IONISERENDE STRALING. Deeltjes-straling

Maat: px
Weergave met pagina beginnen:

Download "IONISERENDE STRALING. Deeltjes-straling"

Transcriptie

1 /stralingsbeschermingsdienst SBD 9673 Dictaat , niv. 5 A/B IONISERENDE STRALING Met de verzamelnaam straling bedoelen we vele verschillende verschijningsvormen van energie, die kunnen worden uitgezonden door een energiebron. De verdere bespreking van de verschillende stralingssoorten blijft beperkt tot die stralingssoorten welke in staat zijn ionisaties te veroorzaken bij wisselwerking met materie. Uit het oogpunt van stralingsbescherming gaat het in bijzonder om stralingssoorten die ionisatie kunnen veroorzaken in biologisch materiaal. De zogenaamde niet-ioniserende straling blijft hier buiten beschouwing. Het is in de klassieke natuurkunde gebruikelijk om een bepaald type straling voor te stellen als golfverschijnsel òf als deeltjesstraling. De straling die we in de stralingsfysica herkennen als een golfverschijnsel staat ook bekend als elektromagnetische straling. De deeltjesstraling waarover we in dit bestek praten bestaat uit subatomaire deeltjes die bij kernfysische en atoomfysische processen vrijkomen. Opgemerkt moet worden dat het gebruik van de term radioactieve straling niet alleen onjuist, maar ook verwarrend is. De term is onjuist omdat de straling niet radioactief is. Het woord radioactief betekent immers stralingsactief. Wel bestaan er radioactieve stoffen. Dit zijn stoffen met als eigenschap dat ze bepaalde soorten van ioniserende straling kunnen uitzenden. De term is verwarrend omdat er soorten van ioniserende straling zijn die helemaal niets te maken hebben met het verschijnsel radioactiviteit. De straling is dan het gevolg van fysische wisselwerking tussen elementaire deeltjes met materie. Voorbeelden van dergelijke stralingsbronnen zijn elektronenbuizen, röntgentoestellen en deeltjesversnellers. Deeltjes-straling De belangrijkste typen van deeltjesstraling zijn elektronenstraling, alfastraling, protonenstraling, bètastraling en neutronenstraling. Elektronenstraling (symbool: e) bestaat uit zeer snelle vrije elektronen. Meestal betreft het elektronen die onder invloed van elektrische spanning zijn versneld. De elektronen zijn dezelfde als die waarmee het verschijnsel van elektrische stroom wordt verklaard. Alleen wanneer we spreken van elektronenstraling bewegen de elektronen zich in de "vrije ruimte". Het bekendste voorbeeld vormen de kathodestralen die we o.a. in de beeldbuizen tegenkomen. In feite zijn dat elektronenbundels die van de negatieve elektrode (de kathode) door een vacuüm heen naar een positieve elektrode (anode) worden versneld. De bron van vrije elektronen is een verhitte kathode. Door verhitting worden de elektronen vrijgemaakt uit het kathodemateriaal en onder invloed van de elektrische hoogspanning worden ze in de richting van de positieve anode versneld. Dergelijke kathodestralen vormen de eerste stap in de opwekking van röntgenstraling in röntgenbuizen. Hoog-energetische elektronenbundels kunnen worden opgewekt in lineaire versnellers, zoals gebruikt in de radiotherapie en materiaalonderzoek. Ook kan versnelling gebeuren in min of meer cirkelvormige banen. We spreken dan van een bètatron. Wanneer de elektronen hun opgelegde hoge energie verliezen en uit het verband van de bundel worden verwijderd zijn ze feitelijk niet langer te onderscheiden van normale elektronen die zich vrij in materialen bewegen. Waar mogelijk zullen ze een plaats zoeken in het atomaire verband van aanwezige materialen. Alfastraling (symbool: ) bestaat uit combinaties van twee protonen en twee neutronen. Deze vier elementaire deeltjes zijn zo stevig aan elkaar gebonden dat het alfadeeltje zich gedraagt alsof het zelf een fundamenteel deeltje is. Een alfadeeltje heeft dus een massa van viermaal de atomaire massa-eenheid en de elektrische lading is tweewaardig positief. Qua samenstelling is een alfadeeltje volledig identiek met

2 SBD 9673 Ioniserende straling de kern van een helium-4 atoom. We spreken van alfadeeltjes en alfastraling wanneer het gaat om verhoudingsgewijs hoge energieën dus om deeltjes met hoge snelheid. Wanneer aan het eind van het bestaan alfadeeltjes hun kinetische energie nagenoeg hebben verloren zullen ze uit de aanwezige materie elk twee vrije elektronen aan zich verbinden. Het zijn dan complete helium-atomen geworden. Alfastraling kan worden uitgezonden bij radioactieve vervalprocessen maar kan ook kunstmatig worden opgewekt. Bèta-straling (symbool: ) bestaat uit zeer snelle elektronen of positronen die hun ontstaan vinden bij radioactieve vervalprocessen in atoomkernen. Zonder verdere toevoeging wordt met bèta-straling meestal de negatieve elektronenstraling of "bèta-min" straling (symbool: ) bedoeld. Het gaat hier om eenwaardig negatief geladen elektronen die fysisch gezien identiek zijn aan de elektronen die voorkomen in de schillenstructuur van atomen. Het verschil tussen -straling en kathodestralen zit niet in de aard van het elementaire deeltje; beide bestaan ze uit elektronen, zodat het gedrag van kathodestralen en -straling in hoge mate overeenstemt. Het verschil is gelegen in de oorsprong van de straling. Bèta-straling komt vrij uit atoom kernen bij radioactieve vervalprocessen. De elektronen in kathodestralen zijn daarentegen afkomstig uit de elektronenschillen. Het verschijnsel radioactiviteit speelt daarbij geen enkele rol. Wanneer ze dan ook hun aanvankelijk zeer hoge snelheden hebben verloren, leven ze voort als gewone vrije elektronen. Bèta-plus-straling is een bijzondere soort van bèta-straling, die bestaat uit de antideeltjes van de elektronen. Deze staan bekend als positronen. Het zijn deeltjes met dezelfde massa als elektronen echter met een eenwaardig positieve lading. Bèta-straling die bestaat uit positronen wordt aangeduid als "bèta-plus" straling (symbool: + ). Ook deze positronen vinden hun ontstaan in kernreacties in de atoomkern. Ze kunnen slechts zeer korte tijd zelfstandig bestaan. Binnen minder dan een microseconde verdwijnt het positron door samen te gaan met een elektron. Bij dit verdwijn- of annihilatieproces wordt de massa van de beide deeltjes omgezet in energie. Deze energie verschijnt meestal in de vorm van twee fotonen van elk 0,511 MeV per annihilatieproces. Neutronenstraling (symbool: n) bestaat uit neutronen die zijn vrijgemaakt bij kernsplijtingsreacties of bij kernreacties met de atoomkernen van lichte elementen. Dit vrijmaken van neutronen uit atoomkernen gebeurt overigens aanzienlijk minder gemakkelijk dan het vrijmaken van elektronen uit de schillenstructuur. Omdat neutronen niet elektrisch geladen zijn, kunnen ze niet met behulp van elektrische veldkrachten worden versneld of gestuurd. Anderzijds betekent het ook dat de snelheid en de richting van neutronen niet kan worden beïnvloed door elektrische aantrekkingskrachten of afstotingskrachten van atoomkernen. Verandering van de kinetische energie van neutronen gebeurt hoofdzakelijk door botsing met atoomkernen. In de regel zal de snelheid van de neutronen daardoor voortdurend afnemen. In het laatste stadium in een serie botsingsprocessen wordt het neutron meestal ingevangen door een atoomkern. Door deze neutronenvangst kan een kernreactie op gang worden gebracht. Ook wanneer het neutron niet zou worden ingevangen, is de levensduur beperkt. Neutronen vallen dan uiteen in een proton en een elektron. Energie van deeltjesstraling Wanneer in de stralingsfysica wordt gesproken over de energie van stralingsdeeltjes, dan wordt daarmee in eerste instantie de kinetische energie beoogd. Deze kinetische energie houdt direct verband met de snelheid waarmee het stralingsdeeltje zich voortbeweegt. Het verband tussen snelheid en energie wordt duidelijk wanneer men zich bijvoorbeeld voorstelt dat een bal (of een elektron) onder invloed van een daarop uitgeoefende kracht aan snelheid toeneemt. We zeggen dan dat de bewegingsenergie ofwel de kinetische energie is toegenomen. Evenzo gaat het afremmen van bewegende deeltjes gepaard met vermindering van de kinetische energie. In de klassieke natuurkunde geldt dat de kinetische energie van een bewegend object evenredig is met de massa m van het object en evenredig met het kwadraat van de snelheid. In formulevorm:

3 SBD 9673 Ioniserende straling Deze benadering geldt slechts dan wanneer de snelheid van de bewegende deeltjes aanzienlijk kleiner is dan de lichtsnelheid. In het internationale SI-eenhedensysteem geldt de joule [J] als eenheid van energie. Een energietoename van 1 joule correspondeert met een verrichte arbeid van 1 newton over een afstand van 1 meter. In de stralingsfysica echter wordt de energie van fotonen, elektronen en andere stralingsdeeltjes gewoonlijk uitgedrukt in de eenheid elektronvolt (afkorting: ev). 1 elektron-volt is de winst aan kinetische energie van een elektron dat in een potentiaalverschil van 1 volt is versneld. De elektronvolt is een kleine eenheid, zodat meervouden van duizend (kilo-elektronvolt, kev) en meervouden van miljoen (mega-elektronvolt, MeV) worden gebruikt. De omrekening tussen de verschillende energie-eenheden is als volgt: 1 ev = 10-3 kev = 10-6 MeV = 1.6 ) J = 0.38 ) cal 10 3 ev = 1 kev = 10-3 MeV = 1.6 ) J = 0.38 ) cal 10 6 ev = 10 3 kev = 1 MeV = 1.6 ) J = 0.38 ) cal ) ev = ) kev = ) MeV = 1 J = 0.24 cal Elektromagnetische straling Anders dan bij deeltjesstraling waarbij de bewegingssnelheid afhankelijk is van de massa en de energie, plant alle elektromagnetische straling zich met dezelfde snelheid voort. Deze snelheid staat bekend als de lichtsnelheid en is gelijk aan km/s ( m/s). De voortplantingssnelheid vermindert enigszins wanneer de elektromagnetische straling niet door vacuüm wordt gevoerd; maar het verschil tussen de snelheid in vacuüm en de snelheid in lucht is verwaarloosbaar klein. De verzameling van elektromagnetische golven omvat vele soorten, onder meer de radiogolven, radar, microgolven, zichtbaar en onzichtbaar licht en verder ook de röntgenstraling en gammastraling. Straling met een golfkarakter wordt gekarakteriseerd door de golflengte en de frequentie. De frequentie van een bepaald type elektromagnetische golf is omgekeerd evenredig met de golflengte. De evenredigheidsconstante is gelijk aan de lichtsnelheid, zodat geldt: Het uitzenden en ook het absorberen van elektromagnetische straling gebeurt steeds in afgepaste discrete energiehoeveelheden. De stralingsenergie wordt als het ware getransporteerd in de vorm van massaloze deeltjes. Dergelijke energiepakketjes noemen we fotonen of golfquanta. Wanneer de fotonenergie wordt uitgedrukt in de eenheid elektronvolt moet men rekening houden met de omrekenfactor van 0, elektronvolt per joule [ev/j]. Naarmate de straling een kortere golflengte heeft bevatten de fotonen meer energie. Langgolvige elektromagnetische straling bevat weinig energie per foton en wordt daarom ook wel zachte straling genoemd. Elektromagnetische straling kan dus behalve met de golflengte of met de golffrequentie ook worden gekarakteriseerd met de fotonenergie. In figuur 1 is een overzicht gegeven van de verschillende soorten elektromagnetische straling met een aanduiding van het golflengtegebied, de frequentie en de fotonenergie.

4 SBD 9673 Ioniserende straling Uitsluitend gammastraling en röntgenstraling en remstraling worden gerekend tot de ioniserende vormen van elektromagnetische straling. Uitsluitend van deze golfstraling is de corresponderende fotonenergie groter dan enkele tientallen elektronvolt, zodat de fotonen in staat zijn om in de materie en in bijzonder in biologisch materiaal op uitgebreide schaal ionisaties te veroorzaken. De andere genoemde vormen van elektromagnetische straling worden gerekend tot de niet-ioniserende straling. De golfstraling die we kennen als licht en in bijzonder ultraviolette straling blijken wel energie te kunnen overdragen aan elektronen in de schillenstructuur rond de atoomkernen. Hierdoor worden de elektronen wel in een hogere energietoestand gebracht, maar niet uit het atomaire verband verwijderd. Dit verschijnsel noemen we excitatie of aanslag. Het verschil tussen gammastraling, röntgenstraling en remstraling berust niet op onderling verschil in energie of golflengte, maar het onderscheid is terug te voeren op verschil in wijze van ontstaan. Gammastraling (symbool: ) ontstaat binnen de atoomkernen wanneer deze van aangeslagen energietoestand terugvallen naar lagere energietoestanden. Dergelijke aangeslagen atoomkernen kunnen ontstaan als gevolg van radioactieve vervalprocessen, als gevolg van kernsplijting, of ook als gevolg van al dan niet kunstmatig veroorzaakte kernreacties. Gammastraling is meestal een nevenverschijnsel bij de uitzending van andere soorten kernstraling, in bijzonder alfa- en bètastraling. Het verschil in de aangeslagen toestand en de eindtoestand van de kern wordt uitgezonden in de vorm van gammafotonen waarvan de energie nauwkeurig bepaald is omdat de energieniveaus in de atoomkern precies bepaald zijn. Deze zijn overigens per kernsoort onderling verschillend, zodat ook de uitgezonden gamma-energie verschilt. De energie van uitgezonden gammastraling is echter voor dezelfde kernsoort wel steeds dezelfde, zodat een radioactief nuclide kan worden herkend aan de energie van de uitgezonden gammastraling. Karakteristieke röntgenstraling wordt uitgezonden wanneer er elektronenovergangen plaatsvinden tussen verschillende energieniveaus (elektronenbanen) in de schillenstructuur buiten de kern van het atoom. Wanneer om welke reden dan ook een vacature is ontstaan in een elektronenbaan, wordt dit gat spontaan opgevuld door een elektron uit een verder afgelegen elektronenbaan. Het verschil in potentiële energie tussen de elektronenniveaus wordt uitgezonden in de vorm van een foton. Ook hier bezit het foton meer energie naarmate het begin- en het eindniveau verder van elkaar verwijderd zijn. De energieniveaus en hun onderlinge afstand zijn voor elke atoomsoort verschillend. Dit houdt in dat elk element zijn eigen karakteristieke spectrum van mogelijke fotonenenergieën kent. Vandaar ook de term 'karakteristiek'. Hierboven werd reeds een derde verschijningsvorm van ioniserende elektromagnetische straling genoemd, namelijk remstraling. Deze ontstaat wanneer extreem snelle geladen deeltjes, in bijzonder hoog-energetische elektronen abrupt een deel van hun kinetische energie verliezen onder invloed van de elektrostatische aantrekkingskracht van atoomkernen. Energieverlies betekent niet alleen vermindering van de snelheid maar ook en vooral verandering van de richting van de snelheid (afbuiging). Naarmate de energieverandering van de invallende elektronen groter is, zal ook de vrijkomende energie in de vorm van remstraling groter zijn. De energie-omzetting in remstraling hangt dus ook samen met de lading van de atoomkernen die de afremming veroorzaken. De energie van remstralingsfotonen kan elke waarde aannemen tussen de waarde nul en de maximale energie van het invallende elektron, afhankelijk van de mate van afremmen. Het remstralingsspectrum is dus een continu spectrum. Het overgrote deel van de elektromagnetische straling die wordt opgewekt door versnelde elektronen in een röntgenbuis bestaat dus feitelijk uit remstraling. Slechts een gering deel bestaat uit karakteristieke röntgenstraling. Om historische redenen wordt alle straling die opgewekt wordt door in een vacuümbuis een metaaltarget te bombarderen met kathodestralen, aangeduid met de naam van de ontdekker: röntgenstraling. Dr. Wilhelm Conrad Röntgen zelf noemde het verschijnsel X-rays, vooral in de Engelstalige literatuur komt men deze naamaanduiding tegen.

5 SBD 9673 Ioniserende straling Aangezien afremming in de natuurkunde niet alleen betrekking heeft op de vermindering van de absolute snelheid, maar ook betrekking heeft op verandering van de richting van de snelheid, wordt remstraling ook opgewekt wanneer hoog-energetische geladen deeltjes in een cirkelbaan op snelheid worden gehouden. Een dergelijk proces gebeurt in deeltjesversnellers zoals bètatrons en synchrotrons. In het spraakgebruik heeft deze vorm van remstraling de naam synchrotronstraling meegekregen. Figure 1 Het elektromagnetisch spectrum

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum Fysische grondslagen radioprotectie deel 1 dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum rik.leyssen@jessazh.be Fysische grondslagen radioprotectie H1: INLEIDING H2: STRALING - RADIOACTIVITEIT

Nadere informatie

Ioniserende straling - samenvatting

Ioniserende straling - samenvatting Ioniserende straling - samenvatting Maak eerst zélf een samenvatting van de theorie over ioniserende straling. Zorg dat je samenvatting de volgende elementen bevat: Over straling: o een definitie van het

Nadere informatie

Wisselwerking. van ioniserende straling met materie

Wisselwerking. van ioniserende straling met materie Wisselwerking van ioniserende straling met materie Wisselwerkingsprocessen Energie afgifte en structuurverandering in ontvangende materie Aard van wisselwerking bepaalt het juiste afschermingsmateriaal

Nadere informatie

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm.

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Domein F: Moderne fysica Subdomein: Atoomfysica 1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Bereken de energie van het foton in ev. E = h c/λ (1) E = (6,63 10-34 3 10 8 )/(589

Nadere informatie

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier.

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier. Alfa -, bèta - en gammastraling Al in 1899 onderscheidde Ernest Rutherford bij de uraniumstraling "minstens twee" soorten: één die makkelijk wordt geabsorbeerd, voor het gemak de 'alfastraling' genoemd,

Nadere informatie

Inleiding stralingsfysica

Inleiding stralingsfysica Inleiding stralingsfysica Historie 1896: Henri Becquerel ontdekt het verschijnsel radioactiviteit 1895: Wilhelm Conrad Röntgen ontdekt Röntgenstraling RadioNucliden: Inleiding Stralingsfysica 1 Wat maakt

Nadere informatie

Algemeen. Cosmic air showers J.M.C. Montanus. HiSPARC. 1 Kosmische deeltjes. 2 De energie van een deeltje

Algemeen. Cosmic air showers J.M.C. Montanus. HiSPARC. 1 Kosmische deeltjes. 2 De energie van een deeltje Algemeen HiSPARC Cosmic air showers J.M.C. Montanus 1 Kosmische deeltjes De aarde wordt continu gebombardeerd door deeltjes vanuit de ruimte. Als zo n deeltje de dampkring binnendringt zal het op een gegeven

Nadere informatie

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel.

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel. H7: Radioactiviteit Als een bepaalde kern van een element te veel of te weinig neutronen heeft is het onstabiel. Daardoor gaan ze na een zekere tijd uit elkaar vallen, op die manier bereiken ze een stabiele

Nadere informatie

Hoofdstuk 9: Radioactiviteit

Hoofdstuk 9: Radioactiviteit Hoofdstuk 9: Radioactiviteit Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 9: Radioactiviteit Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige

Nadere informatie

Wetenschappelijke Begrippen

Wetenschappelijke Begrippen Wetenschappelijke Begrippen Isotoop Als twee soorten atoomkernen hetzelfde aantal protonen heeft (en dus van hetzelfde element zijn), maar een ander aantal neutronen (en dus een andere massa), dan noemen

Nadere informatie

De energievallei van de nucliden als nieuw didactisch concept

De energievallei van de nucliden als nieuw didactisch concept De energievallei van de nucliden als nieuw didactisch concept - Kernfysica: van beschrijven naar begrijpen Rita Van Peteghem Coördinator Wetenschappen-Wisk. CNO (Centrum Nascholing Onderwijs) Universiteit

Nadere informatie

Exact Periode 5. Dictaat Licht

Exact Periode 5. Dictaat Licht Exact Periode 5 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische

Nadere informatie

Uitwerkingen opgaven hoofdstuk 5

Uitwerkingen opgaven hoofdstuk 5 Uitwerkingen opgaven hodstuk 5 5.1 Kernreacties Opgave 1 a Zie BINAS tabel 40A. Krypton heeft symbool Kr en atoomnummer 36 krypton 81 = 81 36 Kr 81 0 81 De vergelijking voor de K-vangst is: 36Kr 1e 35X

Nadere informatie

Sterrenkunde Ruimte en tijd (3)

Sterrenkunde Ruimte en tijd (3) Sterrenkunde Ruimte en tijd (3) Zoals we in het vorige artikel konden lezen, concludeerde Hubble in 1929 tot de theorie van het uitdijende heelal. Dit uitdijen geschiedt met een snelheid die evenredig

Nadere informatie

Exact Periode 5 Niveau 3. Dictaat Licht

Exact Periode 5 Niveau 3. Dictaat Licht Exact Periode 5 Niveau 3 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is

Nadere informatie

De Zon. N.G. Schultheiss

De Zon. N.G. Schultheiss 1 De Zon N.G. Schultheiss 1 Inleiding Deze module is direct vanaf de derde of vierde klas te volgen en wordt vervolgd met de module De Broglie of de module Zonnewind. Figuur 1.1: Een schema voor kernfusie

Nadere informatie

1 Leerlingproject: Kosmische straling 28 februari 2002

1 Leerlingproject: Kosmische straling 28 februari 2002 1 Leerlingproject: Kosmische straling 28 februari 2002 1 Kosmische straling Onder kosmische straling verstaan we geladen deeltjes die vanuit de ruimte op de aarde terecht komen. Kosmische straling is onder

Nadere informatie

RADIOACTIEF VERVAL. Vervalsnelheid

RADIOACTIEF VERVAL. Vervalsnelheid /stralingsbeschermingsdienst 8385-I dictaat september 2000 RADIOACTIEF VERVAL Voor een beperkt aantal van nature voorkomende kernsoorten en voor de meeste kunstmatig gevormde nucliden wijkt de neutron/proton

Nadere informatie

Biologische effecten van ioniserende en niet-ioniserende straling

Biologische effecten van ioniserende en niet-ioniserende straling Inhoudsopgave 01 Ioniserende straling 1 011 Ioniserende elektromagnetische straling 2 012 Straling van radioactieve Deeltjes 3 013 Tijdsconstante en halveringstijd 7 02 Absorptie 9 021 De absorptiewet

Nadere informatie

2.1 Wat is licht? 2.2 Fotonen

2.1 Wat is licht? 2.2 Fotonen 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

Fysische grondslagen van radioprotectie

Fysische grondslagen van radioprotectie Fysische grondslagen van radioprotectie Voorwoord... 3 1. Inleiding... 4 2. Straling... 7 2.1. Bouw van de materie... 7 2.2. Straling... 8 2.2.1. Inleiding... 8 2.2.2. Elektromagnetische straling... 9

Nadere informatie

Dosisbegrippen stralingsbescherming. /stralingsbeschermingsdienst SBD-TU/e

Dosisbegrippen stralingsbescherming. /stralingsbeschermingsdienst SBD-TU/e 13 Dosisbegrippen stralingsbescherming 1 13 Ioniserende straling ontvanger stralingsbron stralingsbundel zendt straling uit absorptie van energie dosis mogelijke biologische effecten 2 13 Ioniserende straling

Nadere informatie

Zonnestraling. Samenvatting. Elektromagnetisme

Zonnestraling. Samenvatting. Elektromagnetisme Zonnestraling Samenvatting De Zon zendt elektromagnetische straling uit. Hierbij verplaatst energie zich via elektromagnetische golven. De golflengte van de straling hangt samen met de energie-inhoud.

Nadere informatie

Radioactiviteit enkele begrippen

Radioactiviteit enkele begrippen 044 1 Radioactiviteit enkele begrippen Na het ongeval in de kerncentrale in Tsjernobyl (USSR) op 26 april 1986 is gebleken dat er behoefte bestaat de kennis omtrent radioactiviteit voor een breder publiek

Nadere informatie

De Broglie. N.G. Schultheiss

De Broglie. N.G. Schultheiss De Broglie N.G. Schultheiss Inleiding Deze module volgt op de module Detecteren en gaat vooraf aan de module Fluorescentie. In deze module wordt de kleur van het geabsorbeerd of geëmitteerd licht gekoppeld

Nadere informatie

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur).

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern.

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern. Uitwerkingen 1 protonen en neutronen Opgave negatief positief neutraal positief neutraal Een atoom bevat twee soorten geladen deeltjes namelijk protonen en elektronen. Elk elektron is evenveel negatief

Nadere informatie

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd Samenvatting Inleiding De kern Een atoom bestaat uit een kern en aan de kern gebonden elektronen, die om de kern cirkelen. Dat de elektronen aan de kern gebonden zijn, komt doordat er een kracht werkt

Nadere informatie

- KLAS 5. c) Bereken de snelheid waarmee een elektron vrijkomt als het groene licht op de Rbkathode

- KLAS 5. c) Bereken de snelheid waarmee een elektron vrijkomt als het groene licht op de Rbkathode NATUURKUNDE - KLAS 5 PROEFWERK H7 --- 26/11/10 Het proefwerk bestaat uit 3 opgaven; totaal 32 punten. Opgave 1: gasontladingsbuis (4 p) In een gasontladingsbuis (zoals een TL-buis) zijn het gassen die

Nadere informatie

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern.

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern. Uitwerkingen 1 Opgave 1 protonen en neutronen Opgave negatief positief neutraal positief neutraal Opgave 3 Een atoom bevat twee soorten geladen deeltjes namelijk protonen en elektronen. Elk elektron is

Nadere informatie

. Elektronen en elektromagnetische energie Ron / PA2ION

. Elektronen en elektromagnetische energie Ron / PA2ION Elektronen en elektromagnetische energie Ron / PA2ION Samenvatting Doel is te komen tot een verzameling van kennisfeiten, meetgegevens en opvattingen die van nut en verklarend zijn bij praktische vraagstukken

Nadere informatie

H3: Deeltjesversneller: LHC in CERN

H3: Deeltjesversneller: LHC in CERN H3: Deeltjesversneller: LHC in CERN CERN = Conseil Européen pour la Recherche Nucléaire = Europese organisatie voor nucleair onderzoek CERN ligt op de grens tussen Frankrijk en Zwitserland, dicht bij Genève.

Nadere informatie

1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen.

1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen. SO Straling 1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen. 2 Waaruit bestaat de elektronenwolk van een atoom? Negatief geladen deeltjes, elektronen. 3 Wat bevindt zich

Nadere informatie

Aandachtspunten voor het eindexamen natuurkunde vwo

Aandachtspunten voor het eindexamen natuurkunde vwo Aandachtspunten voor het eindexamen natuurkunde vwo Algemeen Thuis: Oefen thuis met Binas. Geef belangrijke tabellen aan met (blanco) post-its. Neem thuis Binas nog eens door om te kijken waar wat staat.

Nadere informatie

3 Het Foto Elektrisch Effect. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. http://maken.wikiwijs.nl/51931

3 Het Foto Elektrisch Effect. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. http://maken.wikiwijs.nl/51931 Auteur Its Academy Laatst gewijzigd Licentie Webadres 08 May 2015 CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie http://maken.wikiwijs.nl/51931 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein.

Nadere informatie

Fysische grondslagen radioprotectie deel 2. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum

Fysische grondslagen radioprotectie deel 2. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum Fysische grondslagen radioprotectie deel 2 dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum rik.leyssen@jessazh.be Fysische grondslagen radioprotectie H1: INLEIDING H2: STRALING - RADIOACTIVITEIT

Nadere informatie

Schoolexamen Moderne Natuurkunde

Schoolexamen Moderne Natuurkunde Schoolexamen Moderne Natuurkunde Natuurkunde 1,2 VWO 6 24 maart 2003 Tijdsduur: 90 minuten Deze toets bestaat uit 3 opgaven met 16 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

Later heeft men ook nog een ongeladen deeltje met praktisch dezelfde massa als een proton ontdekt (1932). Dit deeltje heeft de naam neutron gekregen.

Later heeft men ook nog een ongeladen deeltje met praktisch dezelfde massa als een proton ontdekt (1932). Dit deeltje heeft de naam neutron gekregen. Atoombouw 1.1 onderwerpen: Elektrische structuur van de materie Atoommodel van Rutherford Elementaire deeltjes Massagetal en atoomnummer Ionen Lading Twee (met een metalen laagje bedekte) balletjes,, die

Nadere informatie

KERNEN & DEELTJES VWO

KERNEN & DEELTJES VWO KERNEN & DEELTJES VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan

Nadere informatie

Hoofdstuk 1: Radioactiviteit

Hoofdstuk 1: Radioactiviteit Hoofdstuk 1: Radioactiviteit Inleiding Het is belangrijk iets te weten over wat we in de natuurkunde radioactiviteit noemen. Ongetwijfeld heb je, zonder er direct mee in aanraking te zijn geweest, er ergens

Nadere informatie

Opleiding Stralingsdeskundigheid niveau 3 / 4B. Dosimetrie, deel 1. introductie dosisbegrip. W.P. Moerman

Opleiding Stralingsdeskundigheid niveau 3 / 4B. Dosimetrie, deel 1. introductie dosisbegrip. W.P. Moerman Opleiding Stralingsdeskundigheid niveau 3 / 4B Dosimetrie, deel 1 introductie dosisbegrip W.P. Moerman Dosis Meestal: hoeveelheid werkzame stof Inhoud dag 1 dosis kerma exposie dag 2 equivalente dosis

Nadere informatie

H2: Het standaardmodel

H2: Het standaardmodel H2: Het standaardmodel 2.1 12 Fundamentele materiedeeltjes De elementaire deeltjes worden in 2 groepen opgedeeld volgens spin (aantal keer dat een deeltje rond zijn eigen as draait), de fermionen zijn

Nadere informatie

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud Higgs-deeltje Peter Renaud Heideheeren Inhoud 1. Onze fysische werkelijkheid 2. Newton Einstein - Bohr 3. Kwantumveldentheorie 4. Higgs-deeltjes en Higgs-veld 3 oktober 2012 Heideheeren 2 1 Plato De dingen

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Kernfysica. 25 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Kernfysica. 25 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Kernfysica 25 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Nationale instelling voor radioactief afval en verrijkte splijtstoffen. informatiefiche RADIOACTIVITEIT, EEN INLEIDING

Nationale instelling voor radioactief afval en verrijkte splijtstoffen. informatiefiche RADIOACTIVITEIT, EEN INLEIDING Nationale instelling voor radioactief afval en verrijkte splijtstoffen informatiefiche RADIOACTIVITEIT, EEN INLEIDING NIRAS Brussel, 01-01-2001 1. Radioactiviteit en ioniserende straling Alles rondom ons

Nadere informatie

Opgave 3 N-16 in een kerncentrale 2014 II

Opgave 3 N-16 in een kerncentrale 2014 II Opgave 3 N-16 in een kerncentrale 2014 II In de reactor binnen in het reactorgebouw van een kerncentrale komt warmte vrij door kernsplijtingen. Die warmte wordt afgevoerd door het water in het primaire

Nadere informatie

Biofysische Scheikunde: NMR-Spectroscopie

Biofysische Scheikunde: NMR-Spectroscopie Inleiding & Kernmagnetisme Vrije Universiteit Brussel 19 maart 2012 Outline 1 Overzicht en Context 2 3 Outline 1 Overzicht en Context 2 3 Doelstelling Eiwitten (en andere biologische macromoleculen) Functionele

Nadere informatie

Radioactiviteit en Kernfysica. Inhoud:

Radioactiviteit en Kernfysica. Inhoud: Radioactiviteit en Kernfysica Inhoud:. Atoommodel Rutherford Bohr. Bouw van atoomkernen A. Samenstelling B. Standaardmodel C. LHC D. Isotopen E. Binding F. Energieniveaus 3. Energie en massa A. Bindingsenergie

Nadere informatie

Groep 1 + 2 (klas 5), deel 1 Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5

Groep 1 + 2 (klas 5), deel 1 Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Groep 1 + 2 (klas 5), deel 1 Meerkeuzevragen + bijbehorende antwoorden aansluitend op hoofdstuk 2 paragraaf 1 t/m 3, Kromlijnige bewegingen (Systematische Natuurkunde) Vraag 1 Bij een horizontale worp

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica Wat zie je? PositronEmissieTomografie (PET) Nucleaire geneeskunde: basisprincipe Toepassing van nucleaire geneeskunde Vakgebieden

Nadere informatie

Impuls, energie en massa

Impuls, energie en massa Impuls, energie en massa 1 Botsingen van voorwerpen Botsingen van (sub)atomaire deeltjes 3 Massadefect bij kernreacties 4 Bindingsenergie van atoomkernen 1 Botsingen van voorwerpen Inleiding In deze paragraaf

Nadere informatie

pag 1 / 13 SBD 03-10009-8&9a DOSISBEGRIPPEN VOOR STRALINGSBESCHERMING Chris J. Huyskens

pag 1 / 13 SBD 03-10009-8&9a DOSISBEGRIPPEN VOOR STRALINGSBESCHERMING Chris J. Huyskens 12 /stralingsbeschermingsdienst pag 1 / 13 SBD 03-10009-8&9a DOSISBEGRIPPEN VOOR STRALINGSBESCHERMING Chris J. Huyskens Als het menselijke lichaam aan ioniserende straling wordt blootgesteld, wordt de

Nadere informatie

21/05/2014. 3. Natuurlijke en kunstmatige radioactiviteit 3.1 3.1. 3.1 Soorten radioactieve straling en transmutatieregels. (blijft onveranderd)

21/05/2014. 3. Natuurlijke en kunstmatige radioactiviteit 3.1 3.1. 3.1 Soorten radioactieve straling en transmutatieregels. (blijft onveranderd) 3. Natuurlijke en kunstmatige radioactiviteit 3.1 Soorten radioactieve straling en transmutatieregels 3.2 Halveringstijd Detectiemethoden voor radioactieve straling 3.4 Oefeningen 3.1 Soorten radioactieve

Nadere informatie

methode 2: Voor de vervangingsweerstand van de twee parallel geschakelde lampen geldt:

methode 2: Voor de vervangingsweerstand van de twee parallel geschakelde lampen geldt: Uitwerkingen natuurkunde Havo 1999-I Opgave 1 Accu 3p 1. Het vermogen van de lampen wordt gegeven door P = VI. Dus de accu moet een stroom leveren van I = P/V = 100/12 = 8,33 A. De "capaciteit" wordt berekend

Nadere informatie

Kernenergie. FEW cursus: Uitdagingen. Jo van den Brand 6 december 2010

Kernenergie. FEW cursus: Uitdagingen. Jo van den Brand 6 december 2010 Kernenergie FEW cursus: Uitdagingen Jo van den Brand 6 december 2010 Inhoud Jo van den Brand jo@nikhef.nl www.nikhef.nl/~jo Boek Giancoli Physics for Scientists and Engineers Week 1 Week 2 Werkcollege

Nadere informatie

1 Bouw van atomen. Theorie Radioactiviteit, Bouw van atomen, www.roelhendriks.eu

1 Bouw van atomen. Theorie Radioactiviteit, Bouw van atomen, www.roelhendriks.eu Radioactiviteit 1 Bouw van atomen 2 Chemische reacties en kernreacties 3 Alfa-, bèta- en gammaverval 4 Halveringstijd van radioactieve stoffen 5 Activiteit van een radioactieve bron 6 Kernstraling: doordringend

Nadere informatie

Kosmische straling: airshowers. J.W. van Holten NIKHEF, Amsterdam

Kosmische straling: airshowers. J.W. van Holten NIKHEF, Amsterdam Kosmische straling: airshowers J.W. van Holten NIKHEF, Amsterdam 1. Kosmische straling. Kosmische straling wordt veroorzaakt door zeer energetische deeltjes die vanuit de ruimte de aardatmosfeer binnendringen

Nadere informatie

1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit

1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit Hoofdstuk 2 Elektrostatica Doelstellingen 1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit 2.1 Het elektrisch

Nadere informatie

Antwoorden over de technische probleem bij aardwarmte installatie Koekoekspolder

Antwoorden over de technische probleem bij aardwarmte installatie Koekoekspolder Antwoorden over de technische probleem bij aardwarmte installatie Koekoekspolder Wat is het technische probleem? Er is een verstopping in de injectieput ontstaan, hierdoor kunnen er alleen nog maar kleine

Nadere informatie

HOOFDSTUK 1: Fysische grondslagen van de elektrotechniek

HOOFDSTUK 1: Fysische grondslagen van de elektrotechniek HOOFDSTUK 1: Fysische grondslagen van de elektrotechniek 1. Elektrostatica ladingen, velden en krachten lading fundamentele eigenschap van materie geheel veelvoud van elementaire lading = lading proton/elektron

Nadere informatie

Eindexamen natuurkunde havo I

Eindexamen natuurkunde havo I Opgave 1 Accu In een auto wordt bij de elektriciteitsvoorziening een accu gebruikt. Op zo n accu staan gegevens vermeld. Zie figuur 1. figuur 1 Behalve de spanning van 12 V vermeldt men ook de zogenaamde

Nadere informatie

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige beweging Trilling en

Nadere informatie

Atoomfysica uitwerkingen opgaven

Atoomfysica uitwerkingen opgaven Atoomfysica uitwerkingen opgaven Opgave 1.1 Wat zijn golven? a Geef nog een voorbeeld van een golf waaraan je kunt zien dat de golf zich wel zijwaarts verplaatst maar de bewegende delen niet. de wave in

Nadere informatie

H8 straling les.notebook. June 11, 2014. Straling? Straling: Wordt doorgelaten of wordt geabsorbeerd. Stralingsbron en straling

H8 straling les.notebook. June 11, 2014. Straling? Straling: Wordt doorgelaten of wordt geabsorbeerd. Stralingsbron en straling Stralingsbron en straling Straling? Bron Soorten straling: Licht Zichtbaarlicht (Kleuren violet tot rood) Infrarood (warmte straling) Ultraviolet (maakt je bruin/rood) Elektromagnetische straling Magnetron

Nadere informatie

Fysica 2 Practicum. Er bestaan drie types van spectra voor lichtbronnen: lijnen-, banden- en continue spectra.

Fysica 2 Practicum. Er bestaan drie types van spectra voor lichtbronnen: lijnen-, banden- en continue spectra. Fysica 2 Practicum Atoomspectroscopie 1. Theoretische uiteenzetting Wat hebben vuurwerk, lasers en neonverlichting gemeen? Ze zenden licht uit met mooie heldere kleuren. Dat doen ze doordat elektronen

Nadere informatie

Examen VWO. natuurkunde 1,2 Compex. Vragen 1 tot en met 12. In dit deel van het examen staan vragen waarbij de computer niet wordt gebruikt.

Examen VWO. natuurkunde 1,2 Compex. Vragen 1 tot en met 12. In dit deel van het examen staan vragen waarbij de computer niet wordt gebruikt. Examen VWO 2008 tijdvak 1 dinsdag 20 mei totale examentijd 3 uur natuurkunde 1,2 Compex Vragen 1 tot en met 12 In dit deel van het examen staan vragen waarbij de computer niet wordt gebruikt. Bij dit examen

Nadere informatie

Hfdst 1' Massa en rustenergie (Toevoeging hiervan nodig om begeleid zelfstandig opzoekwerk i.v.m. het Standaardmodel mogelijk te maken.

Hfdst 1' Massa en rustenergie (Toevoeging hiervan nodig om begeleid zelfstandig opzoekwerk i.v.m. het Standaardmodel mogelijk te maken. I. ELEKTRODYNAMICA Hfdst. 1 Lading en inwendige bouw van atomen 1 Elektronentheorie 1) Proefjes 2) Elektriciteit is zeer nauw verbonden met de inwendige bouw van atomen 2 Dieper en dieper in het atoom

Nadere informatie

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben.

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben. Uitwerkingen HiSPARC Elementaire deeltjes C.G.N. van Veen 1 Hadronen Opdracht 1: Elementaire deeltjes worden onderverdeeld in quarks en leptonen. (a) Noem twee eigenschappen die quarks en leptonen met

Nadere informatie

Impuls, energie en massa

Impuls, energie en massa Impuls, energie en massa 1 Impuls (klassiek) Elastische en onelastische botsingen 3 Relativistische impuls en energie 4 Botsingen van (sub)atomaire deeltjes 5 Massadefect bij kernreacties 6 Bindingsenergie

Nadere informatie

Examen HAVO en VHBO. Natuurkunde

Examen HAVO en VHBO. Natuurkunde Natuurkunde Examen HAVO en VHBO Hoger Algemeen Voortgezet Onderwijs Vooropleiding Hoger Beroeps Onderwijs HAVO Tijdvak 1 VHBO Tijdvak 2 Dinsdag 25 mei 13.30 16.30 uur 19 99 Dit examen bestaat uit 27 vragen.

Nadere informatie

7. Hoofdstuk 7 : De Elektronenstructuur van Atomen

7. Hoofdstuk 7 : De Elektronenstructuur van Atomen 7. Hoofdstuk 7 : De Elektronenstructuur van Atomen 7.1. Licht: van golf naar deeltje Frequentie (n) is het aantal golven dat per seconde passeert door een bepaald punt (Hz = 1 cyclus/s). Snelheid: v =

Nadere informatie

Examen HAVO en VHBO. Natuurkunde

Examen HAVO en VHBO. Natuurkunde Natuurkunde Examen HAVO en VHBO Hoger Algemeen Voortgezet Onderwijs Vooropleiding Hoger Beroeps Onderwijs HAVO Tijdvak 1 VHBO Tijdvak 2 Dinsdag 25 mei 13.30 16.30 uur 19 99 Dit examen bestaat uit 27 vragen.

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Licht als golf en als deeltje 24 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN VWO 2015

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN VWO 2015 MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR VAK : NATUURKUNDE DATUM : VRIJDAG 19 JUNI 2015 TIJD : 07.45 10.45 UNIFORM EXAMEN VWO 2015 Aantal opgaven: 5 Aantal pagina s: 6 Controleer zorgvuldig of alle

Nadere informatie

13 Ontwerp van een analytische röntgenbuis

13 Ontwerp van een analytische röntgenbuis 1 Röntgenstraling Ontdekt in 1895 door Wilhelm Conrad Röntgen oplichting scherm bedekt met bariumzout nabij kathodebuis Training stralingsbescherming analytische röntgentoepassingen XRD, XRF Ontstaat als

Nadere informatie

6.1 Ioniserende straling; eigenschappen en detectie

6.1 Ioniserende straling; eigenschappen en detectie Uitwerkingen opgaven hoofdstuk 6 6.1 Ioniserende straling; eigenschappen en detectie Opgave 1 a Zie figuur 6.1. Figuur 6.1 Als je met het vliegtuig gaat, ontvang je de meeste straling, omdat je je op een

Nadere informatie

Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet!

Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet! Einstein (6) n de voorafgaande artikelen hebben we het gehad over tijdsdilatatie en Lorenzcontractie (tijd en lengte zijn niet absoluut maar hangen af van de snelheid tussen waarnemer en waargenomene).

Nadere informatie

formules havo natuurkunde

formules havo natuurkunde Subdomein B1: lektriciteit De kandidaat kan toepassingen van het gebruik van elektriciteit beschrijven, de bijbehorende schakelingen en de onderdelen daarvan analyseren en de volgende formules toepassen:

Nadere informatie

KOSMISCHE STRALING. LESMODULE HISPARC VOOR TWEEDE KLAS HAVO/VWO Jeffrey Wouda Bas de Gier

KOSMISCHE STRALING. LESMODULE HISPARC VOOR TWEEDE KLAS HAVO/VWO Jeffrey Wouda Bas de Gier LESMODULE HISPARC VOOR TWEEDE KLAS HAVO/VWO Jeffrey Wouda Bas de Gier 1.1 INLEIDING In dit hoofdstuk Kosmische straling ga je stap voor stap de geschiedenis doorlopen die heeft geleid tot de ontdekking

Nadere informatie

Inhoud. 1 Inleiding 13. 1 energie 19

Inhoud. 1 Inleiding 13. 1 energie 19 Inhoud 1 Inleiding 13 1 onderzoeken van de natuur 13 Natuurwetenschappen 13 Onderzoeken 13 Ontwerpen 15 2 grootheden en eenheden 15 SI-stelsel 15 Voorvoegsels 15 3 meten 16 Meetinstrumenten 16 Nauwkeurigheid

Nadere informatie

wisselwerking ioniserende straling met materie

wisselwerking ioniserende straling met materie ioniserende straling wisselwerking ioniserende straling met materie Sytze Brandenburg geladen deeltjes electronen, positronen... α-deeltjes (kern van 4 He-atoom) atoomkernen/ionen van alle elementen electro-magnetische

Nadere informatie

Eindexamen vwo natuurkunde I

Eindexamen vwo natuurkunde I Opgave 1 Lichtpracticum Bij een practicum op school moeten Amy en Rianne de volgende onderzoeksvraag beantwoorden: Wat is bij een brandend fietslampje het verband tussen de verlichtingssterkte en de afstand

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Loesje over de de Oerknal: Eerst was er niets en toen is dat nog ontploft ook

Loesje over de de Oerknal: Eerst was er niets en toen is dat nog ontploft ook 1 Loesje over de de Oerknal: Eerst was er niets en toen is dat nog ontploft ook Natuurkundigen weten weinig over het moment van de Oerknal. Wat we wel begrijpen is de evolutie van ons Universum vanaf zeg

Nadere informatie

Medische Beeldvorming

Medische Beeldvorming Medische Beeldvorming VWO 1 MEDISCHE BEELDVORMING Over deze lessenserie Colofon In deze module worden de natuurkundige principes en technieken uitgelegd die toegepast worden bij het maken van foto s en

Nadere informatie

Mkv Magnetisme. Vraag 1 Twee lange, rechte stroomvoerende geleiders zijn opgehangen in hetzelfde verticale vlak, op een afstand d van elkaar.

Mkv Magnetisme. Vraag 1 Twee lange, rechte stroomvoerende geleiders zijn opgehangen in hetzelfde verticale vlak, op een afstand d van elkaar. Mkv Magnetisme Vraag 1 Twee lange, rechte stroomvoerende geleiders zijn opgehangen in hetzelfde verticale vlak, op een afstand d van elkaar. In een punt P op een afstand d/2 van de rechtse geleider is

Nadere informatie

Clusters van sterrenstelsels

Clusters van sterrenstelsels Nederlandse samenvatting In dit proefschrift worden radiowaarnemingen en computer simulaties van samensmeltende clusters van sterrenstelsels besproken. Om dit beter te begrijpen wordt eerst uitgelegd wat

Nadere informatie

Bestaand (les)materiaal. Loran de Vries

Bestaand (les)materiaal. Loran de Vries Bestaand (les)materiaal Loran de Vries Database www.adrive.com Email: ldevries@amsterdams.com ww: Natuurkunde4life NiNa lesmateriaal Leerlingenboekje in Word Docentenhandleiding Antwoorden op de opgaven

Nadere informatie

oefen vt vwo5 h6 Elektromagnetisme Opgaven en uitwerkingen vind je op www.agtijmensen.nl Oefen vt vwo5 h6 Elektromagnetisme Opgave 1.

oefen vt vwo5 h6 Elektromagnetisme Opgaven en uitwerkingen vind je op www.agtijmensen.nl Oefen vt vwo5 h6 Elektromagnetisme Opgave 1. Opgaven en uitwerkingen vind je op www.agtijmensen.nl Oefen vt vwo5 h6 Elektromagnetisme Opgave 1. Elektrisch veld In de vacuüm gepompte beeldbuis van een TV staan twee evenwijdige vlakke metalen platen

Nadere informatie

Quantummechanica en Relativiteitsleer bij kosmische straling

Quantummechanica en Relativiteitsleer bij kosmische straling Quantummechanica en sleer bij kosmische straling Niek Schultheiss 1/19 Krachten en krachtdragers Op kerndeeltjes werkt de zwaartekracht. Op kerndeeltjes werkt de elektromagnetische kracht. Kernen kunnen

Nadere informatie

Medische Beeldvorming

Medische Beeldvorming Medische Beeldvorming KLAS 5 HAVO MEDISCHE BEELDVORMING Over deze lessenserie In deze module worden de natuurkundige principes en technieken uitgelegd die toegepast worden bij het maken van foto s en beelden

Nadere informatie

Massa: misschien denkt u er alleen aan als u op de weegschaal staat. Grote natuurkundigen hebben er mee geworsteld. Mensen zoals Newton, Einstein en

Massa: misschien denkt u er alleen aan als u op de weegschaal staat. Grote natuurkundigen hebben er mee geworsteld. Mensen zoals Newton, Einstein en Massa: misschien denkt u er alleen aan als u op de weegschaal staat. Grote natuurkundigen hebben er mee geworsteld. Mensen zoals Newton, Einstein en recent Higgs. 1 Als ik deze voetbal een trap geef schiet

Nadere informatie

Examen VWO. natuurkunde (pilot) tijdvak 1 maandag 21 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje.

Examen VWO. natuurkunde (pilot) tijdvak 1 maandag 21 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje. Examen VWO 01 tijdvak 1 maandag 1 mei 13.30-16.30 uur natuurkunde (pilot) Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje. Dit examen bestaat uit 7 vragen. Voor dit examen zijn maximaal

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D d.d. 6 januari 6 van 4: 7: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is

Nadere informatie

Eindexamen vwo natuurkunde pilot 2012 - I

Eindexamen vwo natuurkunde pilot 2012 - I Eindexamen vwo natuurkunde pilot 0 - I Opgave Lichtpracticum maximumscore De buis is aan beide kanten afgesloten om licht van buitenaf te voorkomen. maximumscore 4 De weerstanden verhouden zich als de

Nadere informatie

Bijkomende informatie over de publicaties in Nature en Nature Communications

Bijkomende informatie over de publicaties in Nature en Nature Communications Bijkomende informatie over de publicaties in Nature en Nature Communications Achtergrond Kernfysici bestuderen allerlei eigenschappen van atoomkernen. Voor de onderzoeksgroep van Mark Huyse en Piet Van

Nadere informatie

Examen VWO. natuurkunde. tijdvak 1 maandag 21 mei uur. Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje.

Examen VWO. natuurkunde. tijdvak 1 maandag 21 mei uur. Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje. Examen VWO 2012 tijdvak 1 maandag 21 mei 13.30-16.30 uur natuurkunde Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje. Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal

Nadere informatie

Examentraining 2015. Leerlingmateriaal

Examentraining 2015. Leerlingmateriaal Examentraining 2015 Leerlingmateriaal Vak Natuurkunde Klas 5 havo Bloknummer Docent(en) Blok IV Medische beeldvorming (B2) WAN Domein B: Beeld- en geluidstechniek Subdomein B2: Straling en gezondheid

Nadere informatie

Betekenis en Ontdekking van het Higgs-deeltje

Betekenis en Ontdekking van het Higgs-deeltje Betekenis en Ontdekking van het Higgs-deeltje Lezing bij de afsluiting van het studiejaar 2012-2013 van HOVO Universiteit Leiden op 13 mei 2013 Door prof. dr. Jos Engelen Universiteit van Amsterdam/NIKHEF

Nadere informatie