DENK- EN REDENEERVAARDIGHEDEN

Maat: px
Weergave met pagina beginnen:

Download "DENK- EN REDENEERVAARDIGHEDEN"

Transcriptie

1 Pagina 1 van 8 1 Redeneren bewijzen lokaal deductief werken Van leerlingen in een sterk wiskundige richting mag men verwachten dat ze geleidelijk aan overtuigd worden van de noodzaak en het belang van een heldere redenering, dat ze een duidelijk beeld opbouwen van de zin en betekenis van bewijzen in wiskunde en dat ze meerdere bewijsmethoden leren kennen en leren gebruiken. Hierin ligt de meerwaarde van een meer doorgedreven wiskundevorming. Het verwerven van denk- en redeneervaardigheden verloopt niet geïsoleerd maar is onder meer verweven met het verwerven van wiskundige taalvaardigheden en probleemoplossende vaardigheden. Ook de ontwikkeling van vakgebonden attitudes zoals zin voor nauwkeurigheid, zin voor helderheid, bondigheid en eenvoud van taalgebruik, zelfvertrouwen, doorzetting, waardering voor de wiskunde spoort mee met het verwerven van denk- en redeneervaardigheden. Redeneren Redeneren kan omschreven worden als vanuit een vooropgezette, vastgelegde, afgesproken basisbron van eigenschappen via logische/deductieve weg een bewering onderbouwen. Merk op dat een aantal van de gebruikte termen zowel breed als eng kunnen ingevuld worden. Enge interpretatie Eng zou kunnen betekenen dat bewering staat voor aangeboden stelling, onderbouwen alleen voor bewijsvoering, basisbron alleen voor axiomastelsel. Deze interpretatie hoeft niet noodzakelijk als zinloos aangezien te worden. Ook op deze wijze hebben generaties leerlingen leren redeneren. En ook vandaag nog kan men binnen bepaalde delen van wiskunde best het geheel zo rigoureus mogelijk ordenen en onderbouwen. Brede interpretatie Anderzijds kan bij bewering gedacht worden aan het stellen van een hypothese. En dat houdt dan weer in dat situaties eerst onderzocht worden, bv. met voorbeelden en tegenvoorbeelden. Leerlingen kunnen dan actiever betrokken worden. En ze ondervinden dat wiskunde niet een afgewerkt geheel is, dat door de leraar wordt overgedragen, maar een systeem is dat ze kunnen onderbouwen door zelf beweringen te onderzoeken. Zo leren ze dat ze zeker niet alles zonder meer moeten proberen te bewijzen, maar dat ze eerst argumenten moeten verzamelen om na te gaan of een bewering wel plausibel is. Redeneren houdt in dat men werkt op basis van eigenschappen. Dat is moeilijk voor de leerlingen. Het vergt dat kennis vlot en op het gepaste ogenblik geactiveerd kan worden. Het is meer dan een berekening maken of een formule toepassen. Het is meer dan een toepassing maken op een eigenschap die net voorheen werd behandeld. Eigenschappen gebruiken houdt ook in dat men ze vlot kan formuleren. De capaciteit van verwoorden is vaak niet toereikend en vraagt dan ook extra aandacht in het leerproces.

2 Pagina 2 van 8 Bewijzen Bij bewijzen kunnen we ons nogal wat vragen stellen: - Is een deductieve aanpak nodig? - Overtuigen we leerlingen door het bewijzen van een exactheid? Stellen leerlingen zich wel de vraag naar een bewijs? - Ondersteunt een bewijs het inzicht? - Werken bewijzen motiverend voor leerlingen? - Dragen gememoriseerde bewijzen bij tot het begrijpen van wiskunde en het beter kunnen toepassen van wiskundekennis? - Welke doelen streven we na met bewijzen? Bewijzen hebben drie functies: verificatie, verheldering en systematisering. Het bewijzen van eigenschappen moet ook open getrokken worden naar wiskundig redeneren zoals ook wordt weergegeven in de leerplandoelstellingen. Lokaal deductief werken Bewijzen speelt zich af binnen de wiskundewereld. Eén van de functies van een bewijs is systematisering, ordening van (een gebied van) de wiskunde. Strikt genomen is een bewijs van een stelling een afleiding vanuit axioma s, definities en postulaten. In de praktijk maken we bij het redeneren of bewijzen vaak gebruik van eigenschappen die slechts aannemelijk werden gemaakt maar die in feite voorafgaand niet werden bewezen. We spreken dan van lokaal deductief werken of eilanden van deductie. Dit redeneren op basis van lokale ordening doet geen afbreuk aan de wiskundevorming bij leerlingen. Ook bij een lokaal bewijs kunnen leerlingen nagaan of de redenering correct is of niet, moeten leerlingen onderscheid leren maken tussen nodig en voldoende, moeten leerlingen ervoor zorgen niet in een cirkelredenering verzeild te raken, kunnen leerlingen existentiestellingen en universeel gekwantificeerde uitspraken leren onderscheiden.

