1 De permanent van een matrix

Maat: px
Weergave met pagina beginnen:

Download "1 De permanent van een matrix"

Transcriptie

1 De permanent van een matrix Schrijf S n voor de symmetrische groep, met als elementen alle permutaties σ van de getallen {,..., n}. De permanent van een n n matrix A = (a ij ) is een getal dat formeel als volgt is gedefinieerd, per(a) = σ S n a σ() a 2σ(2)... a nσ(n). () Deze sommatie gaat dus over producten van entries uit de rijen tot en met n, waarbij de kolommen waaruit deze entries worden genomen telkens een andere permutatie van de getallen tot en met n vormen. Zo is per(a) = a a 22 + a 2 a 2 voor 2 2 matrices A, en per(a) = a a 22 a 33 + a a 23 a 32 + a 2 a 2 a 33 + a 2 a 23 a 3 + a 3 a 2 a 32 + a 3 a 22 a 3 (2) voor 3 3 matrices A. Wat dat betreft lijkt de permanent dus sterk op de determinant: het zijn beide voorbeelden van Schurfuncties. Dat zijn de matrixfuncties van de vorm σ S n f(σ)a σ() a 2σ(2)... a nσ(n), (3) waarbij f : S n C een groepshomomorfisme is. Dit homomorfisme is voor de permanent het triviale homomorfisme σ en voor de determinant is het σ sign(σ). De permanent werd geïntroduceerd door Augustin-Louis Cauchy, alhoewel het concept pas na de formulering van het Vermoeden van Van der Waerden echt uitvoerig werd bestudeerd. Augustin-Louis Cauchy ( ), Bartel Leendert van der Waerden ( ), Herbert John Ryser ( ), en Henryk Minc (99-203) Eén van de ontwikkelingen was het algoritme van Ryser, tot op heden één van de snelste manieren om de permanent van een matrix te berekenen. Het naslagwerk Permanents van Henryk Minc is een beroemd boek dat vrijwel uitsluitend over de permanent gaat.. Enkele voorbeelden van toepassingen van de permanent Schrijf e = e e n voor de all-ones vector, dan is eenvoudig na te gaan dat per(ee ) = n! (4) Immers, ieder van de producten in de som () is gelijk aan één en dus telt de som op tot het aantal elementen van S n. Ook is in te zien dat per(ee I) gelijk is aan het aantal derangementen van,..., n, oftewel, de permutaties σ S n met de eigenschap dat σ(j) j

2 voor alle j {,..., n}. Een permutatie σ waarvoor σ(j) = j zal namelijk een bijdrage nul geven aan de som omdat a jσ(j) = 0, terwijl de overige permutaties allemaal een bijdrage één geven. Het aantal derangementen van n noteren we met!n en er geldt dat!n = per(ee I) = [ n! e, (5) met [x de integer het dichtst bij x. Voor bovenstaande breuk is die altijd goed gedefinieerd. Daar waar de determinant laat zien wanneer een matrix inverteerbaar is, laat de permanent iets zien over het patroon van in de matrix aanwezige nullen. Stelling (Frobenius-König) De permanent van een niet-negatieve n n matrix A is nul als en alleen als er indexverzamelingen {i,..., i k } en {j,..., j l } bestaan met k + l = n + en a ij = 0 voor alle i {i,..., i k } en j {j,..., j l }. (6) Bewijs. Zie bijvoorbeeld het boek Permanents van Henryk Minc. De intuïtie is, dat als A zoveel nullen heeft, iedere diagonaal wel een nul moet bevatten. Dus is ieder diagonaalproduct nul, en zo ook hun som, de permanent. Voorbeeld: Van de volgende 3 3 matrix met een 2 2 blok met nullen, A = (7) is de permanent per(a) = 0 omdat ieder van de termen uit (2) een nul bevat..2 Ontwikkeling van de permanent naar rijen of kolommen Net als de determinant kan de permanent berekend worden middels ontwikkeling naar een rij of een kolom. Zonder bewijs geven we hier een voorbeeld. Laat 0 4 A = 2 (8) 3 2 dan geldt dat per(a) = per [ 2 maar bijvoorbeeld ook dat [ per(a) = per 2 [ per 3 [ per 2 [ per 3 2 [ per = = 3, (9) = = 3. (0) Zowel de determinant als de permanent zijn te berekenen middels volledige ontwikkeling naar rijen en kolommen, dus tot de determinant of permanent van matrices wordt geëvalueerd. Dit zijn er echter n!, en dus voor grotere n is deze manier af te raden. Een aanzienlijke verbetering bij de berekening van de determinant volgde uit het feit dat elementaire rij-operaties de determinant van een matrix op een goed begrepen manier veranderen. Dus de te volgen strategie om een determinant uit te rekenen is om middels rij-operaties de matrix op echelonvorm te brengen, waarna de determinant eenvoudig bepaald van worden. 2

3 .3 Een miljoen dollar voor permanentberekening in polynomiale tijd Net als voor de determinant geldt dat de permanent lineair is in ieder van de rijen en kolommen. In tegenstelling tot de determinant blijft de permanent onveranderd als je twee rijen of kolommen met elkaar verwisselt. In het bijzonder vertelt de permanent je niets over het al dan niet inverteerbaar zijn van een matrix, immers, per [ [ = 2 en per = 0, () terwijl de linkermatrix niet inverteerbaar is en de rechtermatrix wel. De elementaire rijoperatie die ten grondslag ligt aan het eenvoudig kunnen bepalen van de determinant middels rij-operaties is, dat als je een veelvoud van een rij van de matrix optelt bij een andere rij, de determinant niet verandert. Voor de permanent is dit in het geheel niet het geval. Zie [ [ [ (2) en merk op hoe de permanent bij de eerste elementaire rijoperatie met een factor 3/2 toeneemt (en dus nul blijft) maar in de tweede stap ineens gelijk wordt aan 36. Uitdaging. Het is onbekend wat de snelste manier is om de permanent van een matrix uit te rekenen. Als je er in slaagt om een manier te vinden die polynomiaal is in n dan heb je een probleem opgelost dat het beroemde P=NP probleem uit de zeven Millenium Prize Problems impliceert, waarvan de oplossing een miljoen dollar waard is. Met polynomiaal in n bedoelen we grofweg dat het aantal rekenkundige operaties zoals optellingen en vermenigvuldigingen dat nodig is om een uitkomst te berekenen begrensd wordt door een polynoom in n. Voor de determinant is dit een derdegraadspolynoom in n..4 Het algoritme van Ryser: illustratie In 963 vond Herbert William Ryser een methode om de complexiteit van de berekening van de permanent terug te brengen van O(n!) voor de naieve methode tot O(2 n n). We illustreren het idee achter deze methode voor n = 3. Bekijk als voorbeeld de matrix Met (2) vinden we dat (3) per(a) = = 450. (4) Deze zes producten vormen een bepaalde deelverzameling van de in totaal 27 producten van de entries van de matrix die je krijgt als je de haakjes wegwerkt in het product P (A) van de rijsommen van A, gedefinieerd als P (A) = ( )( )( ). Deze 27 producten zijn

4 Ryser bedacht een manier om de ongewenste 2 producten hier op efficiënte wijze uit te verwijderen. Deze niet helemaal triviale manier is, er eerst 24 uit te verwijderen, en de drie die er teveel uit zijn verwijderd, daarna toch weer aan toe te voegen. Hoe deed hij dit? Schrijf A j voor de 3 2 matrix die uit A ontstaat door de j-de kolom te verwijderen, A = 5 6, A 2 = 4 6, A 3 = Voor iedere j {, 2, 3} bestaat het product P (A j ) van de rijsommen van A j uit acht termen, P (A ) = (2+3)(5+6)(8+9) = , P (A 2 ) = (+3)(4+6)(7+9) = , P (A 2 ) = (+2)(4+5)(7+8) = Merk op dat ieder van deze 24 producten bestaat uit drie getallen die uit twee van de drie kolommen van A komen, en dus geen deel uitmaken van de zes termen van per(a) in (2), waarvan de drie getallen immers uit verschillende kolommen van A komen. Merk vervolgens op dat drie van de bovenstaande 24 producten twee keer voorkomen, namelijk, precies de producten van drie getallen uit dezelfde kolom. Dit leidt tot de conclusie dat per(a) = P (A) (P (A ) + P (A 2 ) + P (A 3 )) + P (A,2 ) + P (A 2,3 ) + P (A,3 ), (5) waarbij A i,j de matrix is die je krijgt door kolommen i en j uit A te verwijderen. Voor de gegeven matrix A vinden we daarom dat per(a) = 260 ( ) = 450. Dit komt dus precies overeen met de middels de definitie gevonden waarde in (4)..5 Het algoritme van Ryser in iets meer abstractie In het voorgaande bekeken we voor een 3 3 matrix A het product van de rijsommen P (A) = (a + a 2 + a 3 )(a 2 + a 22 + a 23 )(a 3 + a 32 + a 33 ). (6) Als we de dit product uitvermenigvuldigen, ontstaat er een som van 27 producten van drie getallen, die de eigenschap hebben dat ze uit drie verschillende rijen van A komen. Dus, P (A) = a f() a 2f(2) a 3f(3) (7) f:{,2,3} {,2,3} waarbij gesommeerd wordt over de verzameling S van alle 27 verschillende functies van {, 2, 3} naar zichzelf. De permanent van A is precies gelijk aan de som over de deelverzameling S van bijectieve functies van {, 2, 3} naar zichzelf. Deze bijectieve functies zijn natuurlijk precies de permutaties van {, 2, 3}. De methode van Ryser is nu gebaseerd op de volgende observatie. Laat S j de verzameling zijn van functies van {, 2, 3} naar {, 2, 3} \ {j}. Dan behoort iedere niet-bijectieve f S 4

5 tot één of meerdere van de verzamelingen S, S 2, S 3. En dus kan de som over S geschreven worden als = + + +, (8) S S S S 2 S 3 S S 2 S 2 S 3 S S 3 S S 2 S 3 waarbij aangetekend dient te worden dat de doorsnede S S 2 S 3 in dit geval leeg is. Opmerking. Formule (8) heet het principe van inclusie en exclusie, en kan worden gegeneraliseerd naar n n matrices, met hierbij horende matrices die ontstaan door uit A één, twee, tot en met n kolommen weg te laten. We bekijken dit in de volgende sectie..6 De formule van Ryser (963) Schrijf [n = {,..., n}. Het product P (A) van de rijsommen van A bestaat uit de n n producten van n entries van A, waarbij ieder van deze n entries afkomstig zijn uit de n verschillende rijen van A. Met andere woorden, (a a n )... (a n a nn ) = P (A) = a f() a 2f(2)... a nf(n) (9) f:[n [n waarbij gesommeerd wordt over alle mogelijke n n functies f : [n [n. Hiervan willen we de n! producten overhouden waarvan de n getallen die het product vormen, uit verschillende kolommen van A afkomstig zijn: oftewel, sommeren over alle bijectieve functies f : [n [n. De algemene formule van Ryser laat zich als volgt opschrijven. Schrijf Σ j (A) voor de verzameling van alle n (n k) matrices die ontstaan door op alle mogelijke verschillende manieren k kolommen uit A te verwijderen. Dan is dus Laat vervolgens Σ 0 (A) = {A}, Σ (A) = {A,..., A n }, en Σ n (A) = {Ae,..., Ae n }. (20) S k = X Σ k (A) P (X), (2) waarbij P (X) staat voor het product van de rijsommen van X. Dan geldt dat per(a) = S 0 S + S 2 S ( ) n S n. (22) Merk op dat S 0 = P (A) en S = P (A ) + + P (A n ) en S n = P (Ae ) + + P (Ae n ) en dat we voor n = 3 hiermee inderdaad de eerder gegeven formule (5) terugvinden..7 De formule van Glynn (200) In 200 ontwikkelde David G. Glynn van de Flinders University of South Australia in Adelaide een familie van alternatieve formules om de permanent van een n n matrix A = (a ij ) te berekenen in zijn artikel The permanent of a square matrix, European Journal of Combinatorics 3(7): De eenvoudigste van deze formules is de volgende: per(a) = 2 n n n n a ij v j. (23) v B n v j i= 5

6 Hierbij loopt de eerste som over de verzameling B n = {v = (v,..., v n ) {, } n v = }, (24) die dus uit 2 n vectoren bestaat. We zullen deze formule hier niet bewijzen..8 Dubbelstochastische matrices Een dubbelstochastische matrix S is een niet-negatieve matrix met de eigenschap dat zowel de rijen als de kolommen optellen tot één, oftewel, S 0, Se = e, en e S = e. (25) De eenvoudigste voorbeelden van dubbelstochastische n n matrices zijn de n! permutatiematrices. Dit zijn precies de matrices M,..., M n! met n enen en n 2 n nullen, waarbij in iedere rij en iedere kolom precies één staat. Voor n = 3 zijn het bijvoorbeeld M = M 4 =, M 2 =, M 5 =, M 3 =, M 6 = Het is niet moeilijk na te gaan dat de matrix M gedefinieerd door M = µ j M j, waarbij µ j 0 en,. (26) µ j = (27) ook dubbelstochastisch is. Het is immers duidelijk dat M 0, en bovendien geldt dat Me = µ j M j e = µ j e = e en e M = e µ j M j = µ j e M j = µ j e = e. De omgekeerde implicatie is een redelijk pittige stelling. Stelling (Birkhof-Von Neumann) Zij M een dubbelstochastische n n matrix. bestaan er µ,..., µ n! 0 met µ µ n! = zodanig dat Dan M = µ j M j. (28) Oftewel, iedere dubbelstochastische matrix is een convexe combinatie van permutatiematrices. Garrett Birkhoff (9-996) and John von Neumann ( ) 6

7 De convexe deelverzameling in de vectorruimte van n n matrices bestaande uit alle dubbelstochastische matrices wordt ook wel het Birkhoff-polytoop genoemd. Om de stelling van Birkhoff-Von Neumann te bewijzen is het volgende resultaat erg nuttig. Lemma. Zij M R n n dubbelstochastisch. Dan is per(m) > 0. Bewijs. Veronderstel dat per(m) = 0. Volgens de stelling van Frobenius-König bestaan er dan verzamelingen {i,..., i k } en {j,..., j l } met k + l = n + en m ij = 0 voor alle i {i,..., i k } en j {j,..., j l }. (29) Na toepassen van geschikte permutaties van de rijen en kolommen van M ontstaat dan een matrix van de vorm [ A B Π MΠ 2 = 0 D waarbij de nulmatrix afmetingen k l heeft. Omdat k + l = n + is zijn de matrices A en D geen van beide vierkant. Hieruit volgt dat D meer rijen dan kolommen heeft. Deze rijen tellen echter alle op tot. Dus is er een kolom van D die optelt tot meer dan, en omdat M 0 zo ook de corresponderende kolom van M, wat in tegenspraak is met het feit dat M dubbelstochastisch is. Gevolg: Als M dubbelstochastisch is, heeft M een positieve diagonaal. Bewijs. Omdat per(m) de som is van de diagonaalproducten, en M niet-negatief is met per(m) > 0, is tenminste één van de diagonaalproducten positief. Bewijsschets: Een schets van het bewijs van de Stelling van Birkhoff-Von Neumann is nu als volgt. Laat M dubbelstochastisch zijn. Omdat M een positieve diagonaal heeft bestaat er een permutatiematrix Π zo, dat de entries van M positief zijn daar waar Π entries gelijk aan heeft. Laat µ het minimum zijn van deze positieve entries van M. Dan geldt dat het aantal nullen van de matrix M = M µ Π 0 tenminste één groter is dan het aantal nullen van M. Daarnaast is de matrix ( µ ) M dubbelstochastisch, en heeft dus een positieve diagonaal. Het proces kan nu worden herhaald, totdat wat overblijft een positief veelvoud van een permutatiematrix is. Dit geeft duidelijk de gewenste decompositie als convexe combinatie van permutatiematrices. De volgende stelling was gedurende ruim een halve eeuw een open probleem, dat de concepten van permanent en dubbelstochastische matrix onlosmakelijk met elkaar heeft verbonden. Stelling. Laat M de n n dubbelstochastische matrix zijn waarvan alle entries gelijk zijn aan n. Dan geldt per(m ) < per(m) (30) voor alle overige dubbelstochastische matrices M. Opmerking: De stelling maakte faam als het vermoeden van Van der Waerden, geformuleerd in 926. De zoektocht naar een bewijs resulteerde in een ware opleving in de bestudering van de permanent. Een bewijs werd uiteindelijk in 980 gevonden door B. Gyires, en onafhankelijk daarvan in 98 door G. P. Egorychev and D. I. Falikman. 7

Permanenten. Hanneke van der Beek. 19 november Bachelorscriptie. Begeleiding: Dr. J.H. Brandts

Permanenten. Hanneke van der Beek. 19 november Bachelorscriptie. Begeleiding: Dr. J.H. Brandts Permanenten Hanneke van der Beek 19 november 2014 Bachelorscriptie Begeleiding: Dr. J.H. Brandts Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 J.Keijsper

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 6 26 september 2016 1 Hoofdstuk 3.1 en 3.2 Matrix operaties Optellen van matrices Matrix vermenigvuldigen met een constante Matrices vermenigvuldigen Machten

Nadere informatie

PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011

PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 Familienaam:....................................................................... Voornaam:.........................................................................

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Tentamen Lineaire Algebra 1 (Wiskundigen)

Tentamen Lineaire Algebra 1 (Wiskundigen) Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

3 De duale vectorruimte

3 De duale vectorruimte 3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00 Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus

Nadere informatie

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire

Nadere informatie

PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016

PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016 PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016 1. Zi (R, V, +) een eindigdimensionale vectorruimte en veronderstel dat U en W deelruimten van V zin. Toon aan dat 2. Waar of fout? Argumenteer e antwoord.

Nadere informatie

Determinanten. Definities en eigenschappen

Determinanten. Definities en eigenschappen Determinanten Definities en eigenschappen Definities (korte herhaling) Determinant van een 2x2-matrix: a b ad bc c d S. Mettepenningen Determinanten 2 Definities (korte herhaling) Determinant van een 3x3-matrix:

Nadere informatie

4.0 Voorkennis [1] Stap 1: Maak bij een van de vergelijkingen een variabele vrij.

4.0 Voorkennis [1] Stap 1: Maak bij een van de vergelijkingen een variabele vrij. 3x4 y26 4x y3 4.0 Voorkennis [1] Voorbeeld 1 (Elimineren door substitutie): Los op: Stap 1: Maak bij een van de vergelijkingen een variabele vrij. 4x y = 3 y = 4x 3 Stap 2: Vul de vrijgemaakte variabele

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.

Nadere informatie

2 De Jordannormaalvorm van een lineaire transformatie

2 De Jordannormaalvorm van een lineaire transformatie 2 De Jordannormaalvorm van een lineaire transformatie We zagen dat iedere lineaire transformatie L : V V van een vectorruimte (V, K) over een algebraïsch afgesloten lichaam K op bovendriehoeksvorm kan

Nadere informatie

Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten.

Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Definitie Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Voorbeelden De coëfficiëntenmatrix of aangevulde matrix bij een stelsel lineaire vergelijkingen. Een rij-echelonmatrix

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Lights Out. 1 Inleiding

Lights Out. 1 Inleiding Lights Out 1 Inleiding Het spel Lights Out is een elektronisch spel dat gelanceerd werd in 1995 door Tiger Electronics. Het originele spel heeft een bord met 25 lampjes in een rooster van 5 rijen en 5

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

2 De Jordannormaalvorm voor lineaire transformaties

2 De Jordannormaalvorm voor lineaire transformaties 2 De Jordannormaalvorm voor lineaire transformaties We zagen dat iedere lineaire transformatie L : V V van een vectorruimte (V, K) over een algebraïsch afgesloten lichaam K op bovendriehoeksvorm kan worden

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 8 J.Keijsper

Nadere informatie

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015 Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

Vierde huiswerkopdracht Lineaire algebra 1

Vierde huiswerkopdracht Lineaire algebra 1 Vierde huiswerkopdracht Lineaire algebra December, 00 Opgave : Voor positieve gehele getallen m, n schrijven we Mat(m n, R) voor de vectorruimte van alle m n matrices, met de gebruikelijke optelling en

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

De partitieformule van Euler

De partitieformule van Euler De partitieformule van Euler Een kennismaking met zuivere wiskunde J.H. Aalberts-Bakker 29 augustus 2008 Doctoraalscriptie wiskunde, variant Communicatie en Educatie Afstudeerdocent: Dr. H. Finkelnberg

Nadere informatie

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector Les 3 Matrix product We hebben gezien hoe we matrices kunnen gebruiken om lineaire afbeeldingen te beschrijven. Om het beeld van een vector onder een afbeelding te bepalen hebben we al een soort product

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

11.0 Voorkennis V

11.0 Voorkennis V 11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Combinatoriek groep 1 & 2: Recursie

Combinatoriek groep 1 & 2: Recursie Combinatoriek groep 1 & : Recursie Trainingsweek juni 008 Inleiding Bij een recursieve definitie van een rij wordt elke volgende term berekend uit de vorige. Een voorbeeld van zo n recursieve definitie

Nadere informatie

Lineaire Algebra (wi2142tn) Les 5: Determinanten. Joost de Groot Les 5. Faculteit EWI, Toegepaste Wiskunde. Technische Universiteit Delft

Lineaire Algebra (wi2142tn) Les 5: Determinanten. Joost de Groot Les 5. Faculteit EWI, Toegepaste Wiskunde. Technische Universiteit Delft Lineaire Algebra (wi2142tn) Les 5: Determinanten Joost de Groot Les 5 1 Technische Universiteit Delft Doel van deze les Determinanten ben je al tegengekomen bij de behandeling van het in en het uitwendig

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Sudoku s en Wiskunde

Sudoku s en Wiskunde Non impeditus ab ulla scientia Sudoku s en Wiskunde K. P. Hart 3 februari, 2006 Programma Tellen Makkelijk, medium, moeilijk Hoeveel zaadjes? Een miljoen dollar verdienen? Puzzels Tellen Vooralsnog onbegonnen

Nadere informatie

3. Structuren in de taal

3. Structuren in de taal 3. Structuren in de taal In dit hoofdstuk behandelen we de belangrijkst econtrolestructuren die in de algoritmiek gebruikt worden. Dit zijn o.a. de opeenvolging, selectie en lussen (herhaling). Vóór we

Nadere informatie

Lineaire vergelijkingen II: Pivotering

Lineaire vergelijkingen II: Pivotering 1/25 Lineaire vergelijkingen II: Pivotering VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, 1A40 15 april 2013 2/25 Overzicht Pivotering: Methodes Norm en conditionering

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004, TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 5 J.Keijsper (TUE)

Nadere informatie

Linalg.nb 1. Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes!

Linalg.nb 1. Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes! Linalg.nb Lineaire Algebra Andr Heck AMSTEL Instituut, Universiteit van Amsterdam Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes! Å Introductie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Antwoorden. Magische vierkanten Vierkant voor Wiskunde Doeboek 8

Antwoorden. Magische vierkanten Vierkant voor Wiskunde Doeboek 8 Antwoorden Magische vierkanten Vierkant voor Wiskunde Doeboek 8 1 6 1 8 7 5 3 2 9 4 2 De getallen 1 tot en met 9. 3 15. 15 en 15. De som van de getallen van elke rij is 15. 4 15. De som van de getallen

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Discrete Wiskunde, College 7. Han Hoogeveen, Utrecht University

Discrete Wiskunde, College 7. Han Hoogeveen, Utrecht University Discrete Wiskunde, College 7 Han Hoogeveen, Utrecht University Sommatiefactor methode (niet in boek) Doel: oplossen van RBs als Basisidee: f n a n = g n a n 1 + c n ; 1 Vermenigvuldig de RB met een factor

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

Tweede college complexiteit. 12 februari Wiskundige achtergrond

Tweede college complexiteit. 12 februari Wiskundige achtergrond College 2 Tweede college complexiteit 12 februari 2019 Wiskundige achtergrond 1 Agenda vanmiddag Floor, Ceiling Rekenregels logaritmen Tellen Formele definitie O, Ω, Θ met voorbeelden Stellingen over faculteiten

Nadere informatie

Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)

Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets) Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I Theorie Opgave 1. In deze opgave wordt gevraagd om een aantal argumenten of overgangen uit de cursusnota s in detail te verklaren. In delen (a) (b) peilen we naar

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle  holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/20310 holds various files of this Leiden University dissertation. Author: Jansen, Bas Title: Mersenne primes and class field theory Date: 2012-12-18 Samenvatting

Nadere informatie

Elementaire rekenvaardigheden

Elementaire rekenvaardigheden Hoofdstuk 1 Elementaire rekenvaardigheden De dingen die je niet durft te vragen, maar toch echt moet weten Je moet kunnen optellen en aftrekken om de gegevens van de patiënt nauwkeurig bij te kunnen houden.

Nadere informatie

Opgaven Matlab - Week 2, sessie 2: De Singulierewaardendecompositie

Opgaven Matlab - Week 2, sessie 2: De Singulierewaardendecompositie Opgaven Matla - Week 2, sessie 2: De Singulierewaardendecompositie Laat A R n k. Dan etaan er unitaire matrices V R k k en U R n n zodanig, dat AV = UΣ, (1) waarij Σ R n k een niet-negatieve diagonaalmatrix

Nadere informatie

Projectieve Vlakken en Codes

Projectieve Vlakken en Codes Projectieve Vlakken en Codes 1. De Fanocode Foutdetecterende en foutverbeterende codes. Anna en Bart doen mee aan een spelprogramma voor koppels. De ene helft van de deelnemers krijgt elk een kaart waarop

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B = Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Lineair voor CT College 2a. Echelon vorm 1.2 Duncan van der Heul

Lineair voor CT College 2a. Echelon vorm 1.2 Duncan van der Heul Lineair voor CT College 2a Echelon vorm 1.2 Duncan van der Heul Speciale vormen van een matrix Een stelsel oplossen komt overeen met door elementaire rijopera-es bepalen van de gereduceerde echelon vorm

Nadere informatie

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

Matrices en Grafen (wi1110ee)

Matrices en Grafen (wi1110ee) Matrices en Grafen (wi1110ee) Electrical Engineering TUDelft September 1, 2010 September 1, 2010 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http:

Nadere informatie