013 Quantumtheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Deeltje-golf dualisme Een vlakke golf wordt gekenmerkt door een golflengte λ en een periode T, of

Nadere informatie

In hoofdstuk V werden de verschillende soorten interacties besproken die relevant zijn voor

In hoofdstuk V werden de verschillende soorten interacties besproken die relevant zijn voor In hoofdstuk V werden de verschillende soorten interacties besproken die relevant zijn voor elementaire deeltjes. Wij hebben gezien dat de dynamica van de interactie ti beschreven wordt bij middel van

Nadere informatie

Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober

Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober Deeltjes en velden HOVO Cursus Jo van den Brand 3 oktober 013 jo@nikhef.nl Docent informatie Overzicht Jo van den Brand & Gideon Koekoek Email: jo@nikhef.nl en gkoekoek@gmail.com 060 539 484 / 00 59 000

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Vorig college: Geladen leptonen: e, μ, τ Neutrino s Pionen, vreemde deeltjes Hadronen: mesonen en baryonen Quarks: u, d, s Zware quarks: c, b, t

Vorig college: Geladen leptonen: e, μ, τ Neutrino s Pionen, vreemde deeltjes Hadronen: mesonen en baryonen Quarks: u, d, s Zware quarks: c, b, t Vorig college: Geladen leptonen: e, μ, τ Neutrino s Pionen, vreemde deeltjes Hadronen: mesonen en baryonen Quarks: u, d, s Zware quarks: c, b, t Vragen? Inleiding elementaire deeltjes fysica College

Nadere informatie

Majorana Neutrino s en Donkere Materie

Majorana Neutrino s en Donkere Materie ? = Majorana Neutrino s en Donkere Materie Patrick Decowski decowski@nikhef.nl Majorana mini-symposium bij de KNAW op 31 mei 2012 Elementaire Deeltjes Elementaire deeltjes en geen quasi-deeltjes! ;-) Waarom

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Einsteinvergelijkingen: 7 oktober 009 Traagheid van gasdruk SRT: hoe hoger de gasdruk, des te moeilijker is het om het gas te versnellen

Nadere informatie

Jo van den Brand 10 oktober 2013

Jo van den Brand 10 oktober 2013 Jo van den Brand 10 oktober 2013 jo@nikhef.nl Inhoud Speciale relativiteitstheorie Viervectoren Energie en impuls Quantumfysica Formalisme Verstrooiing Elementaire deeltjes en krachten Standaard model

Nadere informatie

QUANTUM FYSICA 1 3NB50. donderdag 28 oktober uur. Dit tentamen omvat 2 opgaven.

QUANTUM FYSICA 1 3NB50. donderdag 28 oktober uur. Dit tentamen omvat 2 opgaven. 1 QUANTUM FYSICA 1 3NB5 donderdag 8 oktober 1 14. 17. uur Dit tentamen omvat opgaven. Bij ieder onderdeel wordt aangegeven wat de maximale score is op een schaal van 1 punten. Het formuleblad voor dit

Nadere informatie

Massahysterie over het massamysterie. dr. Frank Filthaut Radboud Universiteit Nijmegen & Nikhef

Massahysterie over het massamysterie. dr. Frank Filthaut Radboud Universiteit Nijmegen & Nikhef Massahysterie over het massamysterie dr. Frank Filthaut Radboud Universiteit Nijmegen & Nikhef Voorbij het blote oog Antoni van Leeuwenhoek, 1632-1723: uitvinding van de microscoop ontdekking van de eerste

Nadere informatie

Wisselwerking. van ioniserende straling met materie

Wisselwerking. van ioniserende straling met materie Wisselwerking van ioniserende straling met materie Wisselwerkingsprocessen Energie afgifte en structuurverandering in ontvangende materie Aard van wisselwerking bepaalt het juiste afschermingsmateriaal

Nadere informatie

Deeltjesfysica in vogelvlucht. Frank Filthaut Radboud Universiteit Nijmegen / Nikhef

Deeltjesfysica in vogelvlucht. Frank Filthaut Radboud Universiteit Nijmegen / Nikhef Deeltjesfysica in vogelvlucht Frank Filthaut Radboud Universiteit Nijmegen / Nikhef Inhoud: Op zoek naar het kleinste Deeltjes en interacties: het Standaardmodel De Large Hadron Collider Deel 1: Op zoek

Nadere informatie

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben.

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben. Uitwerkingen HiSPARC Elementaire deeltjes C.G.N. van Veen 1 Hadronen Opdracht 1: Elementaire deeltjes worden onderverdeeld in quarks en leptonen. (a) Noem twee eigenschappen die quarks en leptonen met

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

Waarneming van een nieuw deeltje met massa 125 GeV

Waarneming van een nieuw deeltje met massa 125 GeV Waarneming van een nieuw deeltje met massa 125 GeV CMS Experiment, CERN 4 juli 2012 Samenvatting In een seminarie dat vandaag plaatsvond in het Europees Laboratorium voor Nucleair Onderzoek (CERN), en

Nadere informatie

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d Eindtoets 3BTX1: Thermische Fysica Datum: 3 juli 2014 Tijd: 9.00-12.00 uur Locatie: paviljoen study hub 2 vak c & d Deze toets bestaat uit 3 opgaven die elk op een nieuwe pagina aanvangen. Maak de opgaven

Nadere informatie

Thermische Fysica 2 - TF2 Statistische Fysica en Sterevolutie

Thermische Fysica 2 - TF2 Statistische Fysica en Sterevolutie Thermische Fysica 2 - TF2 Statistische Fysica en Sterevolutie Joost van Bruggen 0123226 Universiteit Utrecht - Faculteit Natuur- en Sterrenkunde (2004) 1 2 Samenvatting In deze paper wordt met behulp van

Nadere informatie

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier.

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier. Alfa -, bèta - en gammastraling Al in 1899 onderscheidde Ernest Rutherford bij de uraniumstraling "minstens twee" soorten: één die makkelijk wordt geabsorbeerd, voor het gemak de 'alfastraling' genoemd,

Nadere informatie

Tentamen Moleculaire Simulaties - 8C November uur

Tentamen Moleculaire Simulaties - 8C November uur Tentamen Moleculaire Simulaties - 8C030 11 November 2008-14.00-17.00 uur Vier algemene opmerkingen: Het tentamen bestaat uit 6 opgaven verdeeld over 3 pagina's. Op pagina 3 staat voor iedere opgave het

Nadere informatie

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen Klassieke Mechanica a (Tentamen mei ) Uitwerkingen Opgave. (Beweging in een conservatief krachtenveld) a. Een kracht is conservatief als r F =. Dit blijkt na invullen: (r F) x = @F z =@y @F y =@z = =,

Nadere informatie

Kernenergie. FEW cursus: Uitdagingen. Jo van den Brand 6 december 2010

Kernenergie. FEW cursus: Uitdagingen. Jo van den Brand 6 december 2010 Kernenergie FEW cursus: Uitdagingen Jo van den Brand 6 december 2010 Inhoud Jo van den Brand jo@nikhef.nl www.nikhef.nl/~jo Boek Giancoli Physics for Scientists and Engineers Week 1 Week 2 Werkcollege

Nadere informatie

VERENIGDE DEELTJESINTERACTIES

VERENIGDE DEELTJESINTERACTIES VERENIGDE DEELTJESINTERACTIES Alle verschijnselen om ons heen en in het heelal kunnen uitgelegd worden met vier basiskrachten: gravitatie, elektromagnetisme, sterke en zwakke wisselwerking. Op het eerste

Nadere informatie

Supersymmetric Lattice Models. Field Theory Correspondence, Integrabillity T.B. Fokkema

Supersymmetric Lattice Models. Field Theory Correspondence, Integrabillity T.B. Fokkema Supersymmetric Lattice Models. Field Theory Correspondence, Integrabillity T.B. Fokkema De gecondenseerde materie is een vakgebied binnen de natuurkunde dat tot doel heeft om de fysische eigenschappen

Nadere informatie

Zoektocht naar het Higgs deeltje. De Large Hadron Collider in actie. Stan Bentvelsen

Zoektocht naar het Higgs deeltje. De Large Hadron Collider in actie. Stan Bentvelsen Zoektocht naar het Higgs deeltje De Large Hadron Collider in actie Stan Bentvelsen KNAW Amsterdam - 11 januari 2011 1 Versnellen op CERN De versneller Large Hadron Collider sub- atomaire deeltjes botsen

Nadere informatie

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties tussen elementaire deeltjes.

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties tussen elementaire deeltjes. Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties tussen elementaire deeltjes. Interacties zullen plaats grijpen voor zover ze kinematisch toegelaten

Nadere informatie

Unitarity methods and On-shell Particles in Scattering Amplitudes R.J. Rietkerk

Unitarity methods and On-shell Particles in Scattering Amplitudes R.J. Rietkerk Unitarity methods and On-shell Particles in Scattering Amplitudes R.J. Rietkerk S SAMENVATTING Dit proefschrift gaat over de wereld van de allerkleinste deeltjes en beschrijft mijn promotieonderzoek over

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 6 oktober 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke echanica

Nadere informatie

Nieuwe resultaten van de zoektocht naar het Higgs deeltje in ATLAS

Nieuwe resultaten van de zoektocht naar het Higgs deeltje in ATLAS Nieuwe resultaten van de zoektocht naar het Higgs deeltje in ATLAS Op 4 juli 2012 presenteerde het ATLAS experiment een update van de actuele resultaten van de zoektocht naar het Higgs deeltje. Dat gebeurde

Nadere informatie

Relativistische kinematica

Relativistische kinematica Relativistische kinematica Gebruik van de Speciale Relativiteitstheorie vier vectoren Lengte van 4 vector: Inproduct van twee 4 vectoren Snelheid van CM systeem In LAB systeem staat deeltje 2 stil en kunnen

Nadere informatie

Theory DutchBE (Belgium) De grote hadronen botsingsmachine (LHC) (10 punten)

Theory DutchBE (Belgium) De grote hadronen botsingsmachine (LHC) (10 punten) Q3-1 De grote hadronen botsingsmachine (LHC) (10 punten) Lees eerst de algemene instructies in de aparte envelop alvorens te starten met deze vraag. In deze opdracht wordt de fysica van de deeltjesversneller

Nadere informatie

Zoektocht naar de elementaire bouwstenen van de natuur

Zoektocht naar de elementaire bouwstenen van de natuur Zoektocht naar de elementaire bouwstenen van de natuur Het atoom: hoe beter men keek hoe kleiner het leek Ivo van Vulpen CERN Mijn oude huis Anti-materie ATLAS detector Gebouw-40 globe 21 cctober, 2006

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische kosmologie II: 8 december 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D d.d. 6 januari 6 van 4: 7: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is

Nadere informatie

Higgs en de Kosmos Niels Tuning (Nikhef) 31 oktober 2013

Higgs en de Kosmos Niels Tuning (Nikhef) 31 oktober 2013 Higgs en de Kosmos Niels Tuning (Nikhef) 31 oktober 2013 De Higgs Waar gaat het over? Woensdag 4 juli 2012 Waarom is dit belangrijk? De Higgs Waar gaat het over? Dinsdag 8 oktober 2013 for the theoretical

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Jeroen Meidam Speciale relativiteitstheorie: 1 en 8 oktober 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Spinning the Higgs. Spin and Parity Measurement of the Discovered Higgs-Like Boson in the H WW lνlν Decay Mode R.Z. Aben

Spinning the Higgs. Spin and Parity Measurement of the Discovered Higgs-Like Boson in the H WW lνlν Decay Mode R.Z. Aben Spinning the Higgs. Spin and Parity Measurement of the Discovered Higgs-Like Boson in the H WW lνlν Decay Mode R.Z. Aben Samenvatting Als u zich ooit heeft afgevraagd waarom de materie om ons heen massa

Nadere informatie

De eerste orde correctie op de botsingsdoorsnede van het proces qq g g

De eerste orde correctie op de botsingsdoorsnede van het proces qq g g De eerste orde correctie op de botsingsdoorsnede van het proces qq g g Susanne Lepoeter versie 29 augustus 2011 1 Inhoudsopgave 1 Inleiding 3 2 Supersymmetrie 4 2.1 Het standaardmodel.........................