3 Pagina 3 van 8 2 Vaktaal In het kader van leren bewijzen is het noodzakelijk dat aan leerlingen in de loop van het secundair onderwijs de betekenis van volgende begrippen wordt verduidelijkt: - vermoeden, hypothese, definitie, eigenschap, kenmerk of criterium, stelling; - een vermoeden plausibel maken door het geven van voorbeelden; - een bewering weerleggen met één tegenvoorbeeld; - een stap in een redenering weerleggen met één lokaal tegenvoorbeeld; - een stelling bewijzen; - cirkelredenering; Vanuit passende voorbeelden en situaties moeten leerlingen ook vertrouwd worden met: - het verschil tussen nodig en voldoende ; - het correct gebruiken van: als dan ; - het correct hanteren van het implicatieteken in een schriftelijke neerslag; - het onderscheid tussen gegeven en gevraagde; - het omzetten van een bewering in een implicatie- of equivalentievorm; - het verband tussen niet voor alle en er is een ; - de samenhang van er is geen en niet voor alle - het formuleren van de ontkenning van een bewering; - het begrijpen wat een bewijs is en waarin het verschilt van alledaags redeneren. Verder moeten leerlingen ook het verschil ervaren tussen het opbouwen van een bewijs (meestal niet top-down, soms door te proberen gegevens en té bewijzen aan elkaar te koppelen kladwerk van het zoekproces aan bord en in een werkschrift van de leerlingen) en het neerschrijven van een bewijs (topdown - zoals bijvoorbeeld in het leerboek voor een aantal bewijzen). Bij het noteren van een bewijs moeten we leerlingen ook leren om volledige, nauwkeurige en grammaticaal correcte zinnen te gebruiken. Voorbeelden: - Omdat weten we dat..; - Veronderstel dat.., dan mogen we besluiten dat.; - We onderscheiden volgende gevallen...; - Om dit te bewijzen volstaat het dat... want ; Uiteraard moet ook een nauwkeurig gebruik van wiskundesymbolen de nodige aandacht krijgen (gelijkheidsteken, implicatieteken, equivalentieteken, de universele kwantor, sommatieteken, symbolen voor congruente figuren ).

4 Pagina 4 van 8 3 Bewijsmethoden Doorheen de eerste en vooral in de tweede graad worden de leerlingen (in sterk wiskundige richtingen) met verschillende soorten bewijzen geconfronteerd, zoals: - direct of rechtstreeks bewijs, bv. bewijzen van eigenschappen van vierhoeken, bewijzen van eigenschappen i.v.m. de cirkel, bewijzen met gebruik van de stelling van Pythagoras; - bewijs door contrapositie, idem; - bewijs uit het ongerijmde, bv. het bewijs dat 2 geen kwadraat is van een rationaal getal; - bewijs van een existentiestelling (uniciteitsstelling) door het geven van een voorbeeld (voorbeeld geven en bewijzen dat er slechts één is), bv. de uniciteit van een cirkel door drie niet-collineaire punten; - bewijs door opsplitsing of door gevalonderscheiding, bv. het bewijs van de eigenschap over het verband tussen omtrekshoek en middelpuntshoek op eenzelfde koorde in een cirkel. We moeten voorkomen dat leerlingen bewijsmethoden als een truc ervaren. In het bewijs van de formule voor het algebraïsch oplossen van een tweedegraadsvergelijking is het belangrijk dat het herschrijven van de gegeven uitdrukking met de toevoeging van bepaalde termen niet als een truc wordt ervaren maar een weg is om te komen tot het kwadraat van een tweeterm. De uitdrukking wordt dus herwerkt in functie van het te bereiken eindresultaat. Dit is voor leerlingen niet altijd helder en dan zijn ze ook geneigd om bewijzen betekenisloos te memoriseren. Het zoeken naar een bewijs is vaak een vorm van probleemoplossen. Heuristische methoden kunnen leerlingen helpen als er geen specifieke bewijsmethode voorhanden is. Denk aan het specifiek karakter van bewijzen van bepaalde meetkundige stellingen of eigenschappen: schets maken, situatie analyseren, vermoeden formuleren, gegeven, te bewijzen, bewijs In de derde graad kunnen de soorten bewijsmethoden verder aangevuld en gekaderd worden. Zo kunnen de leerlingen ook ervaren dat bepaalde bewijsmethoden een eerder afgebakend domein van toepasbaarheid hebben, bv. bewijs door inductie.

5 Pagina 5 van 8 4 Suggesties om het verwerven van denk- en redeneervaardigheden te bevorderen - Een duidelijk onderscheid maken tussen intuïtieve en gedefinieerde begrippen, tussen vermoedens en stellingen, tussen een toelichting om een vermoeden aannemelijk te maken en een bewijs. - Leerlingen laten ervaren dat er een verschil kan zijn tussen spreektaal en wiskundetaal. - De waarom-vraag en de hoe-vraag als rode draad opnemen in elk leerproces en in de evaluatie. - Redeneringen en bewijzen aanbrengen vanuit een actief leerproces (vanuit gissen en missen naar een gestructureerde aanpak): welke voorbeelden heb je onderzocht? Zijn ze voldoende algemeen? Is een voorwaarde essentieel? Welke eigenschap(pen) wil je gebruiken? Zijn alle voorwaarden vervuld? - Waar mogelijk werken vanuit verschillende invalshoeken bij het bewijzen van bepaalde eigenschappen en stellingen en zo leerlingen confronteren met verschillende bewijzen voor dezelfde eigenschap of stelling. - Leerlingen voldoende kansen bieden om hun argumentatie of redenering ook mondeling toe te lichten aan elkaar in de klas. - Leerlingen confronteren met redeneringen waarin fouten voorkomen die ze moeten opsporen. - Leerlingen confronteren met een summiere vorm van een bewijs dat ze zelf moeten aanvullen en vervolledigen. - Veel belang hechten aan de schriftelijke neerslag van een redenering of bewijs en daarbij de nodige aandacht besteden aan het verklaren van tussenstappen. - Leerlingen laten beseffen dat een bewijs nooit opgeschreven is op de manier waarop het tot stand is gekomen. Denk aan het gebruik van een kladblad of werkschrift om het zoekproces te ondersteunen. Leerlingen leren beseffen dat het neerschrijven van een gevonden bewijs ook gericht is naar degene die het zal lezen en dat de tekst niet enkel voor henzelf begrijpbaar moet zijn. - Parate kennis onderhouden. Parate kennis is kennis die zodanig actief aanwezig is in de hersenen dat de leerlingen zelf de link kunnen leggen. De ervaring leert hoe dit niet moet gebeuren: wie telkens net voor een bewijs de nodige kennis gaat opfrissen maakt de leerlingen lui. Alleen indien het noodzakelijk is, kan op die manier de leerstof geactiveerd worden. Het is beter om leerlingen op geregelde tijdstippen bewijsopgaven voor te leggen die niet specifiek op de pas geziene leerstof betrekking hebben. - Leerlingen op bepaalde momenten gebruik laten maken van een gereedschapskist of een vademecum dat ze kunnen aanwenden bij het zoeken naar een verklaring of bewijs. - Leerlingen geregeld zelf vermoedens laten formuleren. - Bewust zijn van het belang van de interactie leerkracht-leerling tijdens het leerproces en zoeken naar een goed evenwicht tussen lesfasen met meer individuele begeleiding en lesfasen met een strak klassikale aanpak. - Voorkomen dat leerlingen bewijzen associëren met iets om van buiten te leren voor de toets. - Voorkomen dat leerlingen het aannemelijk maken van een eigenschap verwarren met een bewijs. - Met de leerlingen af en toe eens terugblikken op geziene bewijsmethoden. - Met de vakgroep een leerlijn denk- en redeneervaardigheden uitwerken.

6 Pagina 6 van 8 5 Verschillende soorten bewijzen: voorbeelden Hieronder bespreken we enkele soorten bewijzen en bij elke soort geven we een of meerdere voorbeelden. De gegeven voorbeelden behoren niet noodzakelijk tot de basisleerstof; ze zijn enkel bedoeld ter illustratie. Bewijs uit het ongerijmde - Een veeltermfunctie van de n-de graad heeft hoogstens n nulpunten in het veld van de reële getallen (en dan later de confrontatie met de verandering van deze stelling in het veld van de complexe getallen). - Als de vierkante matrix A een inverse matrix heeft, dan is die inverse matrix uniek. - Als AB en CD kruisende rechten zijn, dan zijn AC en BD ook kruisende rechten. Bewijs door volledige inductie - Het binomium van Newton. - De afgeleide van nx d dx d dx 2x 2cos2x d sin en dx sin als de kettingregel nog niet is gezien: uit x cos x sin vragen we ons af of dit patroon verder loopt, met andere woorden of nx n cosnx sin met n een natuurlijk getal verschillend van nul. n n 1 - Bewijzen dat f n. f. f ' '. - Bewijzen dat het minimaal aantal verplaatsingen dat nodig is om het probleem van de torens van Hanoi op te lossen met n schijven, gelijk is aan 2 n-1. Rechtstreeks bewijs - Als een functie f stijgend is in [a,b] en afleidbaar is in [a,b], dan geldt: x [a, b]: f (x) 0. Bewijs: Kies x 1 x 2 = x 1 + x en x 2 [a, b]. Vermits f stijgend is in [a,b], geldt voor elke x 1 [a, b] dat f(x 2 ) f(x 1 ) = f(x 1+ x) f(x 1 ) f(x > 0. Hieruit volgt dat lim 1 + x) f(x 1 ) 0 en bijgevolg geldt x 2 x 1 x x 0 x dat f (x 1 ) 0. (analoog voor dalend)

7 Pagina 7 van 8 Bewijzen van een eigenschap op verschillende manieren sin - lim 1 0 a. klassiek bewijs; b. door de cirkel te beschouwen als een oneindige regelmatige n-hoek : sin uit lim 2n r sin 2 r volgt dat lim 1 enzovoort ; n n 0 c. door de regel van de l Hospital toe te passen op sin lim 0 - Het is zeker nuttig om stellingen of eigenschappen uit de meetkunde zowel analytisch als synthetisch te bewijzen. Voorbeeld: de snijlijnen van twee evenwijdige vlakken met een derde vlak zijn evenwijdig. Ook bij oefeningen kunnen beide methodes aan bod komen. Voorbeeld: de hoek bepalen tussen twee lichaamsdiagonalen in een kubus (cosinusregel of werken met coördinaten).. Bewijs door gevalsonderscheiding of door opsplitsing - Bewijzen dat e = lim (1 + x) x. 1 x 0 Stellen we dat x = 1, dan moeten we bewijzen dat e = lim (1 + 1 x x ± x )x Eerste geval: x R + 0. Tweede geval: x R 0. - De middelwaardestelling van Rolle. Bewijs door uitputting of exhaustie - Twee rechten evenwijdig met eenzelfde derde rechte, zijn onderling evenwijdig. 1) Als twee of meer van de drie rechten samenvallen, dan is de stelling meteen bewezen. 2) - Stel dat de twee rechten elkaar snijden Dan bekomen we een contradictie. - Stel dat ze elkaar kruisen Dan bekomen ook een contradictie. - Blijft dus over: de twee rechten zijn evenwijdig. - De snijlijnen van twee evenwijdige vlakken met een derde vlak, zijn evenwijdig. - Als twee snijdende rechten van een vlak evenwijdig zijn met een ander vlak, dan zijn deze vlakken evenwijdig. - Als een rechte evenwijdig is met een vlak en men trekt door een punt van het vlak een rechte evenwijdig met de gegeven rechte, dan ligt deze tweede rechte in het vlak.

8 Pagina 8 van 8 Bewijs van uniciteit - Elke rij kan hoogstens één limiet hebben. Bewijs: 1) Als de rij (un) geen limiet heeft, dan is de stelling waar. 2) Als de rij een limiet heeft, dan moeten we bewijzen dat er slechts één getal b als de limiet van un in aanmerking komt. Veronderstel lim u n = b en lim u n = b n + n + Bewijs van existentie - De middelwaardestelling van Lagrange. Geert Delaleeuw Lies Van de Wege Vakbegeleiders wiskunde DPB Brugge

WISKUNDIGE TAALVAARDIGHEDEN

WISKUNDIGE TAALVAARDIGHEDEN WISKUNDIGE TLVRDIGHEDEN Derde graad 1 Het begrijpen van wiskundige uitdrukkingen in eenvoudige situaties (zowel mondeling als 1V4 2V3 3V3 (a-b-c) schriftelijk) 2 het begrijpen van figuren, tekeningen,

Nadere informatie

DENK- EN REDENEERVAARDIGHEDEN

DENK- EN REDENEERVAARDIGHEDEN SECUNDAIR ONDERWIJS DENK- EN REDENEERVAARDIGHEDEN VAKOVERLEG TWEEDE GRAAD ASO en KSO/TSO (leerplan a) Samenstelling syllabus en leiding Hilde De Maesschalck Luc De Wilde Diocesane begeleiding wiskunde

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

Vandaag ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN 11/10/09. Anne Schatteman Erasmushogeschool Brussel Lerarenopleiding LSO

Vandaag ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN 11/10/09. Anne Schatteman Erasmushogeschool Brussel Lerarenopleiding LSO ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN Erasmushogeschool Brussel Lerarenopleiding LSO anne.schatteman@ehb.be Vandaag 2 2 Erasmushogeschool Brussel 1 3 Stellingen en bewijzen zijn essentieel

Nadere informatie

Vandaag 11/22/11$ ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN. Moeilijk onderdeel van de leerstof

Vandaag 11/22/11$ ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN. Moeilijk onderdeel van de leerstof 2 3 ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN ErasmushogeschoolBrussel Lerarenopleiding LSO anne.schatteman@ehb.be Vandaag 2 Moeilijk onderdeel van de leerstof 3 Bewijzen worden behandeld

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Steeds betere benadering voor het getal π

Steeds betere benadering voor het getal π Wiskunde & Onderwijs 38ste jaargang (2012 Steeds betere benadering voor het getal π Koen De Naeghel Samenvatting. We bespreken een oplossing voor de (veralgemeende opgave Noot 4 uit Wiskunde & Onderwijs

Nadere informatie

WISKUNDIGE TAALVAARDIGHEDEN. De leerlingen ontwikkelen (binnen het gekende wiskundig instrumentarium) Derde graad kso/tso. Tweede graad kso/tso

WISKUNDIGE TAALVAARDIGHEDEN. De leerlingen ontwikkelen (binnen het gekende wiskundig instrumentarium) Derde graad kso/tso. Tweede graad kso/tso WISKUNDIGE TLVRDIGHEDEN 1 Het begrijpen van wiskundige uitdrukkingen in eenvoudige situaties (zowel mondeling als 1V4 2V3 3V3(a-bschriftelijk) eenvoudige 2 het begrijpen (lezen) van figuren, tekeningen,

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 3 1,731 5,361 π 3,116 1 Als a 1 3 a 1 3 a m = a met a R + \{0, 1}, dan

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

VOET EN WISKUNDE. 1 Inleiding: Wiskundevorming

VOET EN WISKUNDE. 1 Inleiding: Wiskundevorming Vlaams Verbond van het Katholiek Secundair Onderwijs Guimardstraat, 00 Brussel VOET EN WISKUNDE Inleiding: vorming Een actuele denkwijze over wiskundevorming gaat uit van competenties. Het gaat om een

Nadere informatie

STEEDS BETERE BENADERING VOOR HET GETAL π

STEEDS BETERE BENADERING VOOR HET GETAL π STEEDS BETERE BENADERING VOOR HET GETAL KOEN DE NAEGHEL Samenvatting. We bespreken een oplossing voor de (veralgemeende) opgave Noot 4 uit Wiskunde & Onderwijs nr.139. Onze inspiratie halen we uit het

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

7.0 Voorkennis. Definitie = Een afspraak, die niet bewezen hoeft te worden.

7.0 Voorkennis. Definitie = Een afspraak, die niet bewezen hoeft te worden. 7.0 Voorkennis Definitie = Een afspraak, die niet bewezen hoeft te worden. Voorbeeld definitie: Een gestrekte hoek is een hoek van 180 ; Een rechte hoek is een hoek van 90 ; Een parallellogram is een vierhoek

Nadere informatie

Analytische en andere soorten meetkunde van Mavo tot Maple. Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft.

Analytische en andere soorten meetkunde van Mavo tot Maple. Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft. Analytische en andere soorten meetkunde van Mavo tot Maple Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft.nl Puzzel mavo 3 Puzzel mavo 3 Puzzel mavo 3 Veronderstel: zijde

Nadere informatie

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14 INHOUD 1 De cirkel 9 1.1 Definities en benamingen 9 Oefeningen 11 1.2 Cirkel door drie punten 13 Oefeningen 14 1.3 Onderlinge ligging van een rechte en een cirkel 20 1.3.1 Aantal snijpunten van een rechte

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30 Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Bespreking Examen Analyse 1 (Augustus 2007)

Bespreking Examen Analyse 1 (Augustus 2007) Bespreking Examen Analyse 1 (Augustus 2007) Vooraf: Zoals het stilletjes aan een traditie is geworden, geef ik hier bedenkingen bij het examen van deze septemberzittijd. Ik zorg ervoor dat deze tekst op

Nadere informatie

RESULTATEN BEVRAGING KSO/TSO

RESULTATEN BEVRAGING KSO/TSO Pagina 1 van 5 (19 scholen hebben de bevraging ingevuld) 1 Overzicht studierichtingen en complementaire uren Ingericht 6 uur 8 uur Andere (*) Architecturale Vorming Biotechnische Techniek Industriële 10

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07 Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Examen Complexe Analyse (September 2008)

Examen Complexe Analyse (September 2008) Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College

Nadere informatie

RESULTATEN BEVRAGING ASO

RESULTATEN BEVRAGING ASO Pagina 1 van 5 (34 scholen hebben de bevraging ingevuld) 1 Overzicht studierichtingen en complementaire uren Ingericht Alleen 6 uur Zowel 6 als 8 uur Andere (*) ECWI 33 23 4 6 GRWI 9 2 6 1 LAWI 27 8 13

Nadere informatie

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

Ruimtemeetkunde deel 1

Ruimtemeetkunde deel 1 Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen

Nadere informatie

Examenprogramma wiskunde D vwo

Examenprogramma wiskunde D vwo Examenprogramma wiskunde D vwo Het eindexamen Het eindexamen bestaat uit het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Kansrekening en statistiek

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk

Nadere informatie

Pagina 1 van 5 EVALUEREN. 1 Procesevaluatie versus productevaluatie

Pagina 1 van 5 EVALUEREN. 1 Procesevaluatie versus productevaluatie Pagina 1 van 5 1 Procesevaluatie versus productevaluatie Procesevaluatie: richt zich op de kwaliteit van het leerproces en probeert dus het leerproces van de leerlingen en het onderwijsproces (het didactisch

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Uitwerkingen toets 12 juni 2010

Uitwerkingen toets 12 juni 2010 Uitwerkingen toets 12 juni 2010 Opgave 1. Bekijk rijen a 1, a 2, a 3,... van positieve gehele getallen. Bepaal de kleinst mogelijke waarde van a 2010 als gegeven is: (i) a n < a n+1 voor alle n 1, (ii)

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie Utrecht Les : Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist verzicht colleges. College. Goniometrie 2. Vectoren 2. College 2. Matrixen

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

LEERPLANSTUDIE Tweede graad TSO/KSO leerplan d

LEERPLANSTUDIE Tweede graad TSO/KSO leerplan d LEERPLANSTUDIE Tweede graad TSO/KSO leerplan d 1 Leerplannen Eerste graad A-stroom (D/2009/7841/003) In voege sinds 1 september 2009 Tweede graad KSO/TSO (D/2002/0279/048) In voege sinds 1 september 2002

Nadere informatie

Per nieuwe hoofdvraag een nieuwe bladzijde gebruiken. De vragen hoeven niet in de juiste volgorde te worden opgelost.

Per nieuwe hoofdvraag een nieuwe bladzijde gebruiken. De vragen hoeven niet in de juiste volgorde te worden opgelost. SBC AMDG Ma 13/12/04 klas : 5WEWI8 5GRWI8 Van Hijfte D. toegelaten : grafisch rekentoestel Examen Wiskunde deel I (90p) Per nieuwe hoofdvraag een nieuwe bladzijde gebruiken. De vragen hoeven niet in de

Nadere informatie

Examen Wiskundige Basistechniek 15 oktober 2011

Examen Wiskundige Basistechniek 15 oktober 2011 Examen Wiskundige Basistechniek 15 oktober 2011 vraag 1: Gegeven is het complex getal ω = exp(i π 5 ). vraag 1.1: Als we in het complexe vlak het punt P met cartesiaanse coördinaten (x, y) vereenzelvigen

Nadere informatie

Wiskunde C vwo. Workshop Noordhoff wiskundecongres 19 november 2015 Jan Dijkhuis en Sabine de Waal. Programma

Wiskunde C vwo. Workshop Noordhoff wiskundecongres 19 november 2015 Jan Dijkhuis en Sabine de Waal. Programma Wiskunde C vwo Workshop Noordhoff wiskundecongres 19 november 2015 Jan Dijkhuis en Sabine de Waal Programma 1. Vorm en ruimte in Getal & Ruimte 2. Logisch redeneren in Getal & Ruimte 1. Examenprogramma

Nadere informatie

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3 HOOFDSTUK 6: RIJEN 1 Limiet van een rij 2 1.1 Het begrip rij 2 1.2 Bepaling van een rij 2 1.2.1 Expliciet voorschrift 2 1.2.2 Recursief voorschrift 3 1.2.3 Andere gevallen 3 1.2.4 Rijen met de grafische

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

Examen G0U13 - Bewijzen en Redeneren,

Examen G0U13 - Bewijzen en Redeneren, Examen G0U13 - Bewijzen en Redeneren, 2010-2011 bachelor in de Wisunde, bachelor in de Fysica, bachelor in de Economische Wetenschappen en bachelor in de Wijsbegeerte Vrijdag 4 februari 2011, 8u30 Naam:

Nadere informatie

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x Calculus, 4//4. Gegeven de reële functie ft) met als voorschrift t arcsin x ft) = dx x a) Geef het domein van de functie ft). Op dit domein, bespreek waar de functie stijgt, daalt en bepaal de lokale extrema.

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Stelling van Pythagoras

Stelling van Pythagoras 1 of 6 Stelling van Pythagoras Uit Wikipedia, de vrije encyclopedie De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens

Nadere informatie

Actualisering leerplan eerste graad - Deel getallenleer: vraagstukken Bijlage p. 1. Bijlagen

Actualisering leerplan eerste graad - Deel getallenleer: vraagstukken Bijlage p. 1. Bijlagen Bijlage p. 1 Bijlagen Bijlage p. 2 Bijlage 1 Domeinoverschrijdende doelen - Leerplan BaO (p. 83-85) 5.2 Doelen en leerinhouden 5.2.1 Wiskundige problemen leren oplossen DO1 Een algemene strategie voor

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

Naam:... ZELFEVALUATIE WISKUNDE A-STROOM (het 60-puntenplan) WAT KAN IK AL? / WAT MOET IK NOG HERHALEN? / WAT MOET IK NOG INOEFENEN?

Naam:... ZELFEVALUATIE WISKUNDE A-STROOM (het 60-puntenplan) WAT KAN IK AL? / WAT MOET IK NOG HERHALEN? / WAT MOET IK NOG INOEFENEN? ZELFEVALUATIE WISKUNDE A-STROOM (het 60-puntenplan) WAT KAN IK AL? / WAT MOET IK NOG HERHALEN? / WAT MOET IK NOG INOEFENEN? Voor de GETALLENLEER worden concreet volgende doelstellingen nagestreefd: Begripsvorming

Nadere informatie

Verzamelingen. Hoofdstuk 5

Verzamelingen. Hoofdstuk 5 Hoofdstuk 5 Verzamelingen In de meest uiteenlopende omstandigheden kan het handig zijn om een stel objecten, elementen, of wat dan ook, samen een naam te geven. Het resultaat noemen we dan een verzameling.

Nadere informatie

PARADOXEN 1 Dr. Luc Gheysens

PARADOXEN 1 Dr. Luc Gheysens PARADOXEN Dr. Luc Gheysens REKENKRONKELS Inleiding Het niet stellen van voorwaarden, een onoplettendheid in het rekenwerk, het verkeerd toepassen van een rekenregel, een foutieve redenering leiden soms

Nadere informatie

Oefenexamen Wiskunde Semester

Oefenexamen Wiskunde Semester Oefenexamen Wiskunde Semester 1 2017-2018 De cursusdienst van de faculteit Toegepaste Economische Wetenschappen aan de Universiteit Antwerpen. Op het Weduc forum vind je een groot aanbod van samenvattingen,

Nadere informatie

Functievergelijkingen

Functievergelijkingen Functievergelijkingen Trainingsweek juni 2008 Basistechnieken Je mag alle getallen in het domein invullen in je functievergelijking. Wat er precies handig is, hangt af van het domein en van de functievergelijking.

Nadere informatie

Inhoud. Introductie tot de cursus

Inhoud. Introductie tot de cursus Inhoud Introductie tot de cursus 1 Inleiding 7 2 Voorkennis 7 3 Het cursusmateriaal 7 4 Structuur, symbolen en taalgebruik 8 5 De cursus bestuderen 9 6 Studiebegeleiding 10 7 Huiswerkopgaven 10 8 Het tentamen

Nadere informatie

Calculus I, 19/10/2015

Calculus I, 19/10/2015 Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,

Nadere informatie

12.1 Omtrekshoeken en middelpuntshoeken [1]

12.1 Omtrekshoeken en middelpuntshoeken [1] 12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015 Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen

Nadere informatie

In deze bijdrage geven we enkele ideeën over mogelijke leerlijnen i.v.m. rekenvaardigheden en probleemoplossend denken.

In deze bijdrage geven we enkele ideeën over mogelijke leerlijnen i.v.m. rekenvaardigheden en probleemoplossend denken. WISKUNDE WORD LEERLIJNEN Leerlijnen beschrijven de weg die leerlingen afleggen bij het leren. Leerlijnbeschrijvingen vormen een vrij nieuw verschijnsel in het onderwijs en zijn bedoeld om leraren houvast

Nadere informatie

Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n

Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n Hoofdstuk 1 Inleidende begrippen 1.1 Definities Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n Voor het tellen van het aantal

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

PROBLEEMOPLOSSEND DENKEN MET

PROBLEEMOPLOSSEND DENKEN MET PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder

Nadere informatie

BEWIJZEN EN REDENEREN

BEWIJZEN EN REDENEREN BEWIJZEN EN REDENEREN voor Bachelor of Science in Fysica en Wiskunde Academiejaar 2012/2013 Arno KUIJLAARS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee Inhoudsopgave

Nadere informatie

R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet.

R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com Van Nieuwenhuyze Roger Probleemoplossend werken in de tweede graad

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

1. Reële functies en algebra

1. Reële functies en algebra Pagina 1 van 6 Bijlage 6 OPMERKINGEN BIJ DE BESPROKEN PROEFWERKEN 1. Reële functies en algebra 1) Deze vraag peilt naar leerplandoelstelling F15. - Om eventueel gokken of elimineren bij de leerlingen te

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Dag van de wiskunde 22 november 2014

Dag van de wiskunde 22 november 2014 WISKUNDIGE UITDAGINGEN MET DE TI-84 L U C G H E Y S E N S VRAGEN/OPMERKINGEN/ peter.vandewiele@telenet.be TOEPASSING 1: BODY MASS INDEX Opstarten programma en naamgeven! Peter Vandewiele 1 TOEPASSING 1:

Nadere informatie

Domein A: Vaardigheden

Domein A: Vaardigheden Examenprogramma Wiskunde A havo Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Algebra en tellen

Nadere informatie

Modulewijzer InfPbs00DT

Modulewijzer InfPbs00DT Modulewijzer InfPbs00DT W. Oele 0 juli 008 Inhoudsopgave Inleiding 3 Waarom wiskunde? 3. Efficiëntie van computerprogramma s............... 3. 3D-engines en vectoranalyse................... 3.3 Bewijsvoering

Nadere informatie

(x x 1 ) + y 1. x x k+1 x k x k+1

(x x 1 ) + y 1. x x k+1 x k x k+1 Les Talor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

wiskunde B pilot vwo 2016-II

wiskunde B pilot vwo 2016-II wiskunde B pilot vwo 06-II De derde macht maximumscore Er moet dan gelden f( gx ( )) x( g( f( x)) f gx ( x ) ( x ) x) ( ( )) + + + f( gx ( )) x+ x(dus g is de inverse functie van f ) Spiegeling van het

Nadere informatie

6. Toon aan dat voor alle 2]0; ß [ geldt dat sin <<tan Onderstel dat de functie f afleidbaar in ]a; +1[ is en dat Toon aan dat!+1 f ) = A.!+1 f

6. Toon aan dat voor alle 2]0; ß [ geldt dat sin <<tan Onderstel dat de functie f afleidbaar in ]a; +1[ is en dat Toon aan dat!+1 f ) = A.!+1 f Afleiden en primitiveren Oefeningen Wiskundige Analyse I 1. Toon aan dat de functie f gedefinieerd op [ß; 3ß 2 ] door 1 p 1 + sin2 ) een inverse ffi bezit. Wat kan men besluiten omtrent de monotoniteit,

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

De kandidaten: jullie taak is het maken van de opdrachten, opzoeken van theorie en het zoeken naar de mol.

De kandidaten: jullie taak is het maken van de opdrachten, opzoeken van theorie en het zoeken naar de mol. Dossieropdracht 4 Wie is de mol? Opdracht Je gaat het spel Wie is de mol? spelen. Dit doe je in een groep van circa acht personen, die wordt gemaakt door de docent. In je groep moet je acht vragen beantwoorden

Nadere informatie

LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen:

LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen: LANDSEXAMEN VWO 2017-2018 Examenprogramma WISKUNDE D (V.W.O. ) (nieuw programma) 1 Het eindexamen Wiskunde D kent slechts het commissie-examen. Er is voor wiskunde D dus geen centraal schriftelijk examen.

Nadere informatie

G Biochemie & Biotechnologie, Chemie, Geografie. K Geologie, Informatica, Schakelprogramma s

G Biochemie & Biotechnologie, Chemie, Geografie. K Geologie, Informatica, Schakelprogramma s Tussentijdse Toets Wiskunde I ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, Master Chemie donderdag 3 november 06, :00-3:00

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie