-- IX (q)e - ie 2 t/h

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "-- IX (q)e - ie 2 t/h"

Transcriptie

1 -- IX - -- HOOFDSTUK IX TIJDSAFHANKELIJKE PROCESSEN Dit oofdstuk is bedoeld om enig inzict te geven in de manier waarop de intensiteiten van de lijnen in een spectrum berekend kunnen worden. Omdat een nette afleiding van de benodigde formules nogal ingewikkeld is, beperken we ons tot een globaal overzict. Omdat de wisselwerking van een molecule met elektromagnetisce straling een tijdsafankelijke proces is ebben we in plaats van de stationaire Scrödinger-vergelijking HΨ=EΨ de tijdsafankelijke S.V. nodig (I-()) H^ (q,t)! (q,t) = -!!(q,t) i!t () Hieraan voldoen niet alleen stationaire oplossingen ψ k (q)e - ie k t/-, maar ook lineaire combinaties van dergelijke oplossingen:!(q,t) = " k c k! k (q,t) Men noemt dit ook wel een superpositie van stationaire oplossingen. Zolang H^ de tijd niet bevat is elke Ψ van de vorm () met coëfficiënten c k die constant zijn in de tijd een oplossing van (). () <> Verifieer dat de (niet-genormeerde) superpositie!(q,t) = " (q) e - ie t/ + " (q)e - ie t/ voldoet aan (), mits H^ de tijd niet bevat. Ga na dat de waarscijnlijkeidsdicteid Ψ * Ψ niet constant is in de tijd, maar de energie <H> wel. Er is dus beoud van energie (et systeem is een "conservatief" systeem) Omdat de waarscijnlijkeidsdicteid Ψ * Ψ van t afangt bescrijft () een niet-stationaire toestand. De waarscijnlijkeid om de deeltjes aan te treffen op bepaalde plekken in de ruimte verandert voortdurend. Laten we dit nader bekijken voor et voorbeeld uit som. Indien we, voor et gemak, ψ (q) en ψ (q) reëel veronderstellen, dan geldt (gebruik e iz = cos Z + i sin Z): Ψ * Ψ = ψ (q) + ψ (q) + ψ (q).cos t (3) π ( ) Hierin varieert de cosinus term van + ( voor t= 0, t =, t =,...)

2 -- IX - -- naar - (voor t =, t = 3 ),...), zodat Ψ * Ψ varieert tussen Ψ * Ψ = ψ (q) + ψ (q) + ψ (q) = ( ψ (q) + ψ (q) ) (4) voor t = (n-)., en Ψ * Ψ = ψ (q) + ψ (q) - ψ (q) = ( ψ (q) - ψ (q) ) (5) voor t = (n- ).,. Voorbeeld: superpositie van de laagste twee stationaire toestanden van een deeltje in een - dimensionaal doosje : stationair! k (q) niet stationair de grens-situaties E! +!! -! E k E q t = 0,... t = _ E - E,... niet stationair! *! E = E + E In dit voorbeeld varieert de waarscijnlijkeidsdicteid tussen de uitersten ψ +ψ en ψ -ψ en et ele proces eraalt zic E - E keer per seconde. Een rectstreeks gevolg iervan is, dat et systeem zou kunnen wisselwerken met een elektromagnetisce golf van dezelfde frekwentie ν = E - E ). Dan geldt ν (de energie van een poton in de golf) = (et energieverscil tussen de twee stationaire toestanden in

3 -- IX de superpositie), d.w.z. aan de Planckse voorwaarde (resonantie voorwaarde) wordt dan voldaan. Bestraalt men et systeem met een elektromagnetisce golf van gescikte frequentie dan zijn elektrisce en magnetisce overgangen in et systeem mogelijk, waarvan we alleen de eerste soort (kort) bespreken. Elektrisce overgangen worden bewerkstelligd door de elektrisce component van de golf, die ter plaatse van et systeem een elektrisce veldsterkte veroorzaakt ter grootte van E x cosπ νt. (Hierbij wordt aangenomen dat de golf gepolariseerd is in de x-ricting en dat et systeem klein is t.o.v. de golflengte λ=c/ν, zodat in alle delen van et systeem de fase van de golf gelijk is, en dus E x constant. Het veld E x is dan omogeen). De wisselwerking tussen et molecule en de elektromagnetisce straling wordt nu bescreven m.b.v. (tijdsafankelijke) storingsrekening. Dit oudt in dat we aan de Hamiltoniaan voor et molecule een extra term moeten toevoegen, die de potentiële energie van et molecule in et elektromagnetisce veld weergeeft. Aangezien we alleen de elektrisce component bescouwen, en aangezien we et veld E x omogeen veronderstellen, reduceert deze potentiële energie term tot de potentiële energie van et moleculaire dipoolmoment M in et veld E x cosπνt. In operatorvorm: H^ storing = - E x cosπν t. M^ x (6) waarin M^ x de operator is voor de x-component van M. Deze M^ x is een functie van de x- coördinaten van de deeltjes in et molecule (nl. M ˆ x = " Q i! x i met Q de lading van deeltje i) i M.b.v. (3) kunnen we direkt zien dat et dipoolmoment voor de lineaire combinatie () evenals Ψ*Ψ in de tijd varieert. Neem daartoe de verwactingswaarde: (met factor wegens normering) <M x > =! "*(q,t)m ^ x "(q,t)d# = = < $ M x $ + <$ M x $ + <$ M x $ cos [%(E - E ) t/] (7) waarin < betekent dat alleen over de coördinaten q geïntegreerd wordt (niet over t). Hieruit zien we dat et dipoolmoment M x varieert in de tijd (met de frekwentie ν = E - E ) bealve wanneer om een of andere reden de integraal <ψ M x ψ nul zou zijn. Deze integraal, die afgekort kan worden als (M x ), wordt et overgangsmoment genoemd tussen de stationaire toestanden Ψ en Ψ.

4 -- IX In aanwezigeid van de golf is H^, wegens (6), tijdsafankelijk. Noc de stationaire toestanden ψ k (q,t) noc superposities met t-onafankelijke coëfficiënten (zoals in som ) zijn nu oplossingen van (I-). Een gedetailleerde bescouwing leert dat de toestand van et systeem nu bescreven kan worden met een Ψ(q,t) van de vorm Ψ(q,t) = c (t)ψ (q,t) + c (t)ψ (q,t) (8) d.w.z. met tijdsafankelijke coëfficiënten. Bevond et systeem zic aanvankelijk in de toestand Ψ (q,t) dan zal door toedoen van de golf er een zekere kans zijn dat na enige tijd et systeem bescreven wordt door Ψ (q,t) (en andersom). Deze kans wordt overgangswaarscijnlijkeid genoemd. Toepassing van de tijdsafankelijke storingsrekening leidt tot et volgende resultaat. Als we van de stationaire toestand Ψ uitgaan, dan geldt na korte tijd c (9) c E x (M x ) (In de volledige uitdrukking voor c zit ook de resonantie voorwaarde ν = E -E verwerkt). De kans dat de overgang van Ψ naar Ψ eeft plaatsgevonden wordt gegeven door c en deze kans is dus evenredig met E (Mx x ) (0) (als aan de resonantievoorwaarde voldaan is). De overgangswaarscijnlijkeid c is dus evenredig met E x (de intensiteit van de golf) en met et kwadraat van (M x) (et overgangsmoment). Als (M x ) =0, dan is de overgang (dipool) verboden. In systemen met enige symmetrie (b.v. atomen, H, armonisce oscillator, aromatisce koolwaterstoffen) zijn niet alle overgangen toegestaan. De regels die aangeven wanneer (M x ) 0 worden selectieregels genoemd. Tenslotte kunnen we opmerken dat in deze bescouwing alleen de belangrijkste bijdrage tot H^ storing meegenomen is, nl. de elektrisce veldsterkte en et dipoolmoment van et molecule. In de praktijk dragen diverse andere mecanismen tot de overgangswaarscijnlijkeid bij, zoals oger elektrisce momenten (quadrupoolmoment, etc.) en de magnetisce component van de elektromagnetisce straling. Deze geven ecter steeds aanleiding tot relatief zwakke intensiteiten.

5 -- IX <> De grondtoestand van een -elektron systeem wordt bescreven met de configuratie aā. Door bestralen met lict van gescikte frequentie kunnen we et systeem in een enkelaangeslagen toestand brengen, waarin de orbitals a en b elk enkel bezet zijn. De elektronspins kunnen dan singlet-gekoppeld zijn (golffunctie ( ab! ab ) ) dan wel triplet-gekoppeld (golffunctie ( ab + ab ), ab, ab ); (zie oofdstuk V). De singlet toestand ligt in energie boven de triplet toestand. Toon aan dat de overgang van de grondtoestand naar de singlet-toestand toegestaan is, mits <a x b> 0, terwijl de overgang naar de triplet-toestand (spin) verboden is. Dit is de basis voor de verscijnselen fluorescentie en fosforescentie. <3> De eigenfuncties ψ v (x) van de armonisce oscillator zijn afwisselend even (v=0,,4,6,..) en oneven (v=,3,5,...) van x. Toon aan dat overgangen waarbij Δv= (dus van even naar even of van oneven naar oneven) symmetrie verboden zijn. Hint:. De operator M^ x = e x^ is oneven

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur Tentamen Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April 2014 Tijd/tijdsduur: 3 uur Docent(en) en/of tweede lezer: Dr. F.C. Grozema Prof. dr. L.D.A. Siebbeles Dit tentamen bestaat uit 5 opgaven:

Nadere informatie

Tentamen QCB juni 2007, 9:00-12:00 uur, A. van der Avoird

Tentamen QCB juni 2007, 9:00-12:00 uur, A. van der Avoird Aantal pagina s: 6 1 Tentamen QCB 3 27 juni 2007, 9:00-12:00 uur, A. van der Avoird Vraagstuk 1 1a. Teken een MO energieschema (correlatiediagram) van het molecuul O 2, uitgaande van de atomaire niveau

Nadere informatie

-- I HOOFDSTUK I INLEIDING TOT ENKELE QUANTUMMECHANISCHE BEGRIPPEN

-- I HOOFDSTUK I INLEIDING TOT ENKELE QUANTUMMECHANISCHE BEGRIPPEN -- I - 1 - HOOFDSTUK I INLEIDING TOT ENKELE QUANTUMMECHANISCHE BEGRIPPEN Inleiding Op basis van de klassieke mechanica kunnen het bestaan van stabiele atomen en de vorming van moleculen niet verklaard

Nadere informatie

Tentamen QCB 3. 12 juli 2005, 9:00-12:00 uur, A. van der Avoird

Tentamen QCB 3. 12 juli 2005, 9:00-12:00 uur, A. van der Avoird Aantal pagina s: 5 1 Tentamen QCB 3 12 juli 2005, 9:00-12:00 uur, A. van der Avoird Vraagstuk 1 Het molecuul NH heeft een triplet grondtoestand. N heeft atoomnummer 7, en we nemen aan dat de 1s en 2s electronen

Nadere informatie

Verstrooiing aan potentialen

Verstrooiing aan potentialen Verstrooiing aan potentialen In deze notitie zullen we verstrooiing beschouwen aan model potentialen, d.w.z. potentiaal stappen, potentiaal bergen en potentiaal putten. In de gebieden van de potentiaal,

Nadere informatie

Biofysische Scheikunde: NMR-Spectroscopie

Biofysische Scheikunde: NMR-Spectroscopie De Scalaire Koppeling Vrije Universiteit Brussel 13 maart 2012 Outline 1 De Invloed van Andere Kernen 2 Outline 1 De Invloed van Andere Kernen 2 Opnieuw Ethanol (1) Met een nauwkeuriger NMR-instrument

Nadere informatie

QUANTUM FYSICA 1 3NB50. donderdag 28 oktober uur. Dit tentamen omvat 2 opgaven.

QUANTUM FYSICA 1 3NB50. donderdag 28 oktober uur. Dit tentamen omvat 2 opgaven. 1 QUANTUM FYSICA 1 3NB5 donderdag 8 oktober 1 14. 17. uur Dit tentamen omvat opgaven. Bij ieder onderdeel wordt aangegeven wat de maximale score is op een schaal van 1 punten. Het formuleblad voor dit

Nadere informatie

7. Hoofdstuk 7 : De Elektronenstructuur van Atomen

7. Hoofdstuk 7 : De Elektronenstructuur van Atomen 7. Hoofdstuk 7 : De Elektronenstructuur van Atomen 7.1. Licht: van golf naar deeltje Frequentie (n) is het aantal golven dat per seconde passeert door een bepaald punt (Hz = 1 cyclus/s). Snelheid: v =

Nadere informatie

Tentamen QCB augustus 2005, 14:00-17:00 uur, A. van der Avoird

Tentamen QCB augustus 2005, 14:00-17:00 uur, A. van der Avoird Aantal pagina s: 5 1 Tentamen QB 3 9 augustus 005, 14:00-17:00 uur, A. van der Avoird Vraagstuk 1 et B atoom heeft grondtoestand 1s s p en het atoom grondtoestand 1s, dus het molecuul B heeft vier valentie-elektronen.

Nadere informatie

Tentamen QCB 3. 7 juli 2006, 9:00-12:00 uur, A. van der Avoird

Tentamen QCB 3. 7 juli 2006, 9:00-12:00 uur, A. van der Avoird Aantal pagina s: 5 1 Tentamen QCB 3 7 juli 2006, 9:00-12:00 uur, A. van der Avoird Vraagstuk 1 Het Be atoom heeft grondtoestand 1s 2 2s 2, dus het molecuul BeH 2 heeft vier valentie-elektronen: twee van

Nadere informatie

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016 Kwantummechanica HOVO cursus Jo van den Brand Lecture 4: 13 oktober 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: jo@nikhef.nl 0620 539 484 / 020

Nadere informatie

Fluorescentie. dr. Th. W. Kool, N.G. Schultheiss

Fluorescentie. dr. Th. W. Kool, N.G. Schultheiss 1 Fluorescentie dr. Th. W. Kool, N.G. Schultheiss 1 Inleiding Deze module volgt op de module de Broglie. Het detecteren van kosmische straling in onze ski-boxen geschiedt met behulp van het organische

Nadere informatie

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy (Kernspinresonantie spectroscopie) 1 Toepassingen van NMR-spectroscopie Structuuropheldering van (vaak) organische verbindingen Identificatie van onbekende stoffen

Nadere informatie

Analyse: vraagstuk van Kepler

Analyse: vraagstuk van Kepler Analyse: vraagstuk van Kepler Deel : Afleiden tweede wet (wet der perken) Redelijk simpel. Uit de bewegingsvergelijking volgt dat =. Dit impliceert dat = =. Als je weet dat de tangentiële component van

Nadere informatie

-- III De variatiemethode berust voor de grondtoestand op het volgende theorema:

-- III De variatiemethode berust voor de grondtoestand op het volgende theorema: -- III - 1 - HOOFDSTUK III VARIATIEREKENING Alleen voor enele zeer eenvoudige systemen an de Schrödinger Vergeliing exact worden opgelost, in alle andere gevallen moeten benaderingen worden toegepast.

Nadere informatie

Biofysische Scheikunde: NMR-Spectroscopie

Biofysische Scheikunde: NMR-Spectroscopie Inleiding & Kernmagnetisme Vrije Universiteit Brussel 19 maart 2012 Outline 1 Overzicht en Context 2 3 Outline 1 Overzicht en Context 2 3 Doelstelling Eiwitten (en andere biologische macromoleculen) Functionele

Nadere informatie

Voorbeeld 1: Oneindig diepe potentiaalput

Voorbeeld 1: Oneindig diepe potentiaalput Voorbeeld : Oneindig diepe potentiaalput In de onderstaande figuren bevindt zich een deeltje in een eendimensionale ruimte tussen x 0 en x a. Binnen dat gebied is de potentiële energie van het deeltje

Nadere informatie

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1},

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1}, Hoofdstuk II Calculus Les Differentiatie van functies Waarscijnlijk eeft iedereen wel een idee ervan wat een functie is, maar voor de duidelijkeid zal et andig zijn om de meest belangrijke begrippen na

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 9 januari 2008 van 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 9 januari 2008 van 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D d.d. 9 januari 8 van 9: : uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is niet

Nadere informatie

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme Wiskunde voor kunstmatige intelligentie, 006 Les Speciale functies We ebben in de vorige les een aantal elementaire functies bekeken en iervoor gezien oe we deze functies kunnen afleiden. In wezen waren

Nadere informatie

Voorbeeldexamenopgaven VWO Correctievoorschrift Quantumwereld Natuurkunde

Voorbeeldexamenopgaven VWO Correctievoorschrift Quantumwereld Natuurkunde Voorbeeldexamenopgaven VWO Correctievoorscrift Quantumwereld Natuurkunde Voorbeeldexamenopgaven Quantumwereld natuurkunde vwo Laserpulsen maximumscore 3 6 uitkomst: T 4,5 0 s voorbeeld van een berekening:

Nadere informatie

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties tussen elementaire deeltjes.

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties tussen elementaire deeltjes. Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties tussen elementaire deeltjes. Interacties zullen plaats grijpen voor zover ze kinematisch toegelaten

Nadere informatie

TENTAMEN ELEKTROMAGNETISME (8N010)

TENTAMEN ELEKTROMAGNETISME (8N010) TENTAMEN ELEKTROMAGNETISME (8N010) Opmerkingen: 1. Dit tentamen bestaat uit 4 vragen met in totaal 19 deelvragen. Elke deelvraag levert 3 punten op. 2. Het is toegestaan gebruik te maken van bijgeleverd

Nadere informatie

Tentamen TCl l8 januari 2008' 9-12uur, zaal Cl (Gorlaeus).

Tentamen TCl l8 januari 2008' 9-12uur, zaal Cl (Gorlaeus). I Tentamen TCl l8 januari 2008' 9-12uur, zaal Cl (Gorlaeus). 1. Basisinzichten Geef van de onderstaande beweringen aan of zewaar of niet waar zijn (er hoeven geen argumenten gegeven te worden; het mag

Nadere informatie

Geleid herontdekken van de golffunctie

Geleid herontdekken van de golffunctie Geleid herontdekken van de golffunctie Nascholingscursus Quantumwereld Lodewijk Koopman lkoopman@dds.nl januari-maart 2013 1 Dubbel-spleet experiment Er wordt wel eens gezegd dat elektronen interfereren.

Nadere informatie

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy (Kernspin resonantie spectroscopie) Toepassingen van NMR spectroscopie Structuuropheldering van (vaak) organische verbindingen Identificatie van onbekende stoffen

Nadere informatie

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties ti tussen elementaire deeltjes. Interacties ti zullen plaats grijpen voor zover ze kinematisch toegelaten

Nadere informatie

Impulsmoment en spin: een kort resumé

Impulsmoment en spin: een kort resumé D Impulsmoment en spin: een kort resumé In deze appendix worden de relevante aspecten van impulsmoment en spin in de kwantummechanica op een rijtje gezet. Dit is een kort resumé van de stof die in het

Nadere informatie

Algemeen: Beargumenteer je antwoorden. Vermeld zowel de gebruikte basisformules als de tussenstappen in de afleiding.

Algemeen: Beargumenteer je antwoorden. Vermeld zowel de gebruikte basisformules als de tussenstappen in de afleiding. 3NC0 Gecondenseerde materie 0 Tentamen, april 0 lgemeen: eargumenteer e antwoorden Vermeld zowel de gebruite basisformules als de tussenstappen in de afleiding Mogeli te gebruien formules: De Fermi-Dirac

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Buiging van een belaste balk

Buiging van een belaste balk Buiging van een belaste balk (Modelbouw III) G. van Delft Studienummer: 0480 E-mail: gerardvandelft@email.com Tel.: 06-49608704 4 juli 005 Doorbuigen van een balk Wanneer een men een balk op het uiteinde

Nadere informatie

Het Zeemaneffect. Folkert Nobels 1 *, Bas Roelenga Theorie. Contents. Inleiding

Het Zeemaneffect. Folkert Nobels 1 *, Bas Roelenga Theorie. Contents. Inleiding Natuurkundig practicum 3 2013-2014 Het Zeemaneffect Folkert Nobels 1 *, Bas Roelenga 1 Abstract In dit experiment wordt met behulp van het Zeemaneffect de waarde van het Bohrmagneton bepaald. Dit is gedaan

Nadere informatie

Tentamen QCB 3. 30 augustus 2006, 14:00-17:00 uur, A. van der Avoird

Tentamen QCB 3. 30 augustus 2006, 14:00-17:00 uur, A. van der Avoird Aantal pagina s: 6 1 Tentamen QCB 3 30 augustus 2006, 14:00-17:00 uur, A. van der Avoird Vraagstuk 1 Neem het molecuul CH 2 met het C atoom in de oorsprong, de beide H atomen in het xy-vlak en de x-as

Nadere informatie

Biofysische Scheikunde: NMR-Spectroscopie

Biofysische Scheikunde: NMR-Spectroscopie Puls/FT-NMR Spindynamica & Puls/FT-Spectroscopie Vrije Universiteit Brussel 17 april 2012 Puls/FT-NMR Outline 1 Puls/FT-NMR 2 Outline Puls/FT-NMR 1 Puls/FT-NMR 2 Quantumbeschrijving van een Spin-1/2 Larmorprecessie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Uitwerking Tentamen Quantumfysica van 15 april 010. 1. (a) De ket α is een vector in de Hilbertruimte H, en de bra β een co-variante vector

Nadere informatie

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012 - Biologie Schriftelijk examen 2e Ba Biologie 2011-2012 Naam en studierichting: Aantal afgegeven bladen, deze opgaven niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de

Nadere informatie

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS 22 juli 1999 70 --- 13 de internationale olympiade Opgave 1. Absorptie van straling door een gas Een cilindervormig vat, met de as vertikaal,

Nadere informatie

-- VII - 1 -- HOOFDSTUK VII AB INITIO BEREKENINGEN IN DE PRAKTIJK

-- VII - 1 -- HOOFDSTUK VII AB INITIO BEREKENINGEN IN DE PRAKTIJK -- VII - 1 -- HOOFDSTUK VII AB INITIO BEREKENINGEN IN DE PRAKTIJK Basis sets Omdat we zowel in de Hartree-Fock als in de CI methode de LCAO-MO benadering gebruiken moeten we bij het opzetten van zo'n berekening

Nadere informatie

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige beweging Trilling en

Nadere informatie

Supersymmetric Lattice Models. Field Theory Correspondence, Integrabillity T.B. Fokkema

Supersymmetric Lattice Models. Field Theory Correspondence, Integrabillity T.B. Fokkema Supersymmetric Lattice Models. Field Theory Correspondence, Integrabillity T.B. Fokkema De gecondenseerde materie is een vakgebied binnen de natuurkunde dat tot doel heeft om de fysische eigenschappen

Nadere informatie

Verticale bewegingen ABC ABC

Verticale bewegingen ABC ABC Verticale bewegingen Bepaling divergentie J.C. Bellamy eeft een objectieve metode ontwikkeld om de divergentie te berekenen uit drie windwaarnemingen. Hebben we windwaarnemingen op meerdere niveau s (uit

Nadere informatie

Opgave 1 Vervormd vierkant kristal en elektronische structuur (totaal 24 punten)

Opgave 1 Vervormd vierkant kristal en elektronische structuur (totaal 24 punten) 3NC2 Gecondenseerde materie 215 Extra tentamen, 1 april 215 Algemeen: Beargumenteer je antwoorden. Vermeld zowel de gebruikte basisformules als de tussenstappen in de afleiding. Mogelijk te gebruiken formules:

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 24 November, 2008 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Het berekenbare Heelal

Het berekenbare Heelal Het berekenbare Heelal 1 BETELGEUSE EN HET DOPPLEREFFECT HET IS MAAR HOE JE HET BEKIJKT NAAR EEN GRENS VAN HET HEELAL DE STRINGTHEORIE HET EERSTE BEREKENDE WERELDBEELD DE EERSTE SECONDE GUT, TOE, ANTROPISCH

Nadere informatie

TENTAMEN. Van Quantum tot Materie

TENTAMEN. Van Quantum tot Materie TENTMEN Van Quantum tot Materie Prof. Dr. C. Gooijer en Prof. Dr. R. Griessen Vrijdag 22 december 2006 12.00-14.45 Q105/ M143/ C121 Dit schriftelijk tentamen bestaat uit 5 opdrachten. Naast de titel van

Nadere informatie

Uitwerking- Het knikkerbesraadsel

Uitwerking- Het knikkerbesraadsel Figure 1: Afleiding faseverschuiving eerste laag. Uitwerking- Het knikkerbesraadsel 1. (a) Als de punten C en D in fase zijn, zal er constructieve interferentie optreden [1]. Het verschil in optische padlengte

Nadere informatie

Schoolexamen Moderne Natuurkunde

Schoolexamen Moderne Natuurkunde Schoolexamen Moderne Natuurkunde Natuurkunde 1,2 VWO 6 3 april 2006 Tijdsduur: 90 minuten eze toets bestaat uit twee delen (I en II). In deel I wordt basiskennis getoetst aan de hand van 12 meerkeuzevragen.

Nadere informatie

Atoomfysica uitwerkingen opgaven

Atoomfysica uitwerkingen opgaven Atoomfysica uitwerkingen opgaven Opgave 1.1 Wat zijn golven? a Geef nog een voorbeeld van een golf waaraan je kunt zien dat de golf zich wel zijwaarts verplaatst maar de bewegende delen niet. de wave in

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D d.d. 6 januari 6 van 4: 7: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is

Nadere informatie

Het vinden van een particuliere oplossing

Het vinden van een particuliere oplossing Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat

Nadere informatie

toelatingsexamen-geneeskunde.be

toelatingsexamen-geneeskunde.be Fysica juli 2009 Laatste update: 31/07/2009. Vragen gebaseerd op het ingangsexamen juli 2009. Vraag 1 Een landingsbaan is 500 lang. Een vliegtuig heeft de volledige lengte van de startbaan nodig om op

Nadere informatie

Quantummechanica voor jong en oud. Gerard Nienhuis Huygens Laboratorium Universiteit Leiden

Quantummechanica voor jong en oud. Gerard Nienhuis Huygens Laboratorium Universiteit Leiden Quantummechanica voor jong en oud Gerard Nienhuis Huygens Laboratorium Universiteit Leiden Klassieke natuurkunde fysische objecten: materie en straling; materie bestaat uit deeltjes met massa, straling

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB januari 2013, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB januari 2013, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 23 januari 2013, 1400-1700 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die

Nadere informatie

Tentamen Natuurkunde 1A 09.00 uur - 12.00 uur vrijdag 14 januari 2011 docent drs.j.b. Vrijdaghs

Tentamen Natuurkunde 1A 09.00 uur - 12.00 uur vrijdag 14 januari 2011 docent drs.j.b. Vrijdaghs Tentamen Natuurkunde 1A 09.00 uur - 12.00 uur vrijdag 14 januari 2011 docent drs.j.b. Vrijdaghs Aanwijzingen: Dit tentamen omvat 6 opgaven met totaal 20 deelvragen Begin elke opgave op een nieuwe kant

Nadere informatie

Samenvatting PMN. Golf en deeltje.

Samenvatting PMN. Golf en deeltje. Samenvatting PMN Golf en deeltje. Het foto-elektrisch effect: Licht als energiepakketjes (deeltjes) Foton (ã) impuls: en energie Deeltje (m) impuls en energie en golflengte Zowel materie als golven (fotonen)

Nadere informatie

Lineaire algebra 1 najaar Complexe getallen

Lineaire algebra 1 najaar Complexe getallen Lineaire algebra 1 najaar 2008 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 + 1 steeds

Nadere informatie

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d Eindtoets 3BTX1: Thermische Fysica Datum: 3 juli 2014 Tijd: 9.00-12.00 uur Locatie: paviljoen study hub 2 vak c & d Deze toets bestaat uit 3 opgaven die elk op een nieuwe pagina aanvangen. Maak de opgaven

Nadere informatie

Oefeningenexamen Fysica 2 1ste zit 2006-2007

Oefeningenexamen Fysica 2 1ste zit 2006-2007 Oefeningenexamen 2006-2007 12 januari 2007 Naam en groep: Aantal afgegeven bladen, dit blad niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de vermelding 12/01/2007 alsook

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN

BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN 1ste Kandidatuur ARTS of TANDARTS Academiejaar 2002-2003 Oefening 11 (p29) BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN Bereken de stromen in de verschillende takken van het netwerk

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Tentamen Moleculaire Simulaties - 8C November uur

Tentamen Moleculaire Simulaties - 8C November uur Tentamen Moleculaire Simulaties - 8C030 11 November 2008-14.00-17.00 uur Vier algemene opmerkingen: Het tentamen bestaat uit 6 opgaven verdeeld over 3 pagina's. Op pagina 3 staat voor iedere opgave het

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 2011 van 14u00-17u00

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 2011 van 14u00-17u00 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 20 van 4u00-7u00 Dit tentamen bestaat uit 5 opgaven met elk 3 onderdelen. Voor elk

Nadere informatie

1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit

1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit Hoofdstuk 2 Elektrostatica Doelstellingen 1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit 2.1 Het elektrisch

Nadere informatie

(B) L_- Tentamen optica en optisch waarnemen

(B) L_- Tentamen optica en optisch waarnemen Tentamen optica en optisch waarnemen 27 maart20l2,15:15-18:00 docenten: dr. W. Vassen, prof.dr. J.F. de Boer Geef altijd een motivatie voor je antwoord. Er zijn 8 vragen. Iedere vraag levert evenveel punten

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Schrödinger vergelijking. Tous Spuijbroek Cursus Quantumwereld Najaar 2013

Schrödinger vergelijking. Tous Spuijbroek Cursus Quantumwereld Najaar 2013 Schrödinger vergelijking Tous Spuijbroek Cursus Quantumwereld Najaar 2013 Inhoud presentatie Algemene opmerkingen Aannemelijk maken van de vergelijking Oplossingen van de vergelijking De situatie rond

Nadere informatie

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan.

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan. Tentamen Inleiding Meten en Modelleren Vakcode 8C1 7 april 1, 9. - 1. uur Dit tentamen bestaat uit 4 opgaven. Indien u een opgave niet kunt maken, geeft u dan aan hoe u de opgave zou maken. Dat kan een

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

Opgaven bij Numerieke Wiskunde I

Opgaven bij Numerieke Wiskunde I Opgaven bij Numerieke Wiskunde I 7 november 8 1. (a) Gegeven verschillende interpolatiepunten x, x 1, x [a, b], en getallen y, y 1, y, z 1, toon aan dat er hooguit 1 polynoom p P 3 is met p(x i ) = y i,

Nadere informatie

H10 Analyse. H10.2 Spectroscopie. H10.3 Spectrofotometrie. H10.4 Kwantitatieve analyse. H10.5 Chromatografie

H10 Analyse. H10.2 Spectroscopie. H10.3 Spectrofotometrie. H10.4 Kwantitatieve analyse. H10.5 Chromatografie H10 Analyse H10.2 Spectroscopie Een spectroscopie (licht) gaat via golflengtes. De eenheid op de x as is 1 /nm. Sommige stoffen of deeltjes adsorberen fotonen met specifieke golflengten. Dit gebeurt omdat

Nadere informatie

2.1 Exponentiële functie en natuurlijke logaritme

2.1 Exponentiële functie en natuurlijke logaritme Wiskunde voor kunstmatige intelligentie, 00 Les Speciale functies. Eponentiële functie en natuurlijke logaritme We ebben nog niet aangegeven oe we a voor een niet-rationaal zullen berekenen. Het voor de

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Toets Spectroscopie. Maandag 26 oktober 2015, 9:00-12:00 uur Educatorium, Zaal Alfa. Lees dit eerst!

Toets Spectroscopie. Maandag 26 oktober 2015, 9:00-12:00 uur Educatorium, Zaal Alfa. Lees dit eerst! Toets Spectroscopie Maandag 26 oktober 2015, 9:00-12:00 uur Educatorium, Zaal Alfa Lees dit eerst! Graag op alle papieren die je inlevert je naam en studentnummer vermelden. Je mag bij het oplossen van

Nadere informatie

Higgs-mechanisme: het bestaan van W- en Z-bosonen

Higgs-mechanisme: het bestaan van W- en Z-bosonen Chapter Higgs-mechanisme: het bestaan van W- en Z-bosonen. De Higgs-Lagrangiaan Beschouwd wordt de volgende Lagrangiaan L : L = 2 µφ µ φ + 2 µφ 2 µ φ 2 + 2 µ2 φ 2 + 2 µ2 φ 2 4 λ φ 2 + φ 2 2 2.. Deze Lagrangiaan

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm.

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Domein F: Moderne fysica Subdomein: Atoomfysica 1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Bereken de energie van het foton in ev. E = h c/λ (1) E = (6,63 10-34 3 10 8 )/(589

Nadere informatie

- KLAS 5. c) Bereken de snelheid waarmee een elektron vrijkomt als het groene licht op de Rbkathode

- KLAS 5. c) Bereken de snelheid waarmee een elektron vrijkomt als het groene licht op de Rbkathode NATUURKUNDE - KLAS 5 PROEFWERK H7 --- 26/11/10 Het proefwerk bestaat uit 3 opgaven; totaal 32 punten. Opgave 1: gasontladingsbuis (4 p) In een gasontladingsbuis (zoals een TL-buis) zijn het gassen die

Nadere informatie

Maandag 29 oktober 2012, 9-11 uur, Educatorium, Zaal Beta

Maandag 29 oktober 2012, 9-11 uur, Educatorium, Zaal Beta Toets Spectroscopie Maandag 29 oktober 2012, 9-11 uur, Educatorium, Zaal Beta Lees dit eerst! Graag op alle papieren die je inlevert je naam en studentnummer vermelden. Je mag bij het oplossen van de vragen

Nadere informatie

Complexe getallen. 5.1 Constructie van de complexe getallen

Complexe getallen. 5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie

B da =0, Q vrijomsloten, E = ρ vrij. , B =0, E =0, B = µ 0 J vrij. D = ρ vrij, B =0, E =0, H = J vrij. qq r 2 =( N m 2 /C 2 ) (1.

B da =0, Q vrijomsloten, E = ρ vrij. , B =0, E =0, B = µ 0 J vrij. D = ρ vrij, B =0, E =0, H = J vrij. qq r 2 =( N m 2 /C 2 ) (1. Tentamen: Elektriciteit en Magnetisme Docent: J. F. J. van den Brand Datum: 22 Augustus 2003 Zaal: KC159 Tijd: 13.30-16.30 uur Vermeld je naam op elke pagina. Vermeld je collegenummer. Alle benodigde vectorrelaties

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden college 2 - en het uitwendig collegejaar college build slides Vandaag : : : : 6-7 2 30 mei 207 30 2 3 4 5 Hoeken Orthogonaliteit en projecties Toepassing: magnetische velden.6-7[2] vandaag meetkundig Section

Nadere informatie

1 OPGAVE. 1. Stel dat we kansdichtheid ρ van het Klein-Gordon veld φ zouden definieren op de Schödingermanier

1 OPGAVE. 1. Stel dat we kansdichtheid ρ van het Klein-Gordon veld φ zouden definieren op de Schödingermanier OPGAVE. Opgave. Stel dat we kansdichtheid ρ van het Klein-Gordon veld φ zouden definieren op de Schödingermanier : ρ = φ φ, waarin φ de Klein-Gordonfunctie is. De stroom j van kansdichtheid wor in Schrödingers

Nadere informatie

Deeltjes in Airshowers. N.G. Schultheiss

Deeltjes in Airshowers. N.G. Schultheiss 1 Deeltjes in Airshowers N.G. Shultheiss 1 Inleiding Deze module volgt op de module Krahten in het standaardmodel. Deze module probeert een beeld te geven van het ontstaan van airshowers (in de atmosfeer)

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 5 juli 2013, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 5 juli 2013, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 5 juli 2013, 9.00-12.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die bij

Nadere informatie

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Mechanica 1 voor N en Wsk (3NA40 en 3AA40) Donderdag 21 januari 2010 van 09.00u tot 12.00u Dit tentamen bestaat uit vier opgaven.

Nadere informatie

-- II HOOFDSTUK II DE QUANTUMMECHANICA VAN MOLECULEN 1

-- II HOOFDSTUK II DE QUANTUMMECHANICA VAN MOLECULEN 1 -- II - 1 - HOOFDSTUK II DE QUANTUMMECHANICA VAN MOLECULEN 1 Een molecule opgebouwd uit N kernen en n elektronen, dat niet in wisselwerking staat met invloeden van buiten (zoals elektromagnetische straling),

Nadere informatie

Eindexamen vwo natuurkunde pilot 2012 - I

Eindexamen vwo natuurkunde pilot 2012 - I Eindexamen vwo natuurkunde pilot 0 - I Opgave Lichtpracticum maximumscore De buis is aan beide kanten afgesloten om licht van buitenaf te voorkomen. maximumscore 4 De weerstanden verhouden zich als de

Nadere informatie

Uitwerkingen Bio-organische Chemie Werkcollege 1. 1. Hoeveel protonen, neutronen en elektronen hebben de volgende elementen:

Uitwerkingen Bio-organische Chemie Werkcollege 1. 1. Hoeveel protonen, neutronen en elektronen hebben de volgende elementen: Uitwerkingen Bio-organische hemie Werkcollege 1 1. oeveel protonen, neutronen en elektronen hebben de volgende elementen: a. 39 K 19 c. 13 6 b. 32 S 16 d. 200 g 80 a. 19 protonen, 19 elektronen, 20 neutronen.

Nadere informatie

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme Schriftelijk examen: theorie en oefeningen 2010-2011 Naam en studierichting: Aantal afgegeven bladen, dit blad niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de vermelding

Nadere informatie

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme 2009-2010

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme 2009-2010 Schriftelijk examen: theorie en oefeningen 2009-2010 Naam en studierichting: Aantal afgegeven bladen, dit blad niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de vermelding

Nadere informatie

Hoofdstuk 5: Machtreeksoplossingen van tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 5: Machtreeksoplossingen van tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 5: Machtreeksoplossing van tweede orde lineaire differtiaalvergelijking 5.1. Machtreeks. In deze paragraaf word de belangrijkste eigschapp van machtreeks op e rijtje gezet. Zelf doorlez! Zie

Nadere informatie

College Fysisch Wereldbeeld 2

College Fysisch Wereldbeeld 2 College Fysisch Wereldbeeld 2 Inhoud Coordinaten Gekromde coordinaten Wat is Zwaartekracht Zwarte gaten Het heelal Cosmologische constante Donkere materie, donkere energie Zwaartekrachtstraling y Coördinaten

Nadere informatie

Zonnestraling. Samenvatting. Elektromagnetisme

Zonnestraling. Samenvatting. Elektromagnetisme Zonnestraling Samenvatting De Zon zendt elektromagnetische straling uit. Hierbij verplaatst energie zich via elektromagnetische golven. De golflengte van de straling hangt samen met de energie-inhoud.

Nadere informatie

2de bach HIR. Optica. Smvt - Peremans. uickprinter Koningstraat Antwerpen EUR

2de bach HIR. Optica. Smvt - Peremans. uickprinter Koningstraat Antwerpen EUR 2de bach HIR Optica Smvt - Peremans Q uickprinter Koningstraat 13 2000 Antwerpen www.quickprinter.be 231 3.00 EUR Trillingen 1. Eenparige harmonische beweging Trilling =een ladingsdeeltje beweegt herhaaldelijk

Nadere informatie

Tentamen Fysica: Elektriciteit en Magnetisme (MNW)

Tentamen Fysica: Elektriciteit en Magnetisme (MNW) Tentamen Fysica: Elektriciteit en Magnetisme (MNW) Tijd: 27 mei 12.-14. Plaats: WN-C147 A t/m K WN-D17 L t/m W Bij dit tentamen zit aan het eind een formuleblad. Eenvoudige handrekenmachine is toegestaan

Nadere informatie