Nadere informatie

LHCb Wat doen wij? Niels Tuning voor ET - 8 januari 2013

LHCb Wat doen wij? Niels Tuning voor ET - 8 januari 2013 LHCb Wat doen wij? Niels Tuning voor ET - 8 januari 2013 LHCb Waarom deeltjesfysica? Waarom LHCb? Resultaten Upgrade Deeltjesfysica Bestudeert de natuur op afstanden < 10-15 m 10-15 m atoom kern Quantum

Nadere informatie

Van atoom tot kosmos

Van atoom tot kosmos HOVO cursus Februari/maart 2017 Van atoom tot kosmos Piet Mulders p.j.g.mulders@vu.nl 1 Omschrijving INLEIDING NATUURKUNDE Van atoom tot kosmos P.J. Mulders Afdeling Natuurkunde en Sterrenkunde/Nikhef

Nadere informatie

Symmetie en Symmetrie. in het Standaard Model

Symmetie en Symmetrie. in het Standaard Model Symmetie en Symmetrie in het Standaard Model Eric Laenen Utrecht Het Higgs deeltje Wat weet U wellicht al? - Higgs deeltje is klein (en duur) - media noemen het te vaak God-deeltje? - wordt gezocht onder

Nadere informatie

Op basis van de tweede wet van Newton kan onderstaand verband worden afgeleid. F = m a = m Δv Δt

Op basis van de tweede wet van Newton kan onderstaand verband worden afgeleid. F = m a = m Δv Δt Inhoud en stoot... 2 Voorbeeld: Kanonschot... 3 Opgaven... 4 Opgave: Tennisbal... 4 Opgave: Frontale botsing... 5 Opgave: Niet-frontale botsing... 5 1/5 en stoot Op basis van de tweede wet van Newton kan

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische inflatie: 3 december 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 30 september 013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben.

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben. Werkbladen HiSPARC Elementaire deeltjes C.G.N. van Veen 1 Hadronen Opdracht 1: Elementaire deeltjes worden onderverdeeld in quarks en leptonen. (a) Noem twee eigenschappen die quarks en leptonen met elkaar

Nadere informatie

college 2: partiële integratie

college 2: partiële integratie 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Samenvatting Eerste meting van de fragmentatiebreukverhouding f s /f d met laagste orde hadronische vervallen bij 7 TeV pp botsingen

Samenvatting Eerste meting van de fragmentatiebreukverhouding f s /f d met laagste orde hadronische vervallen bij 7 TeV pp botsingen Samenvatting Eerste meting van de fragmentatiebreukverhouding f s /f d met laagste orde hadronische vervallen bij 7 TeV pp botsingen Het belangrijkste in het leven, is om niet op te houden met het stellen

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 12 collegejaar college build slides Vandaag : : : : 17-18 12 4 september 217 3 ail Training Vessel 263 tad Amsterdam 1 2 3 4 stelling van Gauss stelling van Green Conservatieve vectorvelden 1 VA

Nadere informatie

H2: Het standaardmodel

H2: Het standaardmodel H2: Het standaardmodel 2.1 12 Fundamentele materiedeeltjes De elementaire deeltjes worden in 2 groepen opgedeeld volgens spin (aantal keer dat een deeltje rond zijn eigen as draait), de fermionen zijn

Nadere informatie

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale

Nadere informatie

28 augustus 2012, Introductiecollege 1e jaars studenten UvA. Het Higgs boson. Ivo van Vulpen (UvA/Nikhef)

28 augustus 2012, Introductiecollege 1e jaars studenten UvA. Het Higgs boson. Ivo van Vulpen (UvA/Nikhef) 28 augustus 2012, Introductiecollege 1e jaars studenten UvA Het Higgs boson Ivo van Vulpen (UvA/Nikhef) VWO examen natuurkunde 2012 Tijdens de botsing ontstaan allerhande elementaire deeltjes. Hierbij

Nadere informatie

Prof.dr. A. Achterberg, IMAPP

Prof.dr. A. Achterberg, IMAPP Prof.dr. A. Achterberg, IMAPP www.astro.ru.nl/~achterb/ Populaire ideeën: - Scalair quantumveld met de juiste eigenschappen; (zoiets als Higgs Veld) - Willekeurig scalair quantum veld direct na de Oerknal

Nadere informatie

(6 2 )( 6 ). 10 2x. ) h( ) ( 1) 1. schrijf als functie van p: K(p)= 12 p. b) substitueer zodat H een functie is van alleen q. 2.

(6 2 )( 6 ). 10 2x. ) h( ) ( 1) 1. schrijf als functie van p: K(p)= 12 p. b) substitueer zodat H een functie is van alleen q. 2. RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO NG/NT KLAS 1 Periode Diff/Int. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Antwoorden moeten altijd zijn voorzien van een berekening,

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB januari 2013, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB januari 2013, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 23 januari 2013, 1400-1700 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

Biofysische Scheikunde: Statistische Mechanica

Biofysische Scheikunde: Statistische Mechanica Biofysische Scheikunde: Statistische Mechanica De Boltzmannverdeling Vrije Universiteit Brussel 4 december 2009 Outline 1 De Boltzmannverdeling 2 Outline De Boltzmannverdeling 1 De Boltzmannverdeling 2

Nadere informatie

integreren is het omgekeerde van differentiëren

integreren is het omgekeerde van differentiëren Integraalrekening Als we een functie f(x) differentiëren is het resultaat de eerste afgeleide f (x). Dezelfde functie f(x) kunnen we ook integreren met als resultaat de zogenaamde primitieve functie F(x).

Nadere informatie

Deeltjes in Airshowers. N.G. Schultheiss

Deeltjes in Airshowers. N.G. Schultheiss 1 Deeltjes in Airshowers N.G. Shultheiss 1 Inleiding Deze module volgt op de module Krahten in het standaardmodel. Deze module probeert een beeld te geven van het ontstaan van airshowers (in de atmosfeer)

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

In de hoge-energiefysica werken we met deeltjes die hoge snelheden bezitten, soms zeer dicht bij de

In de hoge-energiefysica werken we met deeltjes die hoge snelheden bezitten, soms zeer dicht bij de In de hoge-energiefysica werken we met deeltjes die hoge snelheden bezitten, soms zeer dicht bij de lichtsnelheid c (in vacuüm). De fysische wetten die de interacties tussen deze deeltjes beschrijven mogen

Nadere informatie

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties ti tussen elementaire deeltjes. Interacties ti zullen plaats grijpen voor zover ze kinematisch toegelaten

Nadere informatie

SAMENVATTING HOGE ENERGIE FYSICA. (Summary in Dutch)

SAMENVATTING HOGE ENERGIE FYSICA. (Summary in Dutch) SAMENVATTING (Summary in Dutch) De specialisatie binnen theoretische natuurkunde waartoe het in dit proefschrift beschreven onderzoek behoort is de hoge energie fysica. We beginnen deze samenvatting met

Nadere informatie

1 De Hamilton vergelijkingen

1 De Hamilton vergelijkingen 1 De Hamilton vergelijkingen Gegeven een systeem met m vrijheidsgraden, geparametriseerd door m veralgemeende coördinaten q i, i {1,, m}, met lagrangiaan L(q, q, t). Nemen we de totale differentiaal van

Nadere informatie

Gravitatie en kosmologie maandag 7 oktober 2013 OPGAVEN WEEK 6

Gravitatie en kosmologie maandag 7 oktober 2013 OPGAVEN WEEK 6 1 Gravitatie en kosmologie maandag 7 oktober 013 OPGAVEN WEEK 6 Opgave 1: We bespreken kort Rindler space en de connectie met de Tweelingparadox. We kijken naar een uniform versnelde waarnemer (we beschouwen

Nadere informatie

Meesterklas Deeltjesfysica. Universiteit Antwerpen

Meesterklas Deeltjesfysica. Universiteit Antwerpen Meesterklas Deeltjesfysica Universiteit Antwerpen Programma 9u45 10u00 11u00 11u15 11u45 12u00 13u00 15u00 15u30 17u00 Verwelkoming Deeltjesfysica Prof. Nick van Remortel Pauze Versnellers en Detectoren

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

Opgave Zonnestelsel 2005/2006: 7. 7 Het viriaal theorema en de Jeans Massa: Stervorming. 7.1 Het viriaal theorema

Opgave Zonnestelsel 2005/2006: 7. 7 Het viriaal theorema en de Jeans Massa: Stervorming. 7.1 Het viriaal theorema Opgave Zonnestelsel 005/006: 7 7 Het viriaal theorema en de Jeans Massa: Stervorming 7. Het viriaal theorema Het viriaal theorema is van groot belang binnen de sterrenkunde: bij stervorming, planeetvorming

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 5 juli 2013, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 5 juli 2013, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 5 juli 2013, 9.00-12.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die bij

Nadere informatie

Elementaire deeltjes 2 College 6 Maandag 9 maart 2009

Elementaire deeltjes 2 College 6 Maandag 9 maart 2009 Elementaire deeltjes 2 College 6 Maandag 9 maart 2009 Stan Bentvelsen Nikhef Kruislaan 409-1098 SJ Amsterdam Kamer H250 tel 020 592 5140 s.bentvelsen@uva.nl Feynman regels #$%&$'()*&+%,"-++%"$./$"-$%&$'"01&%+23*$$%"$$1"()*&+%"!"#$

Nadere informatie

De ontdekking van het Higgs boson. Ivo van Vulpen

De ontdekking van het Higgs boson. Ivo van Vulpen De ontdekking van het Higgs boson Ivo van Vulpen CERN in Genève, Zwitserland Mijn oude huis ATLAS experiment vergaderen hotel kantine directeur theoreten Deeltjesfysica 10-15 m atoom kern Wat zijn de bouwstenen

Nadere informatie

Deel 1: in het Standaard Model bestaan er 3 generaties (flavours) neutrino s. dit werd met grote precisie bevestigd door de metingen bij de LEP

Deel 1: in het Standaard Model bestaan er 3 generaties (flavours) neutrino s. dit werd met grote precisie bevestigd door de metingen bij de LEP In dit hoofdstuk worden eerst de ontdekkingen van de neutrale en geladen leptonen besproken. Vervolgens wordt de ontdekking van het pion besproken, nauw verbonden met de ontdekking van het muon. Ten slotte

Nadere informatie

Het berekenbare Heelal

Het berekenbare Heelal Het berekenbare Heelal 1 BETELGEUSE EN HET DOPPLEREFFECT HET IS MAAR HOE JE HET BEKIJKT NAAR EEN GRENS VAN HET HEELAL DE STRINGTHEORIE HET EERSTE BEREKENDE WERELDBEELD DE EERSTE SECONDE GUT, TOE, ANTROPISCH

Nadere informatie

Higgs en de Kosmos Niels Tuning (Nikhef) Hoorn, 15 april 2014

Higgs en de Kosmos Niels Tuning (Nikhef) Hoorn, 15 april 2014 Higgs en de Kosmos Niels Tuning (Nikhef) Hoorn, 15 april 2014 De Higgs Waar gaat het over? Woensdag 4 juli 2012 Waarom is dit belangrijk? De Higgs Waar gaat het over? Dinsdag 8 oktober 2013 for the theoretical

Nadere informatie

Opgave 1 Vervormd vierkant kristal en elektronische structuur (totaal 24 punten)

Opgave 1 Vervormd vierkant kristal en elektronische structuur (totaal 24 punten) 3NC2 Gecondenseerde materie 215 Extra tentamen, 1 april 215 Algemeen: Beargumenteer je antwoorden. Vermeld zowel de gebruikte basisformules als de tussenstappen in de afleiding. Mogelijk te gebruiken formules:

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

Citation for published version (APA): Vos, K. K. (2016). Symmetry violation in weak decays [Groningen]: University of Groningen

Citation for published version (APA): Vos, K. K. (2016). Symmetry violation in weak decays [Groningen]: University of Groningen University of Groningen Symmetry violation in weak decays Vos, Kimberley Keri IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check

Nadere informatie

1 OPGAVE. 1. Stel dat we kansdichtheid ρ van het Klein-Gordon veld φ zouden definieren op de Schödingermanier

1 OPGAVE. 1. Stel dat we kansdichtheid ρ van het Klein-Gordon veld φ zouden definieren op de Schödingermanier OPGAVE. Opgave. Stel dat we kansdichtheid ρ van het Klein-Gordon veld φ zouden definieren op de Schödingermanier : ρ = φ φ, waarin φ de Klein-Gordonfunctie is. De stroom j van kansdichtheid wor in Schrödingers

Nadere informatie

Een Lied over Bomen en Pinguïns

Een Lied over Bomen en Pinguïns S Een Lied over Bomen en Pinguïns Beste lezer, In de volgende pagina s zou ik jou graag meenemen naar de wereld waarin ik de afgelopen jaren geleefd heb. Deze wereld wordt bewoond door de allerkleinste

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Nederlandse samenvatting

Nederlandse samenvatting Nederlandse samenvatting Titel vertaling: Strategieën voor de Jacht op Nieuwe Fysica met Strange Beauty Mesonen Deeltjesfysica De wetten van de natuur onderbouwen, althans in principe, alle observaties

Nadere informatie

EEN ONTDEKKINGSREIS NAAR HET ALLERKLEINSTE EN ALLERGROOTSTE

EEN ONTDEKKINGSREIS NAAR HET ALLERKLEINSTE EN ALLERGROOTSTE 10 maart 2014 EEN ONTDEKKINGSREIS NAAR HET ALLERKLEINSTE EN ALLERGROOTSTE PUBLIC SCIENCE MET PIET MULDERS, JAN VAN DEN BERG EN SABRINA COTOGNO Inhoud Proloog De atomaire wereld De subatomaire wereld. De

Nadere informatie

1 Bellenvat. 1.1 Intorductie. 1.2 Impuls bepaling

1 Bellenvat. 1.1 Intorductie. 1.2 Impuls bepaling 1 Bellenvat 1.1 Intorductie In dit vraagstuk zullen we een analyse doen van een bellenvat foto die genomen is van een interactie van een π bundeldeeltje in een waterstof bellenvat. De bijgesloten foto

Nadere informatie

Algemeen. Cosmic air showers J.M.C. Montanus. HiSPARC. 1 Kosmische deeltjes. 2 De energie van een deeltje

Algemeen. Cosmic air showers J.M.C. Montanus. HiSPARC. 1 Kosmische deeltjes. 2 De energie van een deeltje Algemeen HiSPARC Cosmic air showers J.M.C. Montanus 1 Kosmische deeltjes De aarde wordt continu gebombardeerd door deeltjes vanuit de ruimte. Als zo n deeltje de dampkring binnendringt zal het op een gegeven

Nadere informatie

Next-to-Soft Factorization and Unitarity in Drell-Yan Processes D. Bonocore

Next-to-Soft Factorization and Unitarity in Drell-Yan Processes D. Bonocore Next-to-Soft Factorization and Unitarity in Drell-Yan Processes D. Bonocore Samenvatting In deze samenvatting probeer ik een beschrijving te geven van de thema s in dit proefschrift zonder technische details

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie