CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen"

Transcriptie

1 0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

2 college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b a f(x)dx. b a f(x)dx = F (b) F (a) waar F (x) zodanig is dat F (x) = f(x) overal op het interval (a, b). 1

3 2 de primitieve college 1 Dus: gegeven f, zoek F met F = f. Zo n F heet de primitieve of ook wel anti-afgeleide van f. We schrijven F = f = f(x) dx en spreken dan ook wel van de onbepaalde integraal. Let op dat de onbepaalde integraal F = f slechts vast ligt op een constante C na, omdat (F (x) + C) = F (x) voor elke constante C. Voor de bepaalde integraal maakt dat niets uit omdat b a f dx = F (b) F (a) = (F (b) + C) (F (a) + C).

4 3 belangrijke integralen college 1 x n dx = 1 n+1 xn+1 + C, als n 1 1 dx x = ln x + C e x dx = e x + C cos x dx = sin x + C sin x dx = cos x + C

5 4 eerste rekenregels college 1 (f(x) + g(x)) dx = c R c f(x) dx = c f(x) dx + f(x) dx g(x) dx

6 5 voorbeeld college 1 Opgave Bereken 1 0 (3e x + 2 x) dx.

7 6 voorbeeld college 1 Opgave Bereken 1 0 (3e x + 2 x) dx. Oplossing Bepaal F (x) = (3e x + 2 x) dx, zodat het antwoord F (1) F (0) wordt.

8 7 voorbeeld college 1 F (x) = (3e x + 2 x) dx = 3e x dx + 2 x dx = 3 e x dx + 2 x 1 2 dx = 3 e x x C Dus 1 0 (3ex + 2 x) dx is F (1) F (0) = (3 e ) (3 e0 + 0) = 3e 5 3.

9 ander voorbeeld college 1 Opgave Bereken π 0 (3 sin θ + 4 cos θ) dθ. 8

10 ander voorbeeld college 1 Opgave Bereken π 0 (3 sin θ + 4 cos θ) dθ. Oplossing Bepaal G(θ) = (3 sin θ + 4 cos θ) dθ, zodat het antwoord G(π) G(0) wordt. 9

11 10 ander voorbeeld college 1 G(θ) = (3 sin θ + 4 cos θ) dθ = 3 sin θ dθ + 4 cos θ dθ Dus π (3 sin θ + 4 cos θ) dθ is 0 = 3 cos θ + 4 sin θ + C. G(π) G(0) = ( 3 cos π+4 sin π) ( 3 cos 0+4 sin 0) = 3 ( 3) = 6.

12 11 substitutieregel college 1 De substitutieregel luidt: f(g(x)) g (x) dx = F (g(x)), waar F = f.

13 12 substitutieregel college 1 f(g(x)) g (x) dx = F (g(x)), waar F = f. Een vorm om de substitutieregel in te onthouden is: f(g) g dx = F (g), waar g een functie van x is. Je probeert dus te herkennen dat de integrand te schrijven is als de samenstelling van f en g gevolgd door de afgeleide van g. De onbepaalde integraal is dan F (g) waar F de primitieve van f is.

14 substitutieregel: voorbeeld college 1 Regel: f(g) g dx = F (g) waar F = f. Opgave Bereken x 2 sin(x 3 ) dx 13

15 substitutieregel: voorbeeld college 1 Regel: f(g) g dx = F (g) waar F = f. Opgave Bereken x 2 sin(x 3 ) dx Oplossing Herken dat sin(x 3 ) de samenstelling f(g(x)) is van f(x) = sin(x) en g(x) = x 3, en dat x 2 bijna de afgeleide is van g(x)! 14

16 15 substitutieregel: voorbeeld college 1 Eigenlijk is x 2 = 1 3 g (x) als g(x) = x 3. Met f(x) = sin x vinden we dan x 2 sin(x 3 1 ) dx = 3 g (x) sin(g(x)) dx = 1 3 f(g) g dx = 1 3 F (g) = 1 3 ( cos(g)) = 1 3 cos(x3 ). Hier moeten we eigenlijk nog een willekeurige constante C bij optellen.

17 16 substitutieregel college 1 Om in dit voorbeeld te laten zien dat je antwoord correct is, bereken je de afgeleide van het resultaat, en dat is 1 3 d cos(x 3 ) dx = 1 3 ( sin(x3 )) (3x 2 ). Merk op dat je daar in de laatste stap de kettingregel toepast!

18 17 substitutieregel college 1 Met precies dezelfde techniek toon je de correctheid aan van de substitutieregel, namelijk door te laten zien dat de functies links en rechts in f(g(x)) g (x) dx = F (g(x)) dezelfde afgeleide hebben (en dus slechts een constante schelen): df (g(x)) dx = f(g(x)) g (x). Merk op dat je daar in de laatste stap de kettingregel weer toepast: de substitutieregel is een soort omgekeerde kettingregel.

19 meer voorbeelden college 1 Opgave Bereken e sin x cos x dx Oplossing Herken dat cos x de afgeleide is van g(x) = sin x, en dat e sin x de samenstelling is van g(x) met f(x) = e x. De gezochte primitieve is dus F (g(x)) = e sin x. 18

20 19 meer voorbeelden college 1 Opgave Bereken sin(ln t) t dt Oplossing Herken dat 1/t de afgeleide is van ln t, en dus is de gevraagde primitieve cos(ln t).

21 20 meer voorbeelden college 1 Opgave Bereken sin(θ + 4) dθ Oplossing Herken dat 1 de afgeleide is van θ + 4, en dus is de gevraagde primitieve cos(θ + 4). Je zou kunnen zeggen: sin(θ + 4) dθ = sin(θ + 4) d(θ + 4) = sin t dt = cos t = cos(θ + 4) waar we t = θ + 4 hebben gesubstitueerd.

22 21 intuïtieve vorm college 1 Hoewel het niet een echt quotiënt is, zou je kunnen schrijven g (x) = dg(x) dx dus g (x) dx = dg(x) en daarom f(g(x)) g (x) dx = f(g(x)) dg(x) = F (g(x)) waar F de primitieve van f is. We hebben de variabele x vervangen door g(x).

23 22 substitutieregel: drie vormen college 1 We hebben nu de volgende drie formuleringen van de substitutieregel: f(g(x)) g (x) dx = F (g(x)) f(g) g dx = F (g) f(g(x)) dg(x) = F (g(x))

24 23 nog twee voorbeelden college 1 Opgave Bereken sin(x + 4) dx Oplossing Omdat d(x + 4) = dx kunnen we schrijven sin(x + 4) dx = sin(x + 4) d(x + 4) = cos(x + 4) + C.

25 24 nog twee voorbeelden college 1 Opgave Bereken sin(2x) dx Oplossing Omdat d(2x) = 2 dx kunnen we schrijven sin(2x) dx = sin(2x) 1 2 d(2x) = 1 2 cos(2x) + C.

26 25 twee nieuwe regels college 1 Het is duidelijk dat we zo in het algemeen voor elke a R krijgen f(x + a) dx = F (x + a) + C, en voor elke b 0 f(b x) dx = 1 b F (b x) + C, waar natuurlijk weer F (x) een primitieve van f(x) is.

27 26 voorbeeld college 1 Opgave Bereken sin 2 (2x) cos(2x) dx Oplossing Herken de afgeleide cos(2x) van sin(2x), en gebruik dx = 1 2 d(2x): sin 2 (2x) cos(2x) dx = 1 sin 2 (2x) cos(2x) d(2x) 2 = 1 sin 2 (2x) d sin(2x) = u 2 du = 1 6 u3 = 1 6 sin3 (2x).

28 27 substitutieregel: bepaalde integraal college 1 Wat is b a f(g(x)) g (x) dx? Intuïtief: x=b x=a f(g(x)) g (x) dx = = = x=b x=a g(x)=g(b) g(x)=g(a) u=g(b) u=g(a) f(g(x)) dg(x) f(g(x)) dg(x) f(u) du.

29 28 substitutieregel: bepaalde integraal college 1 Wat is b a f(g(x)) g (x) dx? Iets netter: laat F de primitieve van f zijn zodat F (u) = f(u). Dan is volgens de kettingregel (F (g(x)) = f(g(x))g (x) en dus b a f(g(x)) g (x) dx = b a (F (g(x)) dx = F (g(b)) F (g(a)). Maar ook F (g(b)) F (g(a)) = g(b) g(a) F (u) du = g(b) g(a) f(u) du.

30 29 substitutieregel: bepaalde integraal college 1 Conclusie: b a f(g(x)) g (x) dx = g(b) g(a) f(u) du.

31 30 voorbeeld college 1 Opgave Bereken 5 1 x 2x 1 dx.

32 31 voorbeeld college x 2x 1 dx. Oplossing Met 2x 1 = u is x = 1 2 (u + 1) en dx = 1 2 du, 5 1 x 2x 1 dx = = 1 4 = 1 4 = x=1 5 x=1 9 u=1 1 2 (u + 1) u du (u u 1 2 ) du (u u 1 2 ) du ( 2 3 u u ) = 16 3.

33 32 goniometrische identiteiten college 1 Voor alle reële t geldt e it = cos t + i sin t. Bovendien geldt cos 2 t + sin 2 t = 1 en We vinden hieruit en cos 2 t sin 2 t = cos(2t). cos 2 t = 1 2 (cos(2t) + 1), sin 2 t = 1 2 (1 cos(2t)).

34 33 goniometrische identiteiten college 1 Gevolg Voor alle natuurlijke getallen m, n is bepalen. sin m t cos n t dt nu te Opgave Bereken sin 2 t cos 2 t dt.

35 34 goniometrische identiteiten college 1 Opgave Bereken sin 2 t cos 2 t dt. Oplossing sin 2 t cos 2 t dt = 1 4 = 1 4 = 1 4 (1 cos(2t))(cos(2t) + 1) dt (1 cos 2 (2t)) dt sin 2 (2t) dt = (1 cos(4t)) dt = 1 8 t 1 32 sin(4t).

36 35 speciale integralen college 1 Als 1 x 2 in een integraal voorkomt, helpt de substitutie x = sin t, want 1 x2 = 1 sin 2 t = cos 2 t = cos t. Omdat dx dt = d sin t dt vervang je dan dx door cos t dt. = cos t

37 36 voorbeeld speciale integralen college 1 Opgave Bereken 1 1 x 2 dx. Oplossing 1 dx = 1 1 x 2 cos t cos t dt = t = sin 1 x.

38 speciale integralen college 1 Als 1 + x 2 in een integraal voorkomt helpt de substitutie x = tan t, want 1 + x 2 = 1 + tan 2 t = 1 + sin2 t cos 2 t = cos2 t + sin 2 t cos 2 t = 1 cos 2 t. Omdat dx dt = d tan t dt 1 vervang je dan dx door cos 2 t dt. = 1 cos 2 t 37

39 38 voorbeeld speciale integralen college 1 Opgave Bereken 1 1+x 2 dx. Oplossing x 2 dx = 1 1 cos 2 t 1 cos 2 t dt = t = tan 1 x.

Integratietechnieken: substitutie en partiële integratie

Integratietechnieken: substitutie en partiële integratie Integratietechnieken: substitutie en partiële integratie Inleiding In dit pakket wordt zeer kort de definitie van onbepaalde integralen herhaald evenals het verband tussen bepaalde en onbepaalde integralen.

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel

Nadere informatie

college 2: partiële integratie

college 2: partiële integratie 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 201300130 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/57 Elektrotechniek, Wiskunde en Informatica EWI Horizontale asymtoten Gedrag van de functie voor grote

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

~ (" 3 5x5 + 3x3 - gx + C. ~ 1 1-6/5 f (x =~=X65= x. = x~~5 + c = 55X + c V I NTEGRAALREKENING.

~ ( 3 5x5 + 3x3 - gx + C. ~ 1 1-6/5 f (x =~=X65= x. = x~~5 + c = 55X + c V I NTEGRAALREKENING. 1 I NTEGRAALREKENING. Onder een primitieve funktie F(x) van een funktie f(x) verstaan we de funktie F(x) waarvoor geldt: F ' (x) = f (x) B i j v. f (x) = x F (x) = x + c (c R) een primitieve funktie f(x)

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

Primitiveren. Omgekeerd differentiëren (primitieve bepalen)

Primitiveren. Omgekeerd differentiëren (primitieve bepalen) Primitiveren WISNET-HBO update april 2006 Inleiding Soms moet je juist de functie bepalen waarvan de afgeleide bekend is. Dit omgekeerd differentiëren (de primitieve bepalen) heet in het Engels de antiderivative.

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Inhoudsopgave 1 Definitie Betekenis van de afgeleide 1 2 Standaardafgeleiden

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Training integreren WISNET-HBO. update aug 2013

Training integreren WISNET-HBO. update aug 2013 Training integreren WISNET-HBO update aug 2013 Primitiveren De primitieve bepalen betekent in feite de functie bepalen waarvoor geldt dat Anders geschreven: Links en rechts maal dx: df = f dx De betekenis

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking Math D Gauss Wiskunde leerlijn TOM Deelnemende Modules: 14-144/FMHT/14161/14144-1A Oefententamen # Uitwerking Vraagstuk 1. tel de doorsnijding van de oppervlakken x + y + z 4 en z 1. Van bovenaf bekijkt

Nadere informatie

Appendix: Zwaartepunten

Appendix: Zwaartepunten Appendi: Zwaartepunten Enkele opmerkingen vooraf: Maak altijd eerst een schets van het betreffende gebied (en dat hoeft heus niet zo precies te zijn als de grafieken die ik hier door de computer kan laten

Nadere informatie

1 Oppervlakteberekeningen

1 Oppervlakteberekeningen Oppervlakteberekeningen. Oppervlakte ellips of een deel ervan.. Zonder gebruik te maken van parametervergelijkingen We berekenen de oppervlakte in het eerste kwadrant, achteraf vermenigvuldigen we het

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op dinsdag 26 augustus 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

integreren is het omgekeerde van differentiëren

integreren is het omgekeerde van differentiëren Integraalrekening Als we een functie f(x) differentiëren is het resultaat de eerste afgeleide f (x). Dezelfde functie f(x) kunnen we ook integreren met als resultaat de zogenaamde primitieve functie F(x).

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8,

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8, UITWERKINGEN TENTAMEN DIFFERENTIËREN EN INTEGREREN 20 OKTOBER 2008. a) f(x) < is equivalt aan < f(x)

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Machten en differentiëren

Uitwerkingen bij 1_0 Voorkennis: Machten en differentiëren Uitwerkingen bij _0 Voorkennis: Machten en differentiëren 3(x ) 6 3 6 (x ) 6 6-3 x 3 5 x - 6 43 x 6 x 3x 4 3 x 4 x 6 " $% & ' " $% & (& &( & ' " $% &( &&(& ' ) * '*, *-, *-, *-,, - VWO B deel 3 Analyse_

Nadere informatie

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30 Tentamen WISN11 Wiskundige Technieken 1 Ma 7 nov 16 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries)

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries) Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017 Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer) / B

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Dit vak bestaat uit een werk- en instructiecollege, verplicht en vrijwillig huiswerk, één tussentoets op blackboard en één tentamen aan het eind.

Dit vak bestaat uit een werk- en instructiecollege, verplicht en vrijwillig huiswerk, één tussentoets op blackboard en één tentamen aan het eind. Wiskunde 1A - groep 3 (Gabor Wiese) 16/09/2003 Wat informatie: Dit vak bestaat uit een werk- en instructiecollege, verplict en vrijwillig uiswerk, één tussentoets op blackboard en één tentamen aan et eind.

Nadere informatie

Samenvatting. TI1106M Calculus Samenvatting colleges 2014 Door: David Alderliesten. Disclaimer

Samenvatting. TI1106M Calculus Samenvatting colleges 2014 Door: David Alderliesten. Disclaimer Samenvatting TI1106M Calculus Samenvatting colleges 2014 Door: David Alderliesten Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst mogelijke

Nadere informatie

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur Toets 3 Calculus voor MST, 450CALCY donderdag 20 oktober 206; 3:30-5:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Volgt de lessen bij: (Leids) studentnummer: A (Keijzer)

Nadere informatie

Uitwerkingen analyse op de lijn tweede deel

Uitwerkingen analyse op de lijn tweede deel Uitwerkingen analse op de lijn tweede deel Het uitwerkspook 23 juli 25 Inhoudsopgave Hoofdstuk 2 3 2 Hoofdstuk 32 3 3 Hoofdstuk 29 4 4 Hoofdstuk 33 5 5 Hoofdstuk 34 5 6 Hoofdstuk 36 5 7 Hoofdstuk 37 7

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

Convexe Analyse en Optimalisering

Convexe Analyse en Optimalisering Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,

Nadere informatie

Paragraaf K.1 : Substitutiemethode

Paragraaf K.1 : Substitutiemethode Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early Transcendental Functions Robert T. Smith,

Nadere informatie

Eindexamen wiskunde B 1-2 vwo I

Eindexamen wiskunde B 1-2 vwo I Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Het vinden van een particuliere oplossing

Het vinden van een particuliere oplossing Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat

Nadere informatie

Zomercursus Wiskunde. Module 9 Grafieken van functies en krommen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 9 Grafieken van functies en krommen (versie 22 augustus 2011) Katholieke Universiteit Leuven September Module 9 Grafieken van functies en krommen (versie augustus ) Inhoudsopgave Functies van reële getallen en grafieken Som, verschil, product en quotiënt van reële

Nadere informatie

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom 8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer

Nadere informatie

Zomercursus Wiskunde. Module 18 Geïntegreerde oefeningen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 18 Geïntegreerde oefeningen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 18 Geïntegreerde oefeningen (versie 22 augustus 2011) Inhoudsopgave 1 Inleiding 1 2 Opgaves 1 3 Oplossingen 11 18-1 1 Inleiding In deze module worden

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Analyse 1 November 2011 Januari 2011 November 2010

Analyse 1 November 2011 Januari 2011 November 2010 WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

Calculus I, 23/11/2015

Calculus I, 23/11/2015 Calculus I, /11/015 1. Beschouw de functie met a, b R 0. f = a + b + lne a Benoem het domein van de functie f. b Bepaal a en b zodat de rechte y = 1 een schuine asymptoot is voor f. c Voor a = en b = 1,

Nadere informatie

Analyse module 1. Contents

Analyse module 1. Contents Analyse module 1 Contents College 1... 3 Inverse functies logaritme goniometrie... 3 College 2... 5 D-toets moeilijke vraag bespreken... 5 Differentieren... 5 Kettingregel... 5 Impliciet differentieren...

Nadere informatie

FYSICA-BIOFYSICA : FORMULARIUM (oktober 2004)

FYSICA-BIOFYSICA : FORMULARIUM (oktober 2004) ste bachelor GENEESKUNDE ste bachelor TANDHEELKUNDE ste bachelor BIOMEDISCHE WETENSCHAPPEN FYSICA-BIOFYSICA : FORMULARIUM (oktober 004) Kinematica Eenparige rechtlijnige beweging : x(t) = v x (t t 0 )

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 12 collegejaar college build slides Vandaag : : : : 17-18 12 4 september 217 3 ail Training Vessel 263 tad Amsterdam 1 2 3 4 stelling van Gauss stelling van Green Conservatieve vectorvelden 1 VA

Nadere informatie

Uitwerkingen tentamen Wiskunde B 16 januari 2015

Uitwerkingen tentamen Wiskunde B 16 januari 2015 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b

Nadere informatie

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:

Nadere informatie

Zomercursus Wiskunde

Zomercursus Wiskunde Ktholieke Universiteit Leuven September 0 Module Integrtietechnieken: substitutie en prtiële integrtie (versie ugustus 0) Module : Integrtietechnieken: substitutie en prtiële integrtie Inhoudsopgve Primitieve

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/40 Elektrotechniek, Wiskunde en Informatica EWI Functies van één veranderlijke Als je alleen deelneemt

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 Periodieke functies 2 1.1 Op verkenning 2 1.2 Periodieke functie 2 1.3 Periode-interval, evenwichtslijn en amplitude 4 1.4 De perioderechthoek 4 1.5 Oefeningen

Nadere informatie

1.1 Differentiëren, geknipt voor jou

1.1 Differentiëren, geknipt voor jou 1.1 Differentiëren, geknipt voor jou Je hebt leren omgaan met hellings of, wat hetzelfde is: s. We frissen de begrippen en rekenmethoden die hierbij horen nu wat op. Stel dat je met een (gewone) schaar

Nadere informatie

Paragraaf 12.1 : Gonio vergelijkingen en herleidingen

Paragraaf 12.1 : Gonio vergelijkingen en herleidingen Hoofdstuk 12 Goniometrische Formules (V5 Wis B Pagina 1 van 8 Paragraaf 12.1 : Gonio vergelijkingen en herleidingen Les 1 Gonio vergelijkingen oplossen met herleidregels Definitie Er zijn een aantal omschrijfregels

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening 307 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http:users.telenet.betoelating) . Inleiding Dit oefeningenoverzicht

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Formuleverzameling. Logaritmische en exponentiële functie. Trigoniometrische functies. Sinus-en cosinusregel in een driehoek.

Formuleverzameling. Logaritmische en exponentiële functie. Trigoniometrische functies. Sinus-en cosinusregel in een driehoek. Modelvragen ijkingstoets burgerlijk ingenieur en burgerlijk ingenieur-architect Formuleverzameling, 4; 3, 73 Logaritmische en exponentiële functie e = lim ( + x /x)x, 7 log a x = a log x = y x = a y (a

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early T ranscendental F unctions, Robert T. Smith,

Nadere informatie

Correctievoorschrift VWO. Wiskunde B Profi. Voorbereidend Wetenschappelijk Onderwijs. Tijdvak 1

Correctievoorschrift VWO. Wiskunde B Profi. Voorbereidend Wetenschappelijk Onderwijs. Tijdvak 1 Wiskunde B Profi Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 00 Tijdvak 0000 CV5 Begin Regels voor de beoordeling Het werk van de kandidaten wordt beoordeeld met inachtneming van

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

De Zwarte Kunst van het Primitiveren

De Zwarte Kunst van het Primitiveren De Zwarte Kunst van het Primitiveren Universiteit Utrecht P. v. Mouche Versie.093 Herfst 005 Dit typoscriptje gaat over primitiveren. Het eoogt de lezer snel de kunst van het primitiveren ij te rengen.

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

Analyse 1 Handout limieten en continuïteit

Analyse 1 Handout limieten en continuïteit Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus Exacte waaren ij sinus en cosinus In enkele gevallen kun je vergelijkingen met sinus en cosinus exact oplossen. Welke gevallen zijn at? Hieroven zie je grafieken van f(x) = sin x en g(x) = cos x. a Hoe

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO tijdvak oud programma wiskunde B, Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels Beoordelingsmodel Inzenden scores Regels

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie domein subdomein in CE moet in SE mag in SE A Vaardigheden A1: Informatievaardigheden A2:

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 7 tijdvak wiskunde B Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

Analyse. Lieve Houwaer Dany Vanbeveren

Analyse. Lieve Houwaer Dany Vanbeveren Anlyse Lieve Houwer Dny Vnbeveren . Relties, functies, fbeeldingen, bijecties Voor niet-ledige verzmelingen A en B noemen we elke deelverzmeling vn de productverzmeling A x B een reltie vn A nr B. We noemen

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B, (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 0 ijdvak Inzenden scores Uiterlijk op 0 mei de scores van de alfabetisch eerste tien kandidaten per school

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie