b) Niet geldig. Zij π(n)(p) = 1 als n is even, anders π(n)(p) = 0. Schrijf

Maat: px
Weergave met pagina beginnen:

Download "b) Niet geldig. Zij π(n)(p) = 1 als n is even, anders π(n)(p) = 0. Schrijf"

Transcriptie

1 opgave 2.1 a) Geldig. Zij n N en π een willekeurige valuatie. Schrijf T = (N, π). Stel, T, n p. Dan bestaat m > n zodat T, m p. Dus voor k > m geldt altijd T, k p. Nu geldt T, n p, want voor alle x > n geldt T, x p, want voor y := x + m geldt T, y p, want y > m. Dus geldt: als T, n p dan T, n p, dus T, π), n p p. b) Niet geldig. Zij π(n)(p) = 1 als n is even, anders π(n)(p) = 0. Schrijf T = (N, π). Dan T, 0 p want voor alle n > 0 geldt T, n p want voor alle n > 0 geldt T, 2n p. Maar T, 0 p, want stel, er bestaat n zodat T, n p. Dan T, 2n + 1 p,. Dus geldt niet: als T, 0 p dan T, 0 p. c) Niet geldig. Zij π willekeurig en schrijf T = (N, π). Stel, T, 0 F F. Dan bestaat n > 0 zodat T, n F. Voor deze n geldt dus: T, n+1, want ieder getal heeft een opvolger. Tegenspraak. d) Geldig. Zij n N en π een willekeurige valuatie; schrijf T = (N, π). Stel, T, n P. Dan bestaat m < n zodat T, m. Dus n > 0. Maar dan T, n P P, want T, 0 P, want er is geen k zodat k < n. e) Geldig. Zij n N en π een willekeurige valuagie; schrijf T = (N, π). Stel, T, n P F q. Dus er bestaat m < n zodat T, n F q, dus er bestaan m, k zodat m < n en m < k en T, k q. Nu moet gelden: n > k of n = k of n < k. Als n > k volgt T, n P q. Als n = k volgt T, n q. Als n < k volgt T, n F q. Dus geldt sowieso: als T, n P F q, dan T, n P q q F q. 1

2 opgave 2.2 Een formule λ karakteriseert een klasse K van frames als voor alle frames F: F λ F K. ( ) Neem aan, F is rechtslineair. Zij π een valuatie, s een wereld in F. Schrijf T = (F, π). We moeten aantonen: T, s ( p q) [ (p q) (p q) ( p q)]. Neem dus aan: T, s p q. Dat wil zeggen: T, s p en T, s q. Dus er bestaat t zodat s < t en T, t p, en er bestaat r zodat s < r en T, r q. F is rechtslineair, dus als s < t en s < r moet gelden: t < r OF t = r OF r < t. Als t < r dan T, t q, dus T, t p q. Als t = r dan T, t p q. Als t > r dan T, r p, dus T, r p q. We concluderen: T, s (p q) (p q) ( p q). ( ) Neem aan, F is niet rechtslineair. We moeten laten zien dat niet F λ. Dus we moeten valuatie π en punt s vinden zodat (F, π), s λ. Als F niet rechtslineair, dan bestaan s, t, r zodat s < t, s < r en niet t < r, t = r of t > r. Kies π(t)(p) = 1, π(r)(q) = 1 en verder overal π(x)(p) = 0, π(x)(q) = 0. Schrijf T = (F, π). Dan T, s p q T, s p en T, s q T, t p en T, r q Truth Maar niet T, s (p q). Stel immers dat dit wel zo was. Dan bestond t zodat T, t p en T, t q. t kan alleen t zijn (want elders is p onwaar), dus volgt T, t q. Maar er bestaat geen r zodat t < r en T, r q, want dit zou alleen r zelf kunnen zijn! Met een symmetrische redenerig volgt dat T, s ( p q). T, s (p q) is ook niet waar, want dan zou w bestaan zodat T, w p en T, w q. Dat kan alleen als t = w = r, hetgeen niet het geval is. We hebben aangetoond: T, s (p q) (p q) ( p q). opgave 2.3 a) Ieder temporeel frame waarin < leeg is is zowel dicht als discreet, bijvoorbeeld het frame met maar 1 punt. b) {0, 1} [2, 3] is noch dicht (er is geen punt tussen 0 en 1) noch discreet (2 heeft geen kleinste opvolger). 2

3 opgave 2.4 Merk op: de stelling gaat over karakteriseren binnen de temporele frames. Er zijn zeker niet-temporele frames waarin p p geldig is. Neem aan, F heeft een dichte ordening. We moeten aantonen: F p p. Zij dus π een willekeurige valuatie (schrijf T = (F, π)) en s een punt in F. Neem aan: T, s p, dus er is t zodat s < t en T, t p. Vanwege dichtheid bestaat r zodat s < r < t. Omdat r < t volgt T, r t. Omdat s < r volgt T, s t. QED Neem aan, F heeft geen dichte ordening. We moeten aantonen: niet F p p. Omdat F niet dicht is bestaan s, t zodat s < t maar niet r[s < r < t]. Kies een valuatie met π(t)(p) = 1 en π(w)(p) = 0 voor alle w t. Dan T, s p, want s < t en T, t p. Maar niet T, s p, want T, s p r[s < r en T, r p] r, t [s < r < t en T, t p] r[s < r < t] Contradiction QED opgave 2.5 a) Zij π een valuatie, n Z; schrijf T = (Z, <, π). We bewijzen: T, n τ, dus dat als T, n F F p F p, dan T, n F ( p F p). Stel dus: T, n F F (p F p). Dan bestaan m, k zodat T, m F p en T, k p en n < m, n < k. Als m < k dan zou T, k p, tegenspraak, dus k m. Zij i het grootste getal in {k, k + 1,..., m 1, m} waarvoor T, i p. Zo n getal bestaat: k zelf voldoet er aan, maar misschien is er nog een grotere. Dan geldt: T, i p, maar T, j p voor alle j > i: als j > m volgt dat uit T, m F p en als i < j m omdat i maximaal was met de eigenschap i j en T, j p. Dus T, i p F p, dus T, n F ( p F p). b) Zij π(w)(p) = 1 als q 1 en π(q)(p) = 0 als q < 1; schrijf T = (Q, <, π). Dan T, 0 F F p, want T, 1 F p. Ook T, 0 F p, want T, 1 2 p. 3

4 Dus T, 0 F F p F p. Maar niet T, 0 F p F p. Stel immers dat wel T, 0 F p F p. Dan bestaat x zodat 0 < x, T, x q (dus x < 1) en T, x F q. Maar zij z := x+1 2. Dan x < z < 1 en dus T, z q, tegenspraak met T, x F q! c) Zij π(w)(p) = 1 als q > 2, π(w)(p) = 0 als q < 2 (merk op: 2 is irrationaal, dus is π overal in het frame gedefinieerd). Schrijf T = (Q, <, π). Dan T, 0 F F p, want T, 2 F p, voor alle alle q > 2 geldt zeker q > 2 en dus T, q p. Ook T, 0 F p, want T, 1 p, want q < 2. Dus T, 0 F F p F p. Maar niet T, 0 F ( F p P F p). Stel immers dat dit wel het geval is. Dan bestaat q zodat T, q F p en bovendien T, q P F p. Het eerste geeft dat x > q[x > 2], dus dat q > 2 (als immers q < 2 bestaat er een rationaal getal y zodat q < y < 2, tegenspraak, en q = 2 kan niet). Zij nu x een rationaal getal zodat 2 < x < q. Dan niet T, x F p, want voor alle y > x: T, y p. Dus geldt T, q P F p. d) De reëele getallen hebben de volgende eigenschap: iedere niet-lege naar beneden begrensde deelverzameling heeft een kleinste ondergrens. Dat wil zeggen: gegeven een verzameling A, als er een punt b is zodat y A[y b], dan bestaat een punt a zodat y A[y a] en z > a y A[y < z]. γ is geldig in het temporele frame (R, <). Zij immers π een willekeurige valuatie op R en x een punt; schrijf T = (R, <, π). Neem aan: T, x F F p F p. We willen zien: T, x F ( F p P F p). Uit de aanname volgt: er bestaan y, z zodat x < y, z, T, y F p en T, z p. Definieer A := {y y R T, y F p}. A is niet leeg, want y A, en naar beneden begrensd door z, dus heeft een infimum a. Voor alle y < a: y / A, dus T, y F p, dus T, y F p (definitie F ), dus T, a P F p. Voor alle y > a bestaat z met a < z < y en T, z F p. Dus moet T, y p, en T, a F p volgt. 4

5 opgave 2.6 a) Kies π(vr)(p) = 1 en π(d)(p) = 0 als d vr. Dan (D, π), ma F F p, want (D, π), wo F p. Maar (D, π), ma F p, want (D, π), d p voor d {di, wo, do}. b) Zij π een valuatie, d een dag; schrijf M = (D, π). Schrijf bovendien de dagen als 0, 1,... mod 7 (dus ma = 0, di = 1 en = 0). Neem aan, M, d q. Dus M, d + 1 q. Dan M, d + 4 P q, want d + 1Rd + 4. Daar d = d volgt d + 4Rd, dus M, d P P q. QED c) Schrijf verkort: w x := (o x m x n x ). 1. (n x ( week (o x m x ))) fl + x 2. w x ( fl x fl + x ) 3. n x o x 4. w x F w x P w x 5. ( week week) w x Er moeten inderdaad bijzondere eisen gelden voor week: deze moet namelijk in precies 5 opeenvolgende punten waar zijn. Een manier om dit op te schrijven: MAANDAG := F week F week week P ( week week) OK := MAANDAG P MAANDAG F MAANDAG 5

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges

Nadere informatie

Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen

Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen Tweede huiswerkopdracht Lineaire algebra 1 en opmerkingen November 10, 2009 Opgave 1 Gegeven een vectorruimte V met deelruimtes U 1 en U 2. Als er geldt dim U 1 = 7, dimu 2 = 9, en dim(u 1 U 2 ) = 4, wat

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2. opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Tentamen TI1300 en IN1305-A (Redeneren en) Logica

Tentamen TI1300 en IN1305-A (Redeneren en) Logica TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen TI1300 en IN1305-A (Redeneren en) Logica 21 Januari 2011, 8.30 11.30 uur LEES DEZE OPMERKINGEN AANDACHTIG DOOR

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

Oplossingen Oefeningen Bewijzen en Redeneren

Oplossingen Oefeningen Bewijzen en Redeneren Oplossingen Oefeningen Bewijzen en Redeneren Goeroen Maaruf 20 augustus 202 Hoofdstuk 3: Relaties. Oefening 3..2 (a) Persoon p is grootouder van persoon q. (b) (p, q) O o O r P : [ (p, r) O (r, q) O ]

Nadere informatie

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Bas Westerbaan bas@westerbaan.name 24 april 2012 1 Opgave 1.1 Een goed en voldoende antwoord is: L 1 = L 2, want L 1 en L 2 zijn alle woorden

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07 Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Mededelingen. TI1300: Redeneren en Logica. Metavariabelen Logica, p Minder connectieven nodig

Mededelingen. TI1300: Redeneren en Logica. Metavariabelen Logica, p Minder connectieven nodig Mededelingen TI1300: Redeneren en Logica College 5: Semantiek van de Propositielogica Tomas Klos Algoritmiek Groep Tip: Als ik je vraag de recursieve definitie van een functie over PROP op te schrijven,

Nadere informatie

Logica voor AI. Responsiecollege. Antje Rumberg. 12 december Kripke Semantiek. Geldigheid. De bereikbaarheidsrelatie

Logica voor AI. Responsiecollege. Antje Rumberg. 12 december Kripke Semantiek. Geldigheid. De bereikbaarheidsrelatie Logica voor AI Responsiecollege Antje Rumberg Antje.Rumberg@phil.uu.nl 12 december 2012 1 De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en ruitje ϕ: het is noodzakelijk

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015 Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen

Nadere informatie

Uitwerkingen Tentamen Wat is Wiskunde (WISB101) Donderdag 10 november 2016, 9:00-12:00

Uitwerkingen Tentamen Wat is Wiskunde (WISB101) Donderdag 10 november 2016, 9:00-12:00 Uitweringen Tentamen Wat is Wisunde (WISB101) Donderdag 10 november 2016, 9:00-12:00 Docenten: Barbara van den Berg & Carel Faber & Arjen Baarsma & Ralph Klaasse & Vitor Blåsjö & Guido Terra-Bleeer Opgave

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17 Hints en uitwerkingen huiswerk 013 Analyse 1 H17 Rocco van Vreumingen augustus 014 1 Inhoudsopgave 1 Hints 1 3 Hints 4 3 Hints 3 4 4 Hints 4 5 5 Hints 5 5 6 Hints 6 6 7 Hints 7 6 8 Hints 8 6 9 Hints 9

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Logica voor AI. Bisimulatie en niet-karakteriseerbaarheid. Antje Rumberg. 21 november Correspondentie.

Logica voor AI. Bisimulatie en niet-karakteriseerbaarheid. Antje Rumberg. 21 november Correspondentie. Logica voor AI en niet-karakteriseerbaarheid Antje Rumberg Antje.Rumberg@phil.uu.nl 21 november 2012 1 Kripke Semantiek De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en

Nadere informatie

Formeel Denken 2014 Uitwerkingen Tentamen

Formeel Denken 2014 Uitwerkingen Tentamen Formeel Denken 2014 Uitwerkingen Tentamen (29/01/15) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Als het regent word ik

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van

Nadere informatie

Verzamelingen. Hoofdstuk 5

Verzamelingen. Hoofdstuk 5 Hoofdstuk 5 Verzamelingen In de meest uiteenlopende omstandigheden kan het handig zijn om een stel objecten, elementen, of wat dan ook, samen een naam te geven. Het resultaat noemen we dan een verzameling.

Nadere informatie

Formeel Denken 2013 Uitwerkingen Tentamen

Formeel Denken 2013 Uitwerkingen Tentamen Formeel Denken 201 Uitwerkingen Tentamen (29/01/1) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Het is koud, maar er ligt

Nadere informatie

Bijzondere kettingbreuken

Bijzondere kettingbreuken Hoofdstuk 15 Bijzondere kettingbreuken 15.1 Kwadratische getallen In het vorige hoofdstuk hebben we gezien dat 2 = 1, 2, 2, 2, 2, 2, 2,.... Men kan zich afvragen waarom we vanaf zeker moment alleen maar

Nadere informatie

ANTWERPEN januari 2017 ANTWERPEN februari 2017

ANTWERPEN januari 2017 ANTWERPEN februari 2017 ANTWERPEN januari 2017 ANTWERPEN februari 2017 01 zo 05:33 5,52 - - 16 ma 06:15 5,64 00:41-0,15 01 wo 06:31 5,54 01:05-0,15 16 do 07:08 5,47 01:28-0,10 17:49 5,62 12:28-0,24 18:35 5,75 13:15-0,45 18:51

Nadere informatie

1 Kettingbreuken van rationale getallen

1 Kettingbreuken van rationale getallen Kettingbreuken van rationale getallen Laten we eens starten met een breuk bijvoorbeeld 37/3 Laten we hier ons kettingbreuk algoritme op los, We concluderen hieruit dat 37 3 3 + 3 + + 37 3 + + + hetgeen

Nadere informatie

OOSTENDE januari 2017 OOSTENDE februari 2017

OOSTENDE januari 2017 OOSTENDE februari 2017 OOSTENDE januari 2017 OOSTENDE februari 2017 01 zo 02:40 4,53 09:18 0,24 16 ma 03:25 4,71 10:10-0,10 01 wo 03:39 4,72 10:31 0,01 16 do 04:28 4,57 11:11 0,10 14:59 4,65 21:31 0,43 15:51 4,75 22:27 0,36

Nadere informatie

Tentamentips. Tomas Klos. 14 december 2010

Tentamentips. Tomas Klos. 14 december 2010 Tentamentips Tomas Klos 14 december 010 Samenvatting In dit document vind je een aantal tentamen tips. Het gaat om fouten die ik op tentamens veel gemaakt zie worden, en die ik je liever niet zie maken.

Nadere informatie

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,

Nadere informatie

Antwerpen januari 2016 Antwerpen februari 2016

Antwerpen januari 2016 Antwerpen februari 2016 Vlaamse overheid Antwerpen januari 2016 Antwerpen februari 2016 01 vr 08:07 5.06 01:53 0.21 16 za 08:07 5.32 02:30-0.03 01 ma 08:50 4.82 02:45 0.17 16 di 09:42 5.05 03:47 0.03 20:34 4.98 14:44 0.04 20:38

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis

Nadere informatie

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element.

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element. Hoofdstuk 2 De regels van het spel 2.1 De gehele getallen Grof gezegd kunnen we de (elementaire) getaltheorie omschrijven als de wiskunde van de getallen 1, 2, 3, 4,... die we ook de natuurlijke getallen

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven

Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven Mededelingen TI1300: Redeneren en Logica College 4: Waarheidstafels, Redeneringen, Syntaxis van PROP Tomas Klos Algoritmiek Groep Voor de Fibonacci getallen geldt f 0 = f 1 = 1 (niet 0) Practicum 1 Practicum

Nadere informatie

Oostende januari 2016 Oostende februari 2016

Oostende januari 2016 Oostende februari 2016 Vlaamse overheid Oostende januari 2016 Oostende februari 2016 01 vr 05:39 4.14 - - 16 za 05:21 4.47 - - 01 ma 06:23 3.95 00:26 0.92 16 di 07:05 4.20 01:06 0.64 18:11 4.09 12:23 0.55 17:59 4.47 12:13 0.17

Nadere informatie

Oostende januari 2013 Oostende februari 2013

Oostende januari 2013 Oostende februari 2013 Vlaamse overheid Oostende januari 2013 Oostende februari 2013 01 di 03:06 4.51 09:46 0.22 16 wo 03:52 4.75 10:39-0.17 01 vr 04:03 4.73 10:54 0.04 16 za 04:59 4.49 11:40 0.23 15:27 4.61 21:57 0.47 16:22

Nadere informatie

College WisCKI. Albert Visser. 17 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties.

College WisCKI. Albert Visser. 17 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 17 oktober, 2012 1 Overview 2 Overview 2 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? Een

Nadere informatie

Uitwerkingen toets 12 juni 2010

Uitwerkingen toets 12 juni 2010 Uitwerkingen toets 12 juni 2010 Opgave 1. Bekijk rijen a 1, a 2, a 3,... van positieve gehele getallen. Bepaal de kleinst mogelijke waarde van a 2010 als gegeven is: (i) a n < a n+1 voor alle n 1, (ii)

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Hertentamen Topologie, Najaar 2009

Hertentamen Topologie, Najaar 2009 Hertentamen Topologie, Najaar 2009 Toelichting: 06.05.2010 Je mag geen hulpmiddelen (zoals aantekeningen, rekenmachine etc.) gebruiken, behalve het boek van Runde en het aanvullende dictaat. Als je stellingen

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Examen G0U13 - Bewijzen en Redeneren,

Examen G0U13 - Bewijzen en Redeneren, Examen G0U13 - Bewijzen en Redeneren, 2010-2011 bachelor in de Wisunde, bachelor in de Fysica, bachelor in de Economische Wetenschappen en bachelor in de Wijsbegeerte Vrijdag 4 februari 2011, 8u30 Naam:

Nadere informatie

Werkwijze. Tips. Opgaven

Werkwijze. Tips. Opgaven Geschiedenis van de Wiskunde Najaar 2009 Euclides-opdracht Het doel van deze opgave is om Griekse wiskunde en moderne wiskunde te vergelijken, om overeenkomsten en verschillen te ontdekken. Lees eerst

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Tentamen Topologie, Najaar 2011

Tentamen Topologie, Najaar 2011 Tentamen Topologie, Najaar 2011 27.01.2012, 08:30-11:30, LIN 8 (HG00.308) Toelichting: Je mag geen hulpmiddelen (zoals aantekeningen, rekenmachine, telefoon, etc.) gebruiken, behalve de boeken van Gamelin/Greene

Nadere informatie

Bewijs door inductie

Bewijs door inductie Bewijs door inductie 1 Bewijs door inductie Vaak bestaat een probleem erin aan te tonen dat een bepaalde eigenschap geldt voor elk natuurlijk getal. Als je wilt weten of iets waar is voor alle natuurlijke

Nadere informatie

Radboud Universiteit Nijmegen

Radboud Universiteit Nijmegen Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica L(,1)-labeling van grafen Naam: Studentnummer: Studie: Begeleider: Myrte klein Brink 4166140 Bachelor Wiskunde Dr.

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

De Dekpuntstelling van Brouwer

De Dekpuntstelling van Brouwer De Dekpuntstelling van Brouwer Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Twente, 19 oktober 2009: 18:00 20:00 Outline 1 2 3 4 De formulering Dekpuntstelling van Brouwer Zij n een

Nadere informatie

Riemann-Roch voor grafen

Riemann-Roch voor grafen T.J. Sijpesteijn Riemann-Roch voor grafen Bachelorscriptie Scriptiebegeleider: dr. T.C. Streng Datum bachelorexamen: juni 2016 Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding 2 1.1

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, 14.00 17.00, Examenzaal Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

Tentamen IN1305-I Fundamentele Informatica 1, deel I: Logica

Tentamen IN1305-I Fundamentele Informatica 1, deel I: Logica TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen IN1305-I Fundamentele Informatica 1, deel I: Logica 27 oktober 2008, 9.00 12.00 uur Dit tentamen bestaat uit 5

Nadere informatie

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen Hoofdstuk 3 Equivalentierelaties SCHAUM 2.8: Equivalence Relations Twee belangrijke voorbeelden van equivalentierelaties in de informatica: resten (modulo rekenen) en cardinaliteit (aftelbaarheid). 3.1

Nadere informatie

Supplement Verzamelingenleer. A.J.M. van Engelen en K. P. Hart

Supplement Verzamelingenleer. A.J.M. van Engelen en K. P. Hart Supplement Verzamelingenleer A.J.M. van Engelen en K. P. Hart 1 Hoofdstuk 1 Het Keuzeaxioma Het fundament van de hedendaagse verzamelingenleer werd in de vorige eeuw gelegd door Georg Cantor. Cantor gebruikte

Nadere informatie

1. Drie relaties Prof. dr. H. W. (Hendrik) Lenstra Universiteit Leiden

1. Drie relaties Prof. dr. H. W. (Hendrik) Lenstra Universiteit Leiden 1. Drie relaties Prof. dr. H. W. (Hendrik) Lenstra Universiteit Leiden Laat X een eindige verzameling zijn. Als een equivalentierelatie op X is, geven we met X/ de verzameling equivalentieklassen van aan.

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

RAF belangrijk te onthouden

RAF belangrijk te onthouden RAF belangrijk te onthouden Auteur: Daan Pape Hoofdstuk 1 symbool omschrijving lees als negatie (ontkenning) p niet p het is niet zo dat p conjunctie p q p en q disjunctie p q p of q implicatie p q als

Nadere informatie

Oefening 2.2. Welke van de volgende beweringen zijn waar?

Oefening 2.2. Welke van de volgende beweringen zijn waar? Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

Modellen en Simulatie Recursies

Modellen en Simulatie Recursies Utrecht, 3 mei 3 Modellen en Simulatie Recursies Program Management voorbeeld (affien) Economisch voorbeeld (affien) Rupsen-wespen (niet lineair) Niet-lineaire modellen, evenwicht, stabiliteit Gerard Sleijpen

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30 Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1 Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten

Nadere informatie

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

College WisCKI. Albert Visser. 21 november, Department of Philosophy, Faculty Humanities, Utrecht University. Vectorruimte

College WisCKI. Albert Visser. 21 november, Department of Philosophy, Faculty Humanities, Utrecht University. Vectorruimte College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 21 november, 2012 1 Overview 2 Overview 2 Overview 2 Overview 2 Overview 3 Lichaam Lichaam (Körper, Field):

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

wi4041 Functieruimten dr. K.P. Hart

wi4041 Functieruimten dr. K.P. Hart wi4041 Functieruimten dr. K.P. Hart Cursus 2003/2004 Inhoud I. TOPOLOGISCHE RUIMTEN 1 1. Topologische Eigenschappen......................................................... 1 2. Topologische Ruimten................................................................

Nadere informatie

Uitwerking Puzzel 93-1, Doelloos

Uitwerking Puzzel 93-1, Doelloos Uitwerking Puzzel 93-1, Doelloos Wobien Doyer Lieke de Rooij Volgens de titel is deze puzzel zonder doel, dus zonder bekende toepassing. Het doel is echter nul en dat is zeker in de wiskunde niet niks.

Nadere informatie

Selectietoets vrijdag 9 maart 2018

Selectietoets vrijdag 9 maart 2018 Selectietoets vrijdag 9 maart 2018 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. We hebben 1000 ballen in 40 verschillende kleuren, waarbij er van elke kleur precies 25 ballen zijn. Bepaal

Nadere informatie

Logica voor AI. Bewijstheorie en natuurlijke deductie. Antje Rumberg. 28 november Kripke Semantiek.

Logica voor AI. Bewijstheorie en natuurlijke deductie. Antje Rumberg. 28 november Kripke Semantiek. Logica voor AI en natuurlijke deductie Antje Rumberg AntjeRumberg@philuunl 28 november 2012 1 De taal L m van de modale propositielogica ::= p Blokje en ruitje : het is noodzakelijk dat : het is mogelijk

Nadere informatie

Tegenvoorbeeld. TI1300: Redeneren en Logica. De truc van Gauss. Carl Friedrich Gauss, 7 jaar oud (omstreeks 1785)

Tegenvoorbeeld. TI1300: Redeneren en Logica. De truc van Gauss. Carl Friedrich Gauss, 7 jaar oud (omstreeks 1785) Tegenvoorbeeld TI1300: Redeneren en Logica College 3: Bewijstechnieken & Propositielogica Tomas Klos Definitie (Tegenvoorbeeld) Een situatie waarin alle premissen waar zijn, maar de conclusie niet Algoritmiek

Nadere informatie

Inleiding Wiskundige Logica

Inleiding Wiskundige Logica Inleiding Wiskundige Logica Yde Venema 2017/2018 c YV 2018 Institute for Logic, Language and Computation, University of Amsterdam, Science Park 904, NL 1098XH Amsterdam E-mail: yvenema@uvanl Voorwoord

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 BEWIJZEN Discrete Structuren Week1 : Bewijzen Onderwerpen Puzzels

Nadere informatie

TI1300: Redeneren en Logica, Practicum 2 Deadline: 1 oktober 2010, 10:45 uur

TI1300: Redeneren en Logica, Practicum 2 Deadline: 1 oktober 2010, 10:45 uur TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica TI1300: Redeneren en Logica, Practicum 2 Deadline: 1 oktober 2010, 10:45 uur Introductie In deze practicumopgave komt de

Nadere informatie

Hebzucht loont niet altijd

Hebzucht loont niet altijd Thema Discrete wiskunde Hoe verbind je een stel steden met zo weinig mogelijk kilometers asfalt? Hoe maak je een optimaal computernetwerk met kabels die maar een beperkte capaciteit hebben? Veel van zulke

Nadere informatie

Oefeningen Analyse I

Oefeningen Analyse I Oefeningen Analyse I Hoofdstuk 2: Rijen en Reeksen Inleiding Opmerking: In deze tekst kunnen fouten staan. Het zijn meestal oefeningen opgeschreven vanuit de lest, met eventueel zelf gemaakte oefeningen

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 22 maart 2009 ONEINDIGHEID

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie   22 maart 2009 ONEINDIGHEID Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 maart 2009 ONEINDIGHEID. Paragraaf 13.3. De paradox van de oneindigheid ligt slechts

Nadere informatie

Recursie en inductie i

Recursie en inductie i Recursie en inductie i deel 2 Negende college inductiebewijzen 1 inductieprincipe Structurele inductie (inductie naar de opbouw) is de bewijstechniek die hoort bij inductief opgebouwde objecten zoals bomen

Nadere informatie

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN II NATUURLIJKE, GEHELE EN RATIONALE GETALLEN Iedereen ent getallen: de natuurlije getallen, N = {0,1,2,3,...}, gebruien we om te tellen, om getallen van elaar af te unnen treen hebben we de gehele getallen,

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Irrationaliteit en transcendentie

Irrationaliteit en transcendentie Hoofdstuk 9 Irrationaliteit en transcendentie 9. Irrationale getallen In dit hoofdstuk zullen we aannemen dat de lezer weet wat reële getallen zijn, hoewel dat misschien niet helemaal gerechtvaardigd is.

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Koen Rutten, Aris van Dijk 30 mei 2007 Inhoudsopgave 1 Verzamelingen 2 1.1 Definitie................................ 2 1.2 Eigenschappen............................

Nadere informatie