Cursus Stralingsbescherming. op deskundigheidsniveau 5R

Maat: px
Weergave met pagina beginnen:

Download "Cursus Stralingsbescherming. op deskundigheidsniveau 5R"

Transcriptie

1 Cursus Stralingsbescherming op deskundigheidsniveau 5R Augustus 2011

2 Voorwoord Het Erasmus MC beschikt voor het toepassen van bronnen van ioniserende straling over drie Kernenergiewetvergunningen (type: complexvergunning). De stralingstoepassingen en de daaraan verbonden stralingsbeschermingszorg dienen te voldoen aan de voorschriften van deze vergunningen, aan de interne regelingen stralingshygiëne en aan andere documenten die onderdeel waren van de aanvraag van de vergunningen. Binnen dit kader dienen de beroepsmatig bij stralingstoepassingen betrokken personen, zowel een mondelinge als een schriftelijke instructie te hebben ontvangen over de handelingen met ioniserende stralingsbronnen. Werknemers die beroepsmatig kunnen blootstaan aan straling bij medische röntgentoepassingen doch geen handelingen uitvoeren, dienen minimaal geschoold te worden tot het stralingsbeschermingsdeskundigheidsniveau 5R. Deze cursus Stralingsbescherming op deskundigheidsniveau 5R is door de Stralingsbeschermingseenheid en de Erasmus MC Zorgacademie, Unit Medische Beeldvorming en Radiotherapie gezamenlijk ontwikkeld voor medewerkers van het Erasmus MC. Stralingsbeschermingseenheid Erasmus MC Blz. 2

3 Inhoudsopgave Voorwoord...2 Inhoudsopgave...3 Inleiding en verantwoording...5 Programma...6 Geschiedenis Röntgenstraling Radioactiviteit Elektromagnetische straling Röntgentoestellen en lineaire versnellers Inleiding Röntgenstraling uit een röntgentoestel Verschil tussen - en röntgenstraling Afschermingprincipe en afschermingsmateriaal Afscherming van röntgenstraling afkomstig uit een röntgentoestel Verandering van het spectrum bij gebruik van filters Dosimetrie Inleiding Geabsorbeerde dosis Intreedosis, uittreedosis en orgaandosis Equivalente dosis Effectieve dosis Samenvatting Oefenvragen Biologische effecten van ioniserende straling Inleiding Het effect van ioniserende straling op cellulair niveau Indeling van biologische effecten Niet-kansgebonden (deterministische) effecten Kansgebonden (stochastische) effecten Somatische effecten (in de bestraalde persoon) Genetische effecten Prenatale schade Deterministische effecten bij prenatale blootstelling Kansgebonden effecten bij prenatale blootstelling Dosis-effect-relatie Samenvatting Oefenvragen Stralingsbelasting en -risico s in de werkomgeving en in het leefmilieu Inleiding Achtergrondstraling Kunstmatige stralingsbelasting Risico's van ioniserende straling Jaardosis van blootgestelde werknemers Risicovergelijking met andere beroepsgroepen en het dagelijkse leven Samenvatting Oefenvragen Wet- en regelgeving Inleiding Internationale regelgeving Nationale wetgeving Definities Rechtvaardiging, Optimalisatie en Limitering Samenvatting Oefenvragen Praktische stralingsbescherming (algemeen en bij röntgentoestellen in het bijzonder) Inleiding Stralingsbescherming bij uitwendige blootstelling (algemeen)...48 Stralingsbeschermingseenheid Erasmus MC Blz. 3

4 6.3 Stralingsbescherming voor (blootgestelde) werknemers bij röntgenstraling Extra informatie voor röntgentoepassingen (geen examenstof) Samenvatting Oefenvragen...55 Geraadpleegde literatuur Index Bijlagen Antwoorden op de oefenvragen...59 Toelichting Persoonsdosimetrie...61 Stralingsbeschermingseenheid Erasmus MC Blz. 4

5 Inleiding en verantwoording De cursus Stralingsbescherming voor werknemers die kunnen blootstaan aan straling bij medische röntgentoepassingen (5R) bestaat uit een theoretisch gedeelte (1 dagdeel) en een practicum met een röntgentoestel (1 uur). De cursus wordt afgesloten met een multiple choice toets, waaraan u alleen kunt deelnemen indien u het practicum met goed gevolg heeft afgerond. Bij een voldoende resultaat voor de toets ontvangt u een bewijs van deelname. De theorie wordt in de voor u liggende syllabus beschreven. Deze syllabus is ontwikkeld door de Stralingsbeschermingseenheid en de Erasmus MC Zorgacademie en bestaat uit 6 hoofdstukken. Na ieder hoofdstuk wordt een korte samenvatting gegeven, gevolgd door enkele oefenvragen. In bijlage 1 zijn de antwoorden op deze oefenvragen terug te vinden. Voor het onderdeel instellingsgebonden stralingshygiënische regelgeving Erasmus MC ontvangt u een aparte syllabus. Op de volgende pagina vindt u het programma voor het theoretische deel van de cursus. Van u wordt verwacht dat u voor aanvang van de cursus deze syllabus globaal heeft doorgenomen. Ter ondersteuning van de lesactiviteiten ontvangt u hand-outs van de presentatie. Wij wensen u veel succes bij het volgen van de cursus. Copyright (2010) Erasmus MC Zorgacademie Stralingsbeschermingeenheid Erasmus MC Niets uit deze module mag verveelvoudigd en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm, geluidsband, elektronisch of op welke andere wijze dan ook en evenmin in een retrieval systeem worden opgeslagen zonder voorafgaande schriftelijke toestemming van de Erasmus MC Zorgacademie en de Stralingsbeschermingseenheid Erasmus MC. Stralingsbeschermingseenheid Erasmus MC Blz. 5

6 Programma Programma Onderwerp: Docent: Tijd: Inhoud: Instellingsgebonden stralingshygiënische regelgeving Adviseur stralingsbescherming uur De stralingsbeschermingorganisatie in het Erasmus MC wordt besproken. Er wordt nader ingegaan op de complexvergunning, de interne Regelingen Stralingshygiëne, en de schriftelijke interne toestemmingen. De verantwoordelijkheden en de bevoegdheden van de verschillende, bij ioniserende straling, betrokken personen worden eveneens uitgelegd. Onderwerpen: Röntgenstraling, lineaire versnellers en dosimetrie Docent: Erasmus MC Zorgacademie Tijd: uur Literatuur: Hoofdstuk 1 en 2 Inhoud: Straling afkomstig van röntgentoestellen en deeltjesversnellers. De meest gebruikte dosimetrische grootheden en de daarbij behorende eenheden komen aan de orde. Er wordt uitgelegd waarom er verschillende grootheden zijn en wanneer welke grootheid gebruikt dient te worden. De volgende grootheden komen aan bod: geabsorbeerde dosis, intreedosis, uittreedosis, equivalente dosis, effectieve dosis en effectieve volgdosis. Ook worden dosistempo, equivalentdosistempo en effectief dosistempo besproken. Onderwerpen: Biologische effecten van straling, stralingsbelasting en -risico s in de werkomgeving en in het milieu, wet- en regelgeving Docent: Erasmus MC Zorgacademie Tijd: uur Literatuur: Hoofdstuk 3 t/m 5 Inhoud: De biologische effecten van ioniserende straling worden besproken. Hierbij komen de volgende onderwerpen aan de orde: het effect van ioniserende straling op cellulair en moleculair niveau; somatische en genetische effecten; vroege en late effecten; deterministische en stochastische effecten; prenatale schade; dosis effect relatie voor deterministische en stochastische effecten. Vervolgens wordt ingegaan op de natuurlijke achtergrondstraling, de kunstmatige achtergrondstraling, beroepshalve blootstelling, de risico s van straling en de risicogetallen voor fataal verlopende kanker en genetische effecten. Verder wordt een risicovergelijking gemaakt met andere beroepen en gebeurtenissen uit het dagelijks leven. En er wordt aandacht besteed aan de wet- en regelgeving wat betreft de stralingsbescherming. Onderwerp: Praktische stralingsbescherming (algemeen en bij röntgentoestellen in het bijzonder) Docent: Erasmus MC Zorgacademie Tijd: uur Literatuur: Hoofdstuk 6 Inhoud: De beschermingsmogelijkheden bij uitwendige bestraling, zoals afscherming, tijd en afstand worden behandeld. Er wordt uitgelegd op welke positie men het beste kan gaan staan en welk loodschort men moet dragen bij röntgentoepassingen. Stralingsbeschermingseenheid Erasmus MC Blz. 6

7 Geschiedenis Geschiedenis 1 Röntgenstraling Wilhelm Conrad Röntgen nam op vrijdag 8 november 1895, tijdens een experiment met gasontladingsbuizen, voor het eerst een hem onbekende stralingssoort waar. Deze stralingssoort gaf hij de naam X-straling. Na de eerste ontdekking sloot hij zich zeven weken in zijn laboratorium op, waar hij ook at en sliep. Hij beschreef in zijn eerste publicatie de stralingssoort die in staat was door hout, menselijk vlees en andere niet-doorzichtige materialen heen te dringen. Tijdens een lezing op 23 januari 1896 maakte hij de beroemde foto van de hand van de anatoom Albert von Kölliker, op wiens voorstel daarna de naam 'röntgenstraling' werd aanvaard. Vermoedelijk had Röntgen bij zijn eerste lezingen al een aantal mogelijke toepassingen van de door hem ontdekte straling genoemd. In elk geval volgden de eerste, vooral medische toepassingen al heel snel: reeds in januari 1896 werd een schot hagel in de hand van een jager met behulp van X-stralen nauwkeurig gelokaliseerd. Ook bij het zetten van een gebroken been bleek de nieuwe stralingssoort een uitstekend hulpmiddel. 2 Radioactiviteit Henri Becquerel was een in 1852 te Parijs geboren fysicus. Op 2 februari 1896 maakte hij zijn ontdekking van natuurlijke radioactiviteit bekend. Deze ontdekking kwam voort uit het onderzoek van pekblende, een mineraal dat uranium en (zoals we nu weten) radium bevat. In die tijd had het een zekere roem, omdat men het associeerde met goud en zilver. Becquerel dacht aanvankelijk dat de zwarting van een fotografische plaat werd veroorzaakt door het licht, dat door fluorescerende of fosforescerende stoffen wordt uitgezonden. Voor zijn fluorescentieonderzoek gebruikte hij prachtige, gele kristallen. Toen deze kristallen op een goed ingepakte fotografische plaat werden gelegd en het zonlicht voor de fluorescentie zorgde, werd de plaat onder het kristal gezwart. Om dit verschijnsel verder te onderzoeken bedacht Becquerel een aantal proeven. Helaas liet de in zijn ogen onmisbare zon verstek gaan en werden de proeven uitgesteld. Toen de zon lang op zich liet wachten, ontwikkelde hij toch maar één van de platen en vond tot zijn verbazing dezelfde zwarting als na belichting door de zon. Hij was uiteraard reeds op de hoogte van de ontdekking van Röntgen en schreef de door hem gevonden zwarting toe aan straling die door het kristal werd uitgezonden. In principe was hiermee het verschijnsel ontdekt, dat op voorstel van Madame Curie de naam radioactiviteit kreeg. Misschien omdat radioactiviteit een veel gecompliceerder fenomeen is dan uitzending van röntgenstraling, heeft het een aantal jaren geduurd voordat de meest basale feiten bekend werden. Naast Becquerel zijn aan de reeks ontdekkingen, die in een tijdsbestek van een paar jaar plaatsvonden, vooral de namen van Marie Curie-Sklodowska ( ), Pierre Curie ( ) en Ernest Rutherford ( ) verbonden. Marie Sklodowska huwde in 1895 met de franse fysicus Pierre Curie. Ze wijdde haar doctoraalstudie bij Henri Becquerel aan natuurlijke radioactiviteit. Zij vond dat de intensiteit van de straling evenredig was met de hoeveelheid uranium, onafhankelijk van de chemische verbinding daarvan en onafhankelijk van uitwendige factoren, zoals temperatuur en druk. Becquerel had eerder gevonden, dat de lucht door pekblende werd geïoniseerd. In juli 1896 berichtten Pierre en Marie Curie over de isolatie van een kleine hoeveelheid materiaal uit pekblende, dat de naam Radium kreeg. De ontdekking van het element Polonium (naar de Poolse afkomst van Marie) was gedateerd op Ze ontdekten dat radium 3 soorten straling uitzendt ( -, -, en -straling) en dat er een gas vrijkomt (radon!). De zeer snelle ontwikkeling van vooral de medische toepassingen van röntgenstraling, in het bijzonder de fluoroscopie ('doorlichting'), had ook negatieve gevolgen. Men was zich immers van Stralingsbeschermingseenheid Erasmus MC Blz. 7

8 Geschiedenis geen gevaren bewust, hield de handen en andere lichaamsdelen onbekommerd in de stralenbundel en werkte met primitieve, niet afgeschermde apparaten. Thorium en radium vonden al vrij snel hun toepassing in de geneeskunde: thorium als contrastmiddel bij röntgenonderzoeken, radium (en radon) vooral in de radiotherapie. Vooral thorium heeft onder de patiënten veel slachtoffers gemaakt. Pas nadat onder de beroepsbeoefenaren vele slachtoffers waren gevallen, drong het omstreeks 1915 tot de mensen door dat veiligheidsmaatregelen moesten worden getroffen. Madame Curie nam zelf geen veiligheidsmaatregelen in acht bij het hanteren van radioactieve stoffen. Ze eiste dit wel van haar medewerkers. Aan het einde van haar leven had ze ernstige brand -wonden aan haar handen. Ze stierf op 4 juli 1934 aan leukemie. 3 Elektromagnetische straling Tot de grote groep van elektromagnetische straling behoren onder andere de radiogolven, infrarood, zichtbaar licht, ultraviolet, röntgenstraling en -straling. Elektromagnetische golven zijn periodieke verstoringen van het elektrische en het magnetische veld. Het enige verschil tussen de diverse soorten elektromagnetische straling is de energie. Het transport van deze energie gebeurt in pakketjes van een vaste grootte. Deze pakketjes worden fotonen genoemd. Fotonen kunnen als een soort deeltjes zonder massa en zonder afmetingen worden beschouwd. Bij de laag-energetische vormen van elektromagnetische straling zoals radiogolven en licht kan men deze opdeling in fotonen nauwelijks waarnemen. Bij de hoogenergetische elektromagnetische straling ( - en röntgenstraling) is dit deeltjeskarakter veel beter waar te nemen. Pas als de straling voldoende energie heeft om elektronen los te maken, ionisaties te veroorzaken, wordt de stralingssoort tot de groep ioniserende straling gerekend. Om een indruk van de orde van grootte te krijgen het volgende: fotonen in zichtbaar licht hebben een energie van enkele ev s, voor ionisatie is minimaal enkele tientallen ev s nodig. De energie van - en röntgenstraling variëren van enkele kev s tot enkele MeV s. Stralingsbeschermingseenheid Erasmus MC Blz. 8

9 1 Röntgentoestellen en lineaire versnellers 1 Röntgentoestellen en lineaire versnellers Dit hoofdstuk beschrijft de werking van de röntgenbuis en de lineaire versneller. Leerdoelen U kunt de werking van de röntgenbuis omschrijven. U weet dat straling uit een röntgenbuis uit een spectrum van energieën bestaat. U kent de begrippen fotonen, focus, poly-energetisch, divergerend, diafragma, kv, mas en filtering. Stralingsbeschermingseenheid Erasmus MC Blz. 9

10 1 Röntgentoestellen en lineaire versnellers 1.1 Inleiding Er bestaan verschillende soorten straling, zoals bijvoorbeeld straling opgewekt met een magnetron en zichtbaar licht (elektromagnetische straling). Elektromagnetische straling is een stralingssoort die bestaat uit hele kleine massaloze energiepakketjes, fotonen of quanten genoemd. Röntgenstraling behoort tot de groep van elektromagnetische straling. In dit hoofdstuk wordt dieper ingegaan op straling opgewekt met een röntgentoestel. Deze stralingssoort behoort in tegenstelling tot de andere genoemde stralingssoorten tot de groep ioniserende straling. Ioniserende straling kan je niet zien, horen, ruiken, proeven en voelen. Zij is echter wel in onze omgeving aanwezig en is in staat biologische effecten te veroorzaken. In de medische wereld wordt ioniserende straling gebruikt om in de mens te kunnen kijken (diagnostiek). Ioniserende straling wordt ook gebruikt om cellen te doden (therapie). Er bestaat ook niet-ioniserende straling zoals laser, infrarood, radar en microgolven. Deze wordt hier niet behandeld. 1.2 Röntgenstraling uit een röntgentoestel Een röntgenbuis bestaat uit een glazen buis waarbinnen grote onderdruk heerst, meestal wordt er gesproken over een vacuümbuis. In deze buis bevinden zich twee elektroden, een elektrisch negatief geladen kathode en een elektrisch positief geladen anode. De anode wordt ook wel trefplaat of focus genoemd. Door een gloeistroompje door de kathode te laten lopen wordt deze verhit tot tenminste 2200 C en gaat elektronen uitzenden (emitteren). Het spanningsverschil tussen anode en kathode zorgt ervoor dat de uitgezonden elektronen versneld naar de anode bewegen. De maximale energie van de elektronen is gelijk aan het spanningsverschil tussen kathode en anode. Het is noodzakelijk dat er in de buis nagenoeg vacuüm heerst zodat de elektronen zich zonder botsingen met luchtmoleculen naar de anode kunnen begeven. lekstraling focus (anode) gloeidraad (kathode) elektronen + - röntgenstraling vacuümbuis Figuur 1.1 Schematisch weergave van een röntgenbuis. De officiële eenheid van energie is joule (J). Stralingsenergieën worden echter uitgedrukt in een andere eenheid, de elektronvolt. Eén elektronvolt (ev) is de bewegingsenergie van een elektron dat een spanningsveld van 1 volt doorloopt. 1 ev = 1, J. Bij afremming in de anode wordt de bewegingsenergie van de elektronen omgezet elektromagnetische straling, röntgenstraling. De maximale energie (E max ) van de opgewekte röntgenstraling is gelijk aan de maximale bewegingsenergie van de elektronen. Omdat de energieën van de elektronen op het moment van afremmen verschillend zijn en omdat zij niet allemaal even Stralingsbeschermingseenheid Erasmus MC Blz. 10

11 1 Röntgentoestellen en lineaire versnellers sterk worden afgeremd, hebben de ontstane fotonen verschillende energieën. Röntgenstraling uit een röntgenbuis bestaat hierdoor steeds uit een mengsel van verschillende fotonenergieën. Dit mengsel van verschillende fotonenergieën wordt poly-energetisch genoemd. Naast het poly-energetisch spectrum van de röntgenbuis ontstaat er ook karakteristieke röntgenstraling omdat er elektronen uit het anode-materiaal worden gestoten. De opgewekte röntgenstraling kan door de stand van het focus (anodehoek) zoveel mogelijk in de richting van een dunner gedeelte, het venster, van de buis worden geleid. De röntgenbundel is divergerend, dit betekent dat deze steeds breder wordt naarmate de afstand tot het focus toeneemt. Om de bundel zo smal mogelijk te houden wordt gebruik gemaakt van een diafragma. Dit werkt op dezelfde wijze als bij een fototoestel. Om er zeker van te zijn dat alleen het gewenste gebied wordt bestraald wordt bij een röntgenbuis altijd gebruik gemaakt van een lichtveld. Dit markeert het röntgenveld. Een röntgenbuis zal alleen straling uitzenden als er een spanningverschil tussen anode en kathode aanwezig is, dus als de startknop wordt ingedrukt. Een deel van de opgewekte röntgenstraling zal niet via het venster naar buiten treden, maar uit andere gedeelten van de buis naar buiten lekken. Dit wordt lekstraling genoemd. Het opgewekte spectrum en het uittredende spectrum kan worden weergegeven in een grafiek waarbij op de horizontale as de fotonenergie en op de verticale as de relatieve intensiteit wordt uitgezet. Doordat de opgewekte röntgenstraling door het venster van de buis naar buiten treedt, wordt het röntgenspectrum gefilterd. De fotonen met lage energie zullen door het venster worden tegengehouden terwijl de fotonen met hogere energie ongehinderd het venster kunnen passeren. In figuur 1.2 is de doorgetrokken lijn het gefilterde spectrum. Door het plaatsen van een extra filter kan het spectrum nog verder worden gefilterd waardoor er een röntgenspectrum met relatief hoge energie overblijft. Figuur 1.2 Röntgenspectra als gevolg van verschillende buisspanningen variërend van 65 kv tot 200 kv. Door het verhogen van de buisspanning verandert de maximale energie van de röntgenstraling. Door verandering van de buisstroom neemt de hoeveelheid (de intensiteit) straling toe. De buisstroom (I) in milliampère (ma) is het aantal elektronen dat het focus per seconde raakt. De buislading (buisstroom tijd) ook wel mas-getal genoemd is het totaal aantal elektronen dat het focus per belichting raakt. 1.3 Verschil tussen - en röntgenstraling Zowel - als röntgenstraling zijn elektromagnetische straling. Het onderscheid wordt gemaakt op grond van hun herkomst: -straling is afkomstig uit de kern van een atoom, terwijl röntgenstraling het gevolg is van energieverlies van elektronen. Een ander kenmerk is het volgende: Röntgenstraling afkomstig van een toestel kan worden uitgezet, terwijl de gammastraling afkomstig van een radioactieve stof continu is en slechts kan worden afgeschermd. 1.4 Afschermingprincipe en afschermingsmateriaal Stralingsbeschermingseenheid Erasmus MC Blz. 11

12 1 Röntgentoestellen en lineaire versnellers De intensiteit van röntgenstraling wordt verminderd doordat er wisselwerking plaatsvindt met het afschermingsmateriaal. Omdat röntgenstraling elektromagnetische straling is, vindt de wisselwerking niet plaats via een eenvoudig botsingsprincipe maar via een complexe wijze van energieoverdracht. Het resultaat van deze energieoverdracht is dat van een enkel röntgenfoton niet met zekerheid kan worden gezegd of dit een interactie zal ondergaan. Als hele groepen röntgenfotonen worden beschouwd kan wel iets worden gezegd over de kans op een interactie. Het blijkt dat er per energieinterval en per afschermingsmateriaal een bepaalde dikte is waarbij de stralingsintensiteit van de bundel wordt gehalveerd, de halveringsdikte. De halveringsdikte is die dikte van het materiaal die nodig is om de intensiteit van de straling te halveren. Dit betekent dat indien er een halveringsdikte aan afschermingsmateriaal is gebruikt de stralingsintensiteit achter deze afscherming nog maar de helft is. Wordt er afschermingsmateriaal met een dikte gelijk aan twee keer de halveringsdikte gebruikt dan is de stralingsintensiteit achter de afscherming nog maar de helft van de helft (= ¼). Wordt er afschermingsmateriaal met een dikte gelijk aan drie keer de halveringsdikte gebruikt dan is de stralingsintensiteit achter de afscherming nog maar de helft van de helft van de helft (= 1/8). De halveringsdikte is alleen constant bij mono-energetische straling en als de stralingsbundel heel smal is. Bij röntgenstraling blijkt het stralingsniveau achter de afscherming hoger te zijn dan volgens bovenbeschreven wetmatigheid omdat deze stralingssoort niet homogeen is. Afscherming van elektromagnetische straling geschied het meest efficiënt met een materiaal met een hoog Z-getal (veel protonen in de kern). In de regel is dit een zwaar materiaal. Een zeer geschikt materiaal voor afscherming van elektromagnetische straling is lood. Kamers bestemd voor vaste röntgenopstelling worden in het algemeen voorzien van een hoeveelheid lood. (hierover meer in hoofdstuk 9) 1.5 Afscherming van röntgenstraling afkomstig uit een röntgentoestel Omdat de straling die uit de röntgenbuis komt poly-energetisch is, gaat het verhaal van de halveringsdikte niet geheel op. In het afschermingsmateriaal zal meer straling met lage energie dan met hoge energie worden geabsorbeerd, waardoor de hoge energieën overblijven en de straling steeds harder wordt. De halveringsdikte is hierdoor geen constante meer, maar neemt toe. Er is steeds meer materiaal nodig om de stralingsintensiteit te halveren. Bij de afscherming van röntgenstraling spreekt men meestal van een eerste halveringsdikte (hvd 1 ) en een tweede halveringsdikte (hvd 2 ), waarbij de tweede halveringsdikte groter is dan de eerste (er is dus meer materiaal nodig om de intensiteit nogmaals te halveren). Het absorberen van de lage energieën gaat immers eenvoudiger dan van de hoge energieën. De verhouding tussen hvd 1 en hvd 2 wordt de homogeniteitscoëfficiënt genoemd. Hoe dichter bij 1 hoe homogener de uittredende straling is. (homogene bundel: de eerste halveringsdikte is gelijk aan de tweede halveringsdikte) hvd1 homogeniteitscoëfficiënt hvd 2 (In de radiodiagnostiek wordt ook de term heterogeniteitsgraad gebruikt; dit is de verhouding tussen hvd 2 en hvd 1 ). 1.6 Verandering van het spectrum bij gebruik van filters In de radiodiagnostiek wordt, om de stralingsbelasting voor de patiënt zoveel mogelijk te beperken, de primaire röntgenbundel gefilterd. De lage energieën, die onnodig een bijdrage aan de dosis leveren, Stralingsbeschermingseenheid Erasmus MC Blz. 12

13 1 Röntgentoestellen en lineaire versnellers verdwijnen door deze filtering uit het spectrum. De beeldvorming verandert hierdoor niet omdat deze straling met lage energieën toch niet door de patiënt komt en dus niet aan de beeldvorming bijdraagt. De stralenkwaliteit wordt door het filteren homogener en de gemiddelde fotonenergie wordt hoger, de röntgenbundel bevat hardere straling. Het totale filter van een röntgenbuis bedraagt circa 2,5 mm aluminium-equivalent (dit geldt niet voor tandartstoestellen en niet voor toestellen voor mammografie). Aluminium-equivalent wil zeggen dat de afschermende werking gelijk is aan de opgegeven hoeveelheid aluminium, het gekozen materiaal hoeft dus niet noodzakelijk aluminium te zijn. Aangezien het 2,5 mm aluminium een minimumeis is, wordt in de praktijk vaak nog een extra filter van 2 mm Al toegevoegd. Hoe hoger de ingestelde spanning is hoe meer filtering moet worden gekozen. Bij thorax-opnamen zelfs een extra filter van 0,13 mm Cu + 1 mm Al. Dit heeft als resultaat dat de röntgenbundel nog homogener wordt en dat er minder straling door de patiënt geabsorbeerd wordt. Het koperfilter wordt altijd gecombineerd met een aluminiumfilter; waarbij het aluminiumfilter het dichtst bij de patiënt wordt geplaatst. 1.7 Straling afkomstig uit lineaire versnellers Het bekendste bestralingstoestel in de radiotherapie is de lineaire versneller. Het werkingsprincipe van de lineaire versneller is in grote lijnen gelijk aan dat van de röntgenbuis. In een versnellerbuis wordt een hoog spanningsveld opgebouwd. Vervolgens worden elektronen door een elektronenkanon in de versnellerbuis geschoten. De elektronen worden door het spanningsveld langs een rechte baan in de versnellerbuis versneld. Deze buis kan een lengte hebben van ongeveer 20 cm voor een kleine versneller (4 MV) tot meer dan 2 meter voor een versneller van 20 MV en hoger. In veel deeltjesversnellers is de versnellerbuis liggend gemonteerd in een roterende arm, de gantry. Om de gantry in evenwicht te houden is deze voorzien van een contragewicht. Na de lineaire versnellerbuis komen de elektronen bij een afbuigmagneet, waar ze van richting worden veranderd. Bij het verlaten van deze magneet hebben de elektronen een zeer hoge bewegingsenergie en heeft de elektronenbundel een diameter van slechts enkele millimeters. In de elektronenmode van de versneller wordt deze elektronenbundel door een dun metaalfolie via een collimatorgedeelte naar buiten gebracht. De collimator is het diafragma van een deeltjesversneller. In de fotonenmode treft de elektronenbundel een trefplaatje of target van zwaar metaal, vaak wolfraam, waarin de elektronen worden afgeremd, hetgeen gepaard gaat met het opwekken van hoog-energetische fotonen. Als de energie van de fotonen 8 MV of hoger is dan kan een gamma-neutron reactie optreden waardoor neutronen worden vrijgemaakt in het aangestraalde materiaal. Hierdoor wordt een neutron uit de kern gestoten. Door het uitzenden van het neutron heeft de kern een neutron minder en is in veel gevallen daardoor een radionuclide gevormd. Dit wordt activering genoemd. Stralingsbeschermingseenheid Erasmus MC Blz. 13

14 1 Röntgentoestellen en lineaire versnellers 1.8 Oefenvragen 1 Röntgenstraling a) is altijd afkomstig uit een röntgenbuis b) onderscheidt zich van -straling enkel door de herkomst van de straling c) is altijd mono-energetisch d) vermindert na uitschakelen van de buis geleidelijk in intensiteit 2 Röntgenstraling a) is altijd poly-energetisch b) bestaat uit elektronen c) kan ook uit een magnetron komen d) ontstaat in de gloeidraad van een radiodiagnostiektoestel 3 Door het plaatsen van een extra filter voor een röntgenbuis ontstaat ten opzichte van een ongefilterd spectrum een röntgenspectrum a) met een hogere gemiddelde energie b) met een lagere gemiddelde energie c) met gelijke gemiddelde energie d) met gelijke gemiddelde energie maar met een hoger maximale energie 4 Röntgenstraling kan het best worden afgeschermd met a) perspex b) lood c) aluminium d) filtermateriaal 5 De door een röntgenbuis uitgezonden straling a) heeft geen ioniserend vermogen b) vermindert geleidelijk in intensiteit na uitschakeling van de buis c) behoort tot de groep elektromagnetische straling d) is niet in staat biologische effecten te veroorzaken Stralingsbeschermingseenheid Erasmus MC Blz. 14

15 2 Dosimetrie 2 Dosimetrie In dit hoofdstuk komen de meest gebruikte dosimetrische grootheden en de daarbij behorende eenheden aan de orde. Er wordt uitgelegd waarom er verschillende grootheden zijn en wanneer welke grootheid gebruikt dient te worden. De volgende grootheden komen aan de orde: geabsorbeerde dosis, equivalente dosis en effectieve dosis. Ook worden dosistempo, equivalent dosistempo en effectief dosistempo besproken. Met behulp van deze grootheden worden risicoanalyses voor de handelingen gemaakt. Enkele van deze grootheden worden in de Kernenergiewet gebruikt om de bovengrenswaarden van blootstelling aan ioniserende straling, de dosislimieten, vast te leggen. Bij de behandeling van patiënten met ioniserende straling moet voor aanvang bekend zijn welke dosis men toedient. Vaak wordt dosis gebruikt terwijl effectieve dosis of een van de andere grootheden wordt bedoeld. In dat geval kan er onduidelijkheid ontstaan over de bedoelde stralingsdosis. Om dit te voorkomen is een gedegen kennis van de dosimetrische grootheden erg belangrijk. Leerdoelen U kent de begrippen: geabsorbeerde dosis, dosistempo; intreedosis, uittreedosis, orgaandosis equivalente dosis; equivalent dosistempo; effectieve dosis; effectief dosistempo; stralingsweegfactor; weefselweegfactor; dosisconversiecoëfficiënt. U kent de stralingsweegfactoren van de verschillende stralingssoorten; U kent de verbanden tussen de verschillende grootheden en u kunt eenvoudige dosisberekeningen maken. Stralingsbeschermingseenheid Erasmus MC Blz. 15

16 2 Dosimetrie 2.1 Inleiding Vrij snel na de ontdekking van ioniserende straling was er behoefte aan een fysische grootheid om de hoeveelheid straling in uit te drukken. Een grootheid beschrijft een meetbaar fysisch begrip, zoals lengte, massa, of tijd. De grootheid wordt weergegeven met een speciaal daarvoor gekozen symbool, zoals l voor lengte, m voor massa en t voor tijd. De bijbehorende eenheid beschrijft een afgesproken maat voor zo n grootheid. In bovenstaande voorbeelden zijn dat respectievelijk meter, kilogram en seconde. De hoeveelheid straling wordt in verschillende grootheden uitgedrukt. In de volgende paragrafen volgen de belangrijkste. 2.2 Geabsorbeerde dosis Een grootheid die zowel voor deeltjes- als voor fotonenstraling mag worden gebruikt is de geabsorbeerde dosis (D), kortweg de dosis. De hiervoor gebruikte dimensie is de hoeveelheid geabsorbeerde energie per kilogram materiaal (J/kg). De afgesproken eenheid voor geabsorbeerde dosis is gray (Gy), 1 Gy = 1 J/kg, met als tijdsafgeleide het dosistempo ( D ) [Gy/s]. Eén gray is echter een grote dosis, in de praktijk wordt daarom vaak gebruik gemaakt van Gy of mgy. Aangezien de dosis in een materiaal is gedefinieerd, is het belangrijk altijd het materiaal waarin de dosis is bepaald te vermelden. 2.3 Intreedosis, uittreedosis en orgaandosis Intreedosis De intreedosis is de dosis waar de röntgenbundel voor het eerst het lichaamsoppervlak snijdt (positie A in figuur 3.1), wordt vaak ook aangeduid als huiddosis. De eenheid waarin de huiddosis wordt uitgedrukt is de gray met als symbool Gy. Bij het meten van de intreedosis wordt vaak gebruik gemaakt van een zogenoemde ionisatiekamer; deze meet de intreedosis meestal in milligray (mgy). diafragma A C centrale as focus röntgenbundel ionisatiekamer Figuur 2.1 Intreedosis en uittreedosis Uittreedosis De uitreedosis is de dosis op de plek waar de centrale röntgenbundel voor de tweede keer het lichaamsoppervlak snijdt (positie C in figuur 2.1). Orgaandosis Om een schatting te kunnen maak van de orgaandosis worden metingen uitgevoerd met behulp van fantomen. Een fantoom is een object van een bepaald materiaal, waarvan wordt aangenomen dat het de ioniserende straling op dezelfde wijze absorbeert en verstrooit als een bepaald soort menselijk weefsel. Geschikt materiaal om spierweefsel te simuleren is bijvoorbeeld water, maar ook perspex en paraffine worden gebruikt. Sommige fantomen zijn opgebouwd rond menselijk skeletten. Stralingsbeschermingseenheid Erasmus MC Blz. 16

17 2 Dosimetrie 2.4 Equivalente dosis In weefselcellen kan de geabsorbeerde stralingsenergie schade veroorzaken. Deze schade is bij dezelfde afgegeven energie echter niet voor elke stralingssoort hetzelfde. -Deeltjes zullen namelijk in een beperkt gebied heel veel ionisaties veroorzaken waardoor de stralingsschade in dat gebied veel groter is dan bij dezelfde energieafgifte van bijvoorbeeld -straling. Dit wordt het verschil in biologische effectiviteit genoemd. Dit betekent dat de grootheid geabsorbeerde dosis niet de juiste grootheid is om stralingsdoses van verschillende stralingssoorten met elkaar te vergelijken. Door de dosis te vermenigvuldigen met een stralingsweegfactor 1 (W R ) wordt voor dit verschil in biologisch effect gecorrigeerd. De stralingsweegfactor voor -straling is 20 en voor - en -straling 1. Voor neutronen varieert deze factor, afhankelijk van de energie, van 1 tot 20. De voor stralingssoort gecorrigeerde dosis wordt de equivalente dosis (H) genoemd, met als tijdsafgeleide het equivalent dosistempo H. H WR D De SI-eenheid is nog steeds J/kg. Om onderscheid met de geabsorbeerde dosis te maken heeft deze eenheid de naam sievert (Sv) gekregen. Met behulp van de equivalente dosis (H) is het dus wel mogelijk verschillende stralingssoorten met elkaar te vergelijken en kunnen de dosisbijdrage van verschillende soorten straling bij elkaar worden opgeteld. - 1 Gray - of -straling veroorzaakt een equivalente dosis van 1 Sv - 1 Gray -straling veroorzaakt een equivalente dosis van 20 Sv - 1 Gray -straling + 1 Gray -straling veroorzaakt een equivalente dosis van 21 Sv. Om een schatting te maken van het equivalente dosistempo voor - en -straling kan van onderstaande vuistregels gebruik gemaakt worden. -straling op 30 cm: H β 100 A Sv/h; met A is de activiteit in MBq mits E 200 kev -straling op 30 cm: H γ 3 A Sv/h; met A is de activiteit in MBq Bij energieën onder de 200 kev mag deze vuistregel niet worden toegepast, omdat op 30 cm afstand de dracht van de bètadeeltjes is bereikt en derhalve het equivalente dosistempo gelijk aan 0 is De letter R staat in dit geval voor radiation. Stralingsbeschermingseenheid Erasmus MC Blz. 17

18 2 Dosimetrie 2.5 Effectieve dosis Omdat het effect van ioniserende straling niet op alle organen en weefsels even groot is, wordt ook nog gecorrigeerd voor het orgaan of weefsel waarin de straling is geabsorbeerd. Deze correctie kan worden uitgevoerd door het invoeren van een weefselweegfactor 2 (W T ). De weefselweegfactoren zijn afgeleid uit de relatieve stralingsgevoeligheid van de organen en weefsels voor het ontstaan van stochastische effecten (zie hoofdstuk 3). In tabel 2.1 zijn voor de verschillende organen en weefsels de weegfactoren gegeven. De waarden zijn afgeleid van een referentiebevolking met een gelijke hoeveelheid mannen en vrouwen. Het stochastisch 3 risico als gevolg van een equivalente dosis van een orgaan kan door middel van de weegfactor worden omgerekend naar een vergelijkbaar risico voor een bestraling van het gehele lichaam. Wanneer alle organen en weefsels afzonderlijk eenzelfde equivalente dosis van bijvoorbeeld 1 Sv hebben is dit gelijk aan een bestraling van het gehele lichaam waarbij 1 Sv wordt ontvangen. Het totaal van alle weefselweegfactoren is tenslotte gelijk aan 1. De som van alle equivalente doses van de bestraalde organen en weefsels, elk vermenigvuldigd met de bijbehorende weegfactor, wordt de effectieve dosis (E) genoemd, eveneens met de eenheid sievert. Tabel 2.1 Weefselweegfactoren orgaan weegfactor (w T ) gonaden 0,08 rode beenmerg 0,12 dikke darm 0,12 longen 0,12 maag 0,12 borstklier 0,12 blaas 0,04 lever 0,04 schildklier 0,04 slokdarm 0,04 huid 0,01 botoppervlak 0,01 hersenen 0,01 speekselklieren 0,01 overige 0,12 Totaal 1 Rekenvoorbeeld: De effectieve dosis bij een equivalente dosis van 2 msv op de maag en op de blaas is gelijk aan: E (0,12 2) (0,04 2) 0,32 msv De letter T staat voor tissue. 3 Zie hoofdstuk 3. Stralingsbeschermingseenheid Erasmus MC Blz. 18

19 2 Dosimetrie 2.6 Samenvatting Grootheid Omschrijving eenheid per tijdseenheid Geabsorbeerde dosis Intreedosis Uittreedosis Orgaandosis Equivalente dosis Effectieve dosis D energieabsorptie in materiaal gray Gy D D D H E geabsorbeerde dosis in het centrum van de invallende bundel röntgenstraling geabsorbeerde dosis in het centrum van de uittredende bundel röntgenstraling geabsorbeerde dosis in een orgaan energieabsorptie in orgaan/weefsel biologisch gewogen som van equivalente doses gray gray gray sievert sievert Gy Gy Gy Sv Sv D D D D H E Gy/h Gy/h Gy/h Gy/h Sv/h Sv/h -straling op 30 cm: -straling op 30 cm: H H β γ 100 A Sv/h; met A is de activiteit in MBq mits E 200 kev 3 A Sv/h; met A is de activiteit in MBq Stralingsbeschermingseenheid Erasmus MC Blz. 19

20 2 Dosimetrie 2.7 Oefenvragen 1 De eenheid van effectieve dosis is: a) Gy b) Bq c) Sv/h d) Sv 2 De eenheid van de intreedosis is: a) Gy b) Bq c) Sv/h d) Sv 3 De uittreedosis is: a) altijd gelijk aan de intreedosis b) kleiner dan de intreedosis c) groter dan de intreedosis d) soms kleiner en soms groter dan de intreedososis 4 De stralingsweegfactor van -straling is: a) afhankelijk van de energie b) 1 c) 5 d) 20 Stralingsbeschermingseenheid Erasmus MC Blz. 20

Cursus Stralingsbescherming

Cursus Stralingsbescherming Cursus Stralingsbescherming op deskundigheidsniveau 5A/5B Augustus 2011 Stralingsbeschermingseenheid Erasmus MC Blz. 0 Voorwoord Het Erasmus MC beschikt voor het toepassen van bronnen van ioniserende straling

Nadere informatie

Dosisbegrippen stralingsbescherming. /stralingsbeschermingsdienst SBD-TU/e

Dosisbegrippen stralingsbescherming. /stralingsbeschermingsdienst SBD-TU/e 13 Dosisbegrippen stralingsbescherming 1 13 Ioniserende straling ontvanger stralingsbron stralingsbundel zendt straling uit absorptie van energie dosis mogelijke biologische effecten 2 13 Ioniserende straling

Nadere informatie

Grootheden en eenheden TMS MR & VRS-d Stijn Laarakkers

Grootheden en eenheden TMS MR & VRS-d Stijn Laarakkers Grootheden en eenheden TMS MR & VRS-d 2018 activiteit dosis Stijn Laarakkers Overzicht Wat is dosimetrie Indirect/direct ioniserend Exposie Geabsorbeerde dosis Equivalente dosis Effectieve dosis Inwendige

Nadere informatie

RICHTLIJN ZWANGERSCHAP EN IONISERENDE STRALING

RICHTLIJN ZWANGERSCHAP EN IONISERENDE STRALING RICHTLIJN ZWANGERSCHAP EN IONISERENDE STRALING Inleiding Aan het werken met radioactieve stoffen of ioniserende straling uitzendende toestellen zijn risico s verbonden. Het is bij de wet verplicht om personen

Nadere informatie

Stralingsbeschermingsdienst SBD-TU/e 1

Stralingsbeschermingsdienst SBD-TU/e 1 Zwangerschap en Stralingsbescherming Zwangerschap en Stralingsbescherming inhoud Informatie over mogelijke biologische effecten door blootstelling aan ioniserende straling tijdens deterministische effecten

Nadere informatie

5,5. Samenvatting door een scholier 1429 woorden 13 juli keer beoordeeld. Natuurkunde

5,5. Samenvatting door een scholier 1429 woorden 13 juli keer beoordeeld. Natuurkunde Samenvatting door een scholier 1429 woorden 13 juli 2006 5,5 66 keer beoordeeld Vak Natuurkunde Natuurkunde samenvatting hoofdstuk 3 ioniserende straling 3. 1 de bouw van de atoomkernen. * Atoom: - bestaat

Nadere informatie

Ioniserende straling - samenvatting

Ioniserende straling - samenvatting Ioniserende straling - samenvatting Maak eerst zélf een samenvatting van de theorie over ioniserende straling. Zorg dat je samenvatting de volgende elementen bevat: Over straling: o een definitie van het

Nadere informatie

STRALINGSBESCHERMING IN HET ZIEKENHUIS: Röntgenstralen

STRALINGSBESCHERMING IN HET ZIEKENHUIS: Röntgenstralen STRALINGSBESCHERMING IN HET ZIEKENHUIS: Röntgenstralen 1. Inleiding Deze brochure dient als informatiebrochure voor verpleegkundigen en technologen van het Ziekenhuis Oost- Limburg die starten op een dienst

Nadere informatie

PROCEDURE V1. APR 2017

PROCEDURE V1. APR 2017 PROCEDURE V1. APR 2017 INLEIDING ZWANGERSCHAP EN IONISERENDE STRALING Aan het werken met bronnen van ioniserende straling zijn risico s verbonden. Het is bij de wet verplicht om personen die handelingen

Nadere informatie

Arbo & Milieu. Met het oog op veilig werken! Y Arbo & Milieu. Stralingsbeschermingseenheid. Zwangerschap & Straling

Arbo & Milieu. Met het oog op veilig werken! Y Arbo & Milieu. Stralingsbeschermingseenheid. Zwangerschap & Straling Informatieenen Informatie Informatie en De sector & Milieu is is bereikbaar bereikbaarop opmaandag maandag t/m t/m vrijdag vrijdag De sector & Milieu De sector & Milieu is bereikbaar op maandag t/m vrijdag

Nadere informatie

Fysische grondslagen radioprotectie deel 2. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum

Fysische grondslagen radioprotectie deel 2. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum Fysische grondslagen radioprotectie deel 2 dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum rik.leyssen@jessazh.be Fysische grondslagen radioprotectie H1: INLEIDING H2: STRALING - RADIOACTIVITEIT

Nadere informatie

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 5 Straling Gemaakt als toevoeging op methode Natuurkunde Overal 5.1 Straling en bronnen Eigenschappen van straling RA α γ β 1) Beweegt langs rechte lijnen vanuit een bron. 2) Zwakker als ze verder

Nadere informatie

Samenvatting H5 straling Natuurkunde

Samenvatting H5 straling Natuurkunde Samenvatting H5 straling Natuurkunde Deze samenvatting bevat: Een begrippenlijst van dikgedrukte woorden uit de tekst Belangrijke getallen en/of eenheden (Alle) Formules van het hoofdstuk (Handige) tabellen

Nadere informatie

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 5 Straling Gemaakt als toevoeging op methode Natuurkunde Overal 5.1 Straling en bronnen Eigenschappen van straling RA α γ β 1) Beweegt langs rechte lijnen vanuit een bron. ) Zwakker als ze verder

Nadere informatie

Wisselwerking. van ioniserende straling met materie

Wisselwerking. van ioniserende straling met materie Wisselwerking van ioniserende straling met materie Wisselwerkingsprocessen Energie afgifte en structuurverandering in ontvangende materie Aard van wisselwerking bepaalt het juiste afschermingsmateriaal

Nadere informatie

Toezichthouder Stralingsbescherming. Oefenvragen

Toezichthouder Stralingsbescherming. Oefenvragen Toezichthouder Stralingsbescherming tandartsen en orthodontisten basis Oefenvragen 21 oktober 2018 rijksuniversiteit groningen arbo- en milieudienst garp Niets uit deze uitgave mag worden verveelvoudigd,

Nadere informatie

Practicum Stralingsbescherming op deskundigheidsniveau 5R

Practicum Stralingsbescherming op deskundigheidsniveau 5R Practicum Stralingsbescherming op deskundigheidsniveau 5R Oktober 2009 Inleiding en verantwoording Voor u ligt de syllabus: Practicum Stralingsbescherming op deskundigheidsniveau 5R. Deze syllabus is ontwikkeld

Nadere informatie

1 Wisselwerking en afscherming TS VRS-D/MR vj Mieke Blaauw

1 Wisselwerking en afscherming TS VRS-D/MR vj Mieke Blaauw 1 Wisselwerking en afscherming TS VRS-D/MR vj 2018 2 Wisselwerking en afscherming TS VRS-D/MR vj 2018 1-3 Atoombouw en verval 4,5 Wisselwerking van straling met materie en afscherming 6-9 Röntgentoestellen,

Nadere informatie

Registratie-richtlijn

Registratie-richtlijn en IONISERENDE STRALING 1 (508: Ziekten veroorzaakt door ioniserende stralen) Beschrijving van de schadelijke invloed Inwendige bestraling wordt veroorzaakt door opname in het lichaam van positief geladen

Nadere informatie

- U zou geslaagd zijn als u voor het oefenexamen totaal 66 punten of meer behaalt (dus u moet minimaal 33 vragen juist beantwoorden).

- U zou geslaagd zijn als u voor het oefenexamen totaal 66 punten of meer behaalt (dus u moet minimaal 33 vragen juist beantwoorden). Technische Universiteit Delft Faculteit Technische Natuur Wetenschappen Reactor Instituut Delft Nationaal Centrum voor Stralingsveiligheid Afdeling Opleidingen Delft Oefenexamen 1, Stralingshygiëne deskundigheidsniveau

Nadere informatie

Gezondheids effecten. van ioniserende straling. Stralingsbeschermingsdienst SBD-TU/e

Gezondheids effecten. van ioniserende straling. Stralingsbeschermingsdienst SBD-TU/e Gezondheids effecten van ioniserende straling Ioniserende straling bron straling ontvanger zendt straling uit absorptie van energie:dosis mogelijke biologische effecten Opbouw van de celkern Celkern Cel

Nadere informatie

Radioactiviteit enkele begrippen

Radioactiviteit enkele begrippen 044 1 Radioactiviteit enkele begrippen Na het ongeval in de kerncentrale in Tsjernobyl (USSR) op 26 april 1986 is gebleken dat er behoefte bestaat de kennis omtrent radioactiviteit voor een breder publiek

Nadere informatie

Risico s en maatregelen bij stralingsongevallen

Risico s en maatregelen bij stralingsongevallen Risico s en maatregelen bij stralingsongevallen CBRN symposium 24 januari 2013 Dr. ir. C.H.L. (Chris) Peters Klinisch fysicus Coördinerend stralingsdeskundige JBZ Ioniserende straling Straling die in staat

Nadere informatie

Hoofdstuk 9: Radioactiviteit

Hoofdstuk 9: Radioactiviteit Hoofdstuk 9: Radioactiviteit Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 9: Radioactiviteit Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige

Nadere informatie

Opleiding Stralingsdeskundigheid niveau 3 / 4B. Dosimetrie, deel 1. introductie dosisbegrip. W.P. Moerman

Opleiding Stralingsdeskundigheid niveau 3 / 4B. Dosimetrie, deel 1. introductie dosisbegrip. W.P. Moerman Opleiding Stralingsdeskundigheid niveau 3 / 4B Dosimetrie, deel 1 introductie dosisbegrip W.P. Moerman Dosis Meestal: hoeveelheid werkzame stof Inhoud dag 1 dosis kerma exposie dag 2 equivalente dosis

Nadere informatie

Practicum Stralingsbescherming op deskundigheidsniveau 5R

Practicum Stralingsbescherming op deskundigheidsniveau 5R Practicum Stralingsbescherming op deskundigheidsniveau 5R Januari 2015 Inhoudsopgave Inleiding en verantwoording... 3 Bedieningshandleiding... 4 Verstrooiing van röntgenstraling... 4 Invloed afstand op

Nadere informatie

Samenvatting. Blootstelling

Samenvatting. Blootstelling Samenvatting Blootstelling aan ioniserende straling levert risico s voor de gezondheid op. Daar is al veel over bekend, met name over de effecten van kortdurende blootstelling aan hoge doses. Veel lastiger

Nadere informatie

Vraagstuk 1: Lektest van een 106 Ru/ 106 Rhbron

Vraagstuk 1: Lektest van een 106 Ru/ 106 Rhbron Examen stralingsbescherming deskundigheidsniveau 4A/4B p. 1 Vraagstuk 1: Lektest van een 106 Ru/ 106 Rhbron De activiteit van een 106 Ru/ 106 Rh bron is opgedampt op een zeer dun folie. Bij de jaar lijkse

Nadere informatie

Samenvatting Natuurkunde Ioniserende straling

Samenvatting Natuurkunde Ioniserende straling Samenvatting Natuurkunde Ioniserende straling Samenvatting door een scholier 1947 woorden 26 augustus 2006 6,5 102 keer beoordeeld Vak Methode Natuurkunde Natuurkunde overal Samenvatting Natuurkunde VWO

Nadere informatie

Samenvatting Natuurkunde Domein B2

Samenvatting Natuurkunde Domein B2 Samenvatting Natuurkunde Domein B2 Samenvatting door R. 1964 woorden 2 mei 2017 7,1 4 keer beoordeeld Vak Natuurkunde Domein B. Beeld- en geluidstechniek Subdomein B2. Medische beeldvorming 1. Uitzending,

Nadere informatie

Straling. Onderdeel van het college Kernenergie

Straling. Onderdeel van het college Kernenergie Straling Onderdeel van het college Kernenergie Tjeerd Ketel, 4 mei 2010 In 1946 ontworpen door Cyrill Orly van Berkeley (Radiation Lab) Nevelkamer met radioactiviteit, in dit geval geladen deeltjes vanuit

Nadere informatie

13 Ontwerp van een analytische röntgenbuis

13 Ontwerp van een analytische röntgenbuis 1 Röntgenstraling Ontdekt in 1895 door Wilhelm Conrad Röntgen oplichting scherm bedekt met bariumzout nabij kathodebuis Training stralingsbescherming analytische röntgentoepassingen XRD, XRF Ontstaat als

Nadere informatie

IONISERENDE STRALING. Deeltjes-straling

IONISERENDE STRALING. Deeltjes-straling /stralingsbeschermingsdienst SBD 9673 Dictaat 98-10-26, niv. 5 A/B IONISERENDE STRALING Met de verzamelnaam straling bedoelen we vele verschillende verschijningsvormen van energie, die kunnen worden uitgezonden

Nadere informatie

Scriptie Natuurkunde Rontgenstraling en mammografie

Scriptie Natuurkunde Rontgenstraling en mammografie Scriptie Natuurkunde Rontgenstraling en mamm Scriptie door een scholier 1848 woorden 19 maart 2002 6,7 84 keer beoordeeld Vak Natuurkunde Röntgenonderzoek Röntgenonderzoek is een term die valt binnen de

Nadere informatie

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum Fysische grondslagen radioprotectie deel 1 dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum rik.leyssen@jessazh.be Fysische grondslagen radioprotectie H1: INLEIDING H2: STRALING - RADIOACTIVITEIT

Nadere informatie

Basiskennis inzake radioactiviteit en basisprincipes van de stralingsbescherming

Basiskennis inzake radioactiviteit en basisprincipes van de stralingsbescherming Basiskennis inzake radioactiviteit en basisprincipes van de stralingsbescherming Nucleair?? Radioactiviteit?? Ioniserende straling!! Wat is dat? Basisprincipes Waar komen we radioactiviteit/ioniserende

Nadere informatie

Effecten van ioniserende straling

Effecten van ioniserende straling Faculteit Bètawetenschappen Ioniserende Stralen Practicum Achtergrondinformatie Effecten van ioniserende straling Equivalente dosis Het biologisch effect van ioniserende straling of: de schade aan levend

Nadere informatie

Inleiding stralingsfysica

Inleiding stralingsfysica Inleiding stralingsfysica Historie 1896: Henri Becquerel ontdekt het verschijnsel radioactiviteit 1895: Wilhelm Conrad Röntgen ontdekt Röntgenstraling RadioNucliden: Inleiding Stralingsfysica 1 Wat maakt

Nadere informatie

Nationale instelling voor radioactief afval en verrijkte splijtstoffen. informatiefiche RADIOACTIVITEIT, EEN INLEIDING

Nationale instelling voor radioactief afval en verrijkte splijtstoffen. informatiefiche RADIOACTIVITEIT, EEN INLEIDING Nationale instelling voor radioactief afval en verrijkte splijtstoffen informatiefiche RADIOACTIVITEIT, EEN INLEIDING NIRAS Brussel, 01-01-2001 1. Radioactiviteit en ioniserende straling Alles rondom ons

Nadere informatie

Hoofdstuk 1: Radioactiviteit

Hoofdstuk 1: Radioactiviteit Hoofdstuk 1: Radioactiviteit Inleiding Het is belangrijk iets te weten over wat we in de natuurkunde radioactiviteit noemen. Ongetwijfeld heb je, zonder er direct mee in aanraking te zijn geweest, er ergens

Nadere informatie

B-werknemer: Andere blootgestelde werknemer dan een A-werknemer.

B-werknemer: Andere blootgestelde werknemer dan een A-werknemer. Titel: definities en begripsomschrijvingen zoals gebruikt in de stralingsbeschermingsvoorschriften Nummer:, versie 1 Datum invoering: 1-10-2009 Datum laatste wijziging: 1-10-2009 Gebruikte acroniemen AID

Nadere informatie

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica Wat zie je? PositronEmissieTomografie (PET) Nucleaire geneeskunde: basisprincipe Toepassing van nucleaire geneeskunde Vakgebieden

Nadere informatie

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern.

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern. Uitwerkingen 1 protonen en neutronen Opgave negatief positief neutraal positief neutraal Een atoom bevat twee soorten geladen deeltjes namelijk protonen en elektronen. Elk elektron is evenveel negatief

Nadere informatie

PI versie 1.0 /

PI versie 1.0 / Technische informatie bij bestraling Uitleg over bestralingsapparatuur Radiotherapie PI-012146 versie 1.0 / 01-08-2016 1 Inhoudsopgave Inleiding 3 Enkele begrippen 4 Lineaire versneller 4 Fotonenstraling

Nadere informatie

Vraagstuk 1: Bepaling 51 Cractiviteit

Vraagstuk 1: Bepaling 51 Cractiviteit Examen stralingsbescherming deskundigheidsniveau 4A/4B p. 1 Vraagstuk 1: Bepaling 51 Cractiviteit Een bron bestaat uit een dunne laag radioactief 51 Cr. Om de activiteit van de laag te bepalen, wordt het

Nadere informatie

Zonnestraling. Samenvatting. Elektromagnetisme

Zonnestraling. Samenvatting. Elektromagnetisme Zonnestraling Samenvatting De Zon zendt elektromagnetische straling uit. Hierbij verplaatst energie zich via elektromagnetische golven. De golflengte van de straling hangt samen met de energie-inhoud.

Nadere informatie

1 Radiobiologie TS VRS-D/MR vj Mieke Blaauw

1 Radiobiologie TS VRS-D/MR vj Mieke Blaauw 1 Radiobiologie TS VRS-D/MR vj 2018 Mieke Blaauw 2 Radiobiologie TS VRS-D/MR vj 2018 1-3 Atoombouw en verval 4,5 Wisselwerking van straling met materie en afscherming 6-9 Röntgentoestellen, ingekapselde

Nadere informatie

vervolg VEILIG werken in de buurt van antennes

vervolg VEILIG werken in de buurt van antennes ELEKRTOMAGNETISCH SPECTRUM Het elektromagnetische spectrum bevat de volgende frequenties, gerangschikt van uiterst lage tot ultrahoge frequentie: extreem lage frequenties laagfrequente golven radiogolven

Nadere informatie

Examentraining 2015. Leerlingmateriaal

Examentraining 2015. Leerlingmateriaal Examentraining 2015 Leerlingmateriaal Vak Natuurkunde Klas 5 havo Bloknummer Docent(en) Blok IV Medische beeldvorming (B2) WAN Domein B: Beeld- en geluidstechniek Subdomein B2: Straling en gezondheid

Nadere informatie

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern.

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern. Uitwerkingen 1 Opgave 1 protonen en neutronen Opgave negatief positief neutraal positief neutraal Opgave 3 Een atoom bevat twee soorten geladen deeltjes namelijk protonen en elektronen. Elk elektron is

Nadere informatie

Practicum Stralingsbescherming op deskundigheidsniveau 5A

Practicum Stralingsbescherming op deskundigheidsniveau 5A Practicum Stralingsbescherming op deskundigheidsniveau 5A December 2012 Inhoudsopgave Inleiding en verantwoording... 3 Programma... 4 Bedieningshandleiding... 5 Verstrooiing van röntgenstraling... 6 Doelen...

Nadere informatie

Stralingsveiligheid niveau 5

Stralingsveiligheid niveau 5 26-01-2011 1 Stralingsveiligheid niveau 5 René Heerlien, Mieke Blaauw 03-06-2015 26-01-2011 2 Meerdere bronnen ICRP-adviezen International Commission on Radiological Protection onafhankelijke commissie

Nadere informatie

pag 1 / 13 SBD 03-10009-8&9a DOSISBEGRIPPEN VOOR STRALINGSBESCHERMING Chris J. Huyskens

pag 1 / 13 SBD 03-10009-8&9a DOSISBEGRIPPEN VOOR STRALINGSBESCHERMING Chris J. Huyskens 12 /stralingsbeschermingsdienst pag 1 / 13 SBD 03-10009-8&9a DOSISBEGRIPPEN VOOR STRALINGSBESCHERMING Chris J. Huyskens Als het menselijke lichaam aan ioniserende straling wordt blootgesteld, wordt de

Nadere informatie

Toezichthouder Stralingsbescherming. Oefenvragen

Toezichthouder Stralingsbescherming. Oefenvragen Toezichthouder Stralingsbescherming meet- en regeltechniek Oefenvragen 21 oktober 2018 rijksuniversiteit groningen arbo- en milieudienst garp Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen

Nadere informatie

Technische informatie bij bestraling

Technische informatie bij bestraling Radiotherapie Technische informatie bij bestraling www.catharinaziekenhuis.nl Inhoud Enkele begrippen... 3 Lineaire versneller... 3 Fotonenstraling... 3 Hoe wordt fotonenstraling opgewekt?... 4 Bundelvorming...

Nadere informatie

Radioactiviteit. Jurgen Nijs Brandweer Leopoldsburg 2012 APB Campus Vesta Brandweeropleiding

Radioactiviteit. Jurgen Nijs Brandweer Leopoldsburg  2012 APB Campus Vesta Brandweeropleiding Radioactiviteit Jurgen Nijs Brandweer Leopoldsburg Jurgen.nijs@gmail.com http://youtu.be/h3ym32m0rdq 1 Doel Bij een interventie in een omgeving waar er een kans is op ioniserende straling om veilig, accuraat

Nadere informatie

Practicum Stralingsbescherming op deskundigheidsniveau 5A

Practicum Stralingsbescherming op deskundigheidsniveau 5A Practicum Stralingsbescherming op deskundigheidsniveau 5A Oktober 2009 Inhoudsopgave Inleiding en verantwoording...3 Programma...4 Verstrooiing van röntgenstraling...5 Doelen...5 Middelen...5 op een kruk...5

Nadere informatie

Praktische stralingsbescherming

Praktische stralingsbescherming Praktische stralingsbescherming VRS-D/MR nj 2018 1-3 Atoombouw en verval 4,5 Wisselwerking van straling met materie en afscherming 6-9 Röntgentoestellen, ingekapselde bronnen 10 Grootheden en eenheden

Nadere informatie

1 Radiobiologie TS VRS-D/MR nj André Zandvoort

1 Radiobiologie TS VRS-D/MR nj André Zandvoort 1 Radiobiologie TS VRS-D/MR nj 2018 André Zandvoort Praktische stralingsbescherming VRS-D/MR nj 2018 1-3 Atoombouw en verval 4,5 Wisselwerking van straling met materie en afscherming 6-9 Röntgentoestellen,

Nadere informatie

p a t i ë n t e n i n f o r m a t i e 2

p a t i ë n t e n i n f o r m a t i e 2 Röntgenstraling Röntgenstralen dringen niet overal even goed door het menselijke lichaam heen. Zoals de zon wel door het glas maar niet door de spijlen van een raam kan schijnen. Zo ontstaat een schaduw

Nadere informatie

Naam: Klas: Repetitie Radioactiviteit VWO (versie A)

Naam: Klas: Repetitie Radioactiviteit VWO (versie A) Naam: Klas: Repetitie Radioactiviteit VWO (versie A) Aan het einde van de repetitie vind je de lijst met elementen en twee tabellen met weegfactoren voor het berekenen van de equivalente en effectieve

Nadere informatie

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel.

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel. H7: Radioactiviteit Als een bepaalde kern van een element te veel of te weinig neutronen heeft is het onstabiel. Daardoor gaan ze na een zekere tijd uit elkaar vallen, op die manier bereiken ze een stabiele

Nadere informatie

1. Inleiding. 2. Individuele toestemming. Nummer: V&Msv , versie 2 Datum invoering: Datum laatste wijziging:

1. Inleiding. 2. Individuele toestemming. Nummer: V&Msv , versie 2 Datum invoering: Datum laatste wijziging: a a a a a a a a a a a a a a a a a a a a a a a a a a a a a Stralingsbeschermingsvoorschrift a a a a a Titel: Toelating tot radiologische handelingen (inclusief medische van patiënten) en/of beroepsmatige

Nadere informatie

Röntgenstraling. Medische beeldvorming

Röntgenstraling. Medische beeldvorming Röntgenstraling Medische beeldvorming Röntgenstralen dringen in wisselende mate door het menselijke lichaam heen. Ter vergelijking kan zonlicht wel door een vensterglas dringen, maar niet door de spijlen

Nadere informatie

- KLAS 5. c) Bereken de snelheid waarmee een elektron vrijkomt als het groene licht op de Rbkathode

- KLAS 5. c) Bereken de snelheid waarmee een elektron vrijkomt als het groene licht op de Rbkathode NATUURKUNDE - KLAS 5 PROEFWERK H7 --- 26/11/10 Het proefwerk bestaat uit 3 opgaven; totaal 32 punten. Opgave 1: gasontladingsbuis (4 p) In een gasontladingsbuis (zoals een TL-buis) zijn het gassen die

Nadere informatie

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum Fysische grondslagen radioprotectie deel 1 dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum rik.leyssen@jessazh.be Fysische grondslagen radioprotectie Wat is straling? Radioactiviteit?

Nadere informatie

Veterinaire röntgentechniek

Veterinaire röntgentechniek kv s en mas-sen November 6, 2016 Agenda Straling 2 De röntgenbuis De röntgenbuis zet electriciteit om in ioniserende straling. Het rendement waarmee dit gebeurt ligt erg laag, in de grootorde van 0.01

Nadere informatie

Practicum Stralingsbescherming op deskundigheidsniveau 5A

Practicum Stralingsbescherming op deskundigheidsniveau 5A Practicum Stralingsbescherming op deskundigheidsniveau 5A Januari 2015 Inhoudsopgave Inleiding en verantwoording 3 Programma...4 Bedieningshandleiding..5 Verstrooiing van röntgenstraling 6 Invloed afstand

Nadere informatie

Subtitel (of naam of datum) Inwendige besmetting

Subtitel (of naam of datum) Inwendige besmetting Subtitel (of naam of datum) Stralingsdeskundigheid Titel van presentatie niveau 3 Inwendige besmetting inwendige besmetting deel 1: inwendige besmetting voor dummies risicoanalyse: maximaal toe te passen

Nadere informatie

RADIOACTIEF VERVAL. Vervalsnelheid

RADIOACTIEF VERVAL. Vervalsnelheid /stralingsbeschermingsdienst 8385-I dictaat september 2000 RADIOACTIEF VERVAL Voor een beperkt aantal van nature voorkomende kernsoorten en voor de meeste kunstmatig gevormde nucliden wijkt de neutron/proton

Nadere informatie

Werken met radioactieve straling

Werken met radioactieve straling Werken met radioactieve straling Wat is radioactieve straling? Radioactieve of ioniserende straling draagt energie. Die energie wordt vanuit een bron aan de omgeving overgedragen in de vorm van elektromagnetische

Nadere informatie

Ioniserende straling. Straling en gezondheid. Sectie natuurkunde - Thijs Harleman 1

Ioniserende straling. Straling en gezondheid. Sectie natuurkunde - Thijs Harleman 1 Ioniserende straling Straling en gezondheid Sectie natuurkunde - Thijs Harleman 1 Inleiding: Fukushima Het kernongeluk van Fukushima vond plaats in de kerncentrale Fukushima I in Japan, in de dagen volgend

Nadere informatie

Hoeveel straling krijg ik eigenlijk? Prof. dr. ir. Wim Deferme

Hoeveel straling krijg ik eigenlijk? Prof. dr. ir. Wim Deferme Hoeveel straling krijg ik eigenlijk? Prof. dr. ir. Wim Deferme 2 Geschiedenis -500 vcr.: ατοµοσ ( atomos ) bij de Grieken (Democritos) 1803: verhandeling van Dalton over atomen 1869: voorstelling van 92

Nadere informatie

p na = p n,na + p p,na p n,na = m n v 3

p na = p n,na + p p,na p n,na = m n v 3 Kernreactoren Opgave: Moderatorkeuze in een kernsplijtingscentrale a) Er is geen relevante externe resulterende kracht. Dat betekent dat er geen relevante stoot wordt uitgeoefend en de impuls van het systeem

Nadere informatie

Fysische grondslagen radioprotectie deel 2. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum

Fysische grondslagen radioprotectie deel 2. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum Fysische grondslagen radioprotectie deel 2 dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum rik.leyssen@jessazh.be Fysische grondslagen radioprotectie H1: INLEIDING H2: STRALING - RADIOACTIVITEIT

Nadere informatie

1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen.

1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen. SO Straling 1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen. 2 Waaruit bestaat de elektronenwolk van een atoom? Negatief geladen deeltjes, elektronen. 3 Wat bevindt zich

Nadere informatie

Straling valt dus buiten de lesstof van de cursus Basisveiligheid (B-VCA)!

Straling valt dus buiten de lesstof van de cursus Basisveiligheid (B-VCA)! BIJLAGE STRALING Deze bijlage is voor personen die de veiligheidscursus - Veiligheid voor Operationeel Leidinggevenden (VOL-VCA) volgen. - 'Veiligheid voor Intercedenten en Leidinggevenden' (VIL-VCU) volgen.

Nadere informatie

Gecoördineerd examen stralingsbescherming Deskundigheidsniveau 3

Gecoördineerd examen stralingsbescherming Deskundigheidsniveau 3 Gecoördineerd examen stralingsbescherming Deskundigheidsniveau 3 Nuclear Research and Consultancy Group Technische Universiteit Delft Boerhaave/IRS-stralingsbeschermingscursussen Rijksuniversiteit Groningen

Nadere informatie

DE STAATSSECRETARIS VAN SOCIALE ZAKEN EN WERKGELEGENHEID

DE STAATSSECRETARIS VAN SOCIALE ZAKEN EN WERKGELEGENHEID MINISTERIE VAN SOCIALE ZAKEN EN WERKGELEGENHEID AI/IO/BES No. 2005/25444 DE STAATSSECRETARIS VAN SOCIALE ZAKEN EN WERKGELEGENHEID Mede namens de Staatssecretaris van Volkshuisvesting, Ruimtelijke Ordening

Nadere informatie

De uitwendige bestraling van het prostaatcarcinoom

De uitwendige bestraling van het prostaatcarcinoom RZ Heilig Hart Leuven Naamsestraat 105 3000 Leuven Dienst Urologie Informatie voor patiënten De uitwendige bestraling van het prostaatcarcinoom UROLOGIE De uitwendige bestraling van het prostaatcarcinoom

Nadere informatie

1 Welk van onderstaande schakelingen is geschikt om de remspanning te meten?

1 Welk van onderstaande schakelingen is geschikt om de remspanning te meten? Domein F: Moderne Fysica Subdomein: Atoomfysica 1 Welk van onderstaande schakelingen is geschikt om de remspanning te meten? 2 Bekijk de volgende beweringen. 1 In een fotocel worden elektronen geëmitteerd

Nadere informatie

samenvatting interactie ioniserende straling materie

samenvatting interactie ioniserende straling materie samenvatting interactie ioniserende straling materie Sytze Brandenburg sb/radsaf2005/1 ioniserende straling geladen deeltjes α-deeltjes electronen en positronen electromagnetische straling Röntgenstaling

Nadere informatie

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm.

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Domein F: Moderne fysica Subdomein: Atoomfysica 1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Bereken de energie van het foton in ev. E = h c/λ (1) E = (6,63 10-34 3 10 8 )/(589

Nadere informatie

H8 straling les.notebook. June 11, 2014. Straling? Straling: Wordt doorgelaten of wordt geabsorbeerd. Stralingsbron en straling

H8 straling les.notebook. June 11, 2014. Straling? Straling: Wordt doorgelaten of wordt geabsorbeerd. Stralingsbron en straling Stralingsbron en straling Straling? Bron Soorten straling: Licht Zichtbaarlicht (Kleuren violet tot rood) Infrarood (warmte straling) Ultraviolet (maakt je bruin/rood) Elektromagnetische straling Magnetron

Nadere informatie

Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt.

Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt. Oefentoets schoolexamen 5 Vwo Natuurkunde Leerstof: Hoofdstukken 3, 5, 6 en 7 Tijdsduur: Versie: 90 minuten A Vragen: 20 Punten: Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk Opmerking: Let

Nadere informatie

Inhoudsopgave. 2011 Erasmus MC Zorgacademie, Unit Medische Beeldvorming en Radiotherapie en de Stralingsbeschermingseenheid Erasmus MC

Inhoudsopgave. 2011 Erasmus MC Zorgacademie, Unit Medische Beeldvorming en Radiotherapie en de Stralingsbeschermingseenheid Erasmus MC Practicum Stralingsbescherming op deskundigheidsniveau 5B Augustus 2011 Inhoudsopgave Inhoudsopgave...2 Inleiding en verantwoording...3 Programma...4 Afscherming van stralingsbronnen...5 Doel...5 Middelen...5

Nadere informatie

Informatie over straling bij het maken van röntgenfoto s en CT scans

Informatie over straling bij het maken van röntgenfoto s en CT scans Deze folder informeert u over de nuttige en nadelige effecten van het gebruik van straling bij het maken van röntgenfoto s en CT scans. De nuttige en nadelige effecten van het gebruik van MRI scanners

Nadere informatie

1 Atoom- en kernfysica TS VRS-D/MR vj Mieke Blaauw

1 Atoom- en kernfysica TS VRS-D/MR vj Mieke Blaauw 1 Atoom- en kernfysica TS VRS-D/MR vj 2018 Mieke Blaauw 2 Atoom- en kernfysica TS VRS-D/MR vj 2018 1-3 Atoombouw en verval 4,5 Wisselwerking van straling met materie en afscherming 6-9 Röntgentoestellen,

Nadere informatie

Toezichthouder Stralingsbescherming meet- en regeltoepassingen verspreidbare radioactieve stoffen - D. Proefexamen uitwerking open vragen

Toezichthouder Stralingsbescherming meet- en regeltoepassingen verspreidbare radioactieve stoffen - D. Proefexamen uitwerking open vragen Toezichthouder Stralingsbescherming meet- en regeltoepassingen verspreidbare radioactieve stoffen - D Proefexamen uitwerking open vragen Frits Pleiter 31/01/2019 toezichthouder stralingsbescherming - mr

Nadere informatie

STRALINGSHYGIËNE bij RÖNTGENTOESTELLEN

STRALINGSHYGIËNE bij RÖNTGENTOESTELLEN Deel 4 STRALINGSHYGIËNE bij RÖNTGENTOESTELLEN Bevat informatie over stralingshygiëne voor Een deskundigheid op niveau 6 van de KeW. SAMENVATTING Doelgroep "Stralingshygiëne bij Röntgentoestellen" is bedoeld

Nadere informatie

Kanker. Inleiding. Wat is kanker. Hoe ontstaat kanker

Kanker. Inleiding. Wat is kanker. Hoe ontstaat kanker Kanker Inleiding Ik heb dit onderwerp gekozen omdat veel mensen niet weten wat kanker precies inhoud en ik zelf er ook meer van wil weten omdat mijn oma er in de zomervakantie aan gestorven is. Dat je

Nadere informatie

Leids Universitair Medisch Centrum

Leids Universitair Medisch Centrum Leids Universitair Medisch Centrum Afdeling Radiologie drs. Simon van Dullemen stralingsdeskundige Stralingsrisico s: reëel of gezocht? Japan/Fukushima (2011) Aardbeving + tsunami veroorzaakte meer dan

Nadere informatie

DE STAATSSECRETARIS VAN SOCIALE ZAKEN EN WERKGELEGENHEID. Mede namens de Staatssecretaris van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer;

DE STAATSSECRETARIS VAN SOCIALE ZAKEN EN WERKGELEGENHEID. Mede namens de Staatssecretaris van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer; MINISTERIE VAN SOCIALE ZAKEN EN WERKGELEGENHEID AI/IO/BES No. 2004/33964 DE STAATSSECRETARIS VAN SOCIALE ZAKEN EN WERKGELEGENHEID Mede namens de Staatssecretaris van Volkshuisvesting, Ruimtelijke Ordening

Nadere informatie

Regeling persoonlijke stralingsdosimetrie Universiteit Leiden

Regeling persoonlijke stralingsdosimetrie Universiteit Leiden Regeling persoonlijke stralingsdosimetrie Universiteit Leiden ingang: april 2004 revisiedatum: februari 2013 looptijd: 2015 Universiteit Leiden Afdeling Veiligheid Gezondheid en Milieu Vastgesteld door

Nadere informatie

Stabiliteit van atoomkernen

Stabiliteit van atoomkernen Stabiliteit van atoomkernen Wanneer is een atoomkern stabiel? Wat is een radioactieve stof? Wat doet een radioactieve stof? 1 Soorten ioniserende straling Alfa-straling of α-straling Bèta-straling of β-straling

Nadere informatie

Toezichthouder Stralingsbescherming. Oefenvragen

Toezichthouder Stralingsbescherming. Oefenvragen Toezichthouder Stralingsbescherming verspreidbare radioactieve stoffen niveau D Oefenvragen 21 oktober 2018 rijksuniversiteit groningen arbo- en milieudienst garp Niets uit deze uitgave mag worden verveelvoudigd,

Nadere informatie

Hfdst 3: Radiotherapie Prof. Van den Bogaert

Hfdst 3: Radiotherapie Prof. Van den Bogaert 1. Inleiding Hfdst 3: Radiotherapie Prof. Van den Bogaert Radiotherapie Oncologie: specialisme binnen de oncologie dat kanker behandelt met ioniserende straling soms RT alleen soms combi met hlk en/of

Nadere informatie

H7+8 kort les.notebook June 05, 2018

H7+8 kort les.notebook June 05, 2018 H78 kort les.notebook June 05, 2018 Hoofdstuk 7 en Materie We gaan eens goed naar die stoffen kijken. We gaan steeds een niveau dieper. Stoffen bijv. limonade (mengsel) Hoofdstuk 8 Straling Moleculen water

Nadere informatie

Deze methoden worden vaak naar elkaar toegepast. Extraheren -> Filtreren -> Indampen.

Deze methoden worden vaak naar elkaar toegepast. Extraheren -> Filtreren -> Indampen. Samenvatting door Lotte 2524 woorden 19 juni 2015 7,4 82 keer beoordeeld Vak NaSk 1 1 Stoffen gebruik je bij alles wat je doet. Veel van deze stoffen komen uit de natuur, deze zijn vaak niet zuiver maar

Nadere informatie