WenS eerste kans Permutatiecode 0

Maat: px
Weergave met pagina beginnen:

Download "WenS eerste kans Permutatiecode 0"

Transcriptie

1 WenS eerste kans Aantekeningen op de vragenbladen zijn NIET TOEGELATEN. Je mag gebruik maken van schrijfgerief en een eenvoudige rekenmachine; alle andere materiaal blijft achterin. Leg je studentenkaart duidelijk zichtbaar op je bank. Klap enkel je eigen tafeltje open. Vul, voor je begint, je voornaam, naam, studiejaar en stamnummer in in het bovenste kader van het antwoordblad. Vul vervolgens nauwgezet je stamnummer in, door de gepaste vakjes in de velden A H volledig zwart te maken. Draag er zorg voor dat je geen andere vakjes in deze velden zwart maakt. Op je opgavenblad staat een permutatiecode een getal tussen 1 en 9. Maak het corresponderende vakje zwart in veld I. Het examen telt 25 vragen. Er is slechts één correct antwoord per vraag. Elk correct antwoord levert 1 punt op, een niet-correct antwoord 0 punten: er is geen giscorrectie. De antwoorden op de vragen worden ingevuld door het gepaste vakje zwart te maken in velden 1 25 in de kolommen NET. Met wat je invult in de kolommen KLAD wordt geen rekening gehouden. Gommen en andere correctieve bewerkingen in de NET-kolommen zijn NIET TOEGELA- TEN. Wees kalm, en begin met de vragen die je het makkelijkst lijken. Check, voor je afgeeft, of je NET-kolom volledig (en naar wens) is ingevuld! 1

2 Formularium Enkele verdelingen Normale verdeling Nm(z µ,σ 2 ) = 1 (z µ)2 e 2σ 2 2πσ 2 Exponentiële verdeling Exp(z β) = 1 β e z/β voor z 0 Gamma-verdeling Ga(z α,β) = 1 β α Γ(α) zα 1 e z/β voor z > 0 Geometrische verdeling Geo(z p) = q z p voor z = 0,1,2,... Bernoulli-verdeling Be(z p) = p z q 1 z voor z = 0,1 Binomiale verdeling Bn(z n, p) = ( n z) p z q n z voor z = 0,1,2,...,n Poisson-verdeling Ps(z λ) = e λ λ z /z! voor z = 0,1,2,... Maximale-likelihoodschatters Exponentiële verdeling ˆB ML (x 1,...,x n ) = x n se(x ˆ 1,...,x n ) = x n n xn (1 x n ) Bernoulli-verdeling ˆP ML (x 1,...,x n ) = x n se(x ˆ 1,...,x n ) = n xn Poisson-verdeling ˆΛ ML (x 1,...,x n ) = x n se(x ˆ 1,...,x n ) = n Statistische testen Wald-testen met Wald-teststatistiek w en significantieniveau α 0 test kritiek gebied p-waarde eenzijdig w < z 1 α0 Φ(w) eenzijdig w > z 1 α0 Φ( w) tweezijdig w > z 1 α0 /2 2Φ( w ) Enkele courante fractielen van de standaardnormale verdeling α 100(1 α) z 1 α/2 0,001 99,9 3,32 0,005 99,5 2,81 0,010 99,0 2,58 0,050 95,0 1,96 0,100 90,0 1,65 2

3 Enkele verzamelingen van getallen N is de verzameling van alle natuurlijke getallen zonder nul. R >0 is de verzameling van alle (strikt) positieve reële getallen. R 0 is de verzameling van alle niet-negatieve reële getallen. 3

4 0 z Oppervlakte onder de standaardnormale densiteit van 0 tot z z

5 1 We beschouwen een urne met een rode en drie witte ballen, en we halen op toevallige wijze drie ballen uit de urne, zonder terugplaatsing. Noem R k de gebeurtenis dat de k-de bal rood is en W k de gebeurtenis dat de k-de bal wit is, voor k = 1,2,3. P(W 3 R 1 R 2 ) is de waarschijnlijkheid dat de derde bal wit is als je weet dat bij de eerste en tweede trekkingen ten minste één rode bal verschijnt. Welke van de volgende uitspraken is correct? A P(W 3 R 1 R 2 ) > P(R 3 W 1 W 2 ) > P(W 1 ) B P(R 3 W 1 W 2 ) > P(W 3 R 1 R 2 ) > P(W 1 ) C P(W 3 R 1 R 2 ) > P(W 1 ) > P(R 3 W 1 W 2 ) D geen van de bovenstaande 2 De klantbezoeken aan de winkel van Nathalie maken een Poisson-proces uit met tempo λ, uitgedrukt in bezoeken per uur. Op een dag gaan Nathalie en Lieve metingen doen bij de eerste vijf klanten die binnen komen. Nathalie meet vijf keer de tijd T (in uren) tussen twee gebeurtenissen, en noteert dus de duur t 1 tot de eerste klant, en dan voor elk van de vier volgende klanten de tijden t 2, t 3, t 4 en t 5 tussen die klant en de vorige. Ze gebruikt haar gegevens om een maximalelikelihoodschatting ˆ λ1 te vinden voor de parameter λ van de verdeling van de toevallige veranderlijke T. Lieve meet gewoon de tijd T 5 (in uren) tot de vijfde klant, en heeft dus een enkele meting t, die natuurlijk gelijk is aan t 1 +t 2 +t 3 +t 4 +t 5. Ook zij gebruikt haar enkele meting om een maximale-likelihoodschatting ˆ λ2 te vinden voor de parameter λ van de verdeling van de toevallige veranderlijke T 5. Welke van de volgende uitspraken is dan niet correct? A ˆ λ2 = 5/t. B ˆ λ1 ˆ λ2. C T 5 heeft een Gamma-verdeling met α = 5 en β = 1 λ. D Beide maximale-likelihoodschattingen hebben dezelfde standaardfout. 5

6 3 Beschouw een toevallige steekproef X 1, X 2,..., X n van grootte n uit een verdeling f ( θ) met parameter θ. We kijken ook naar de parameter λ := θ 2. Welke van de volgende uitspraken over de maximale-likelihoodschatters ˆΘ ML voor θ en ˆΛ ML voor λ is niet noodzakelijk waar? A Als E( ˆΘ ML (X 1 )) = θ, dan is E( ˆΘ ML (X 1 ) ˆΘ ML (X 2 )) = θ 2. B E( ˆΘ ML (X 1,X 2,...,X n )) = θ. C ˆΘ ML is consistent. D ˆΛ ML = ( ˆΘ ML ) 2. 4 Beschouw drie gebeurtenissen A, B en C, zo dat C B, zoals in de onderstaande figuur. A C B Verder is gegeven dat P(A B) = P(A C) en dat zowel P(A), P(B), P(C) als P(B \C) strikt positief zijn. Welke van de onderstaande uitspraken is dan zeker vals? A P(C A) P(B A). B P(A B C) > P(A B C). C P(A C c B) = P(A B) P(A C) P(B) P(C). D Als A B = /0 dan P(A C) = 0. 6

7 5 We beschouwen een enkelvoudige lineaire regressie, waarbij met elke predictor x i een toevallige respons Y i overeenkomt (i = 1,2,...,n). We nemen aan dat voldaan is aan alle basisveronderstellingen van normaliteit, onafhankelijkheid, nulvertekening en homoscedasticiteit. De maximale-likelihoodmethode geeft dan schattingen ˆβ 0,ML en ˆβ 1,ML van het intercept β 0 en de helling β 1 in de formule Y = β 0 + β 1 X + ε. Welke van de volgende uitspraken is waar? A x n is altijd een element van de predictors x 1, x 2,..., x n. B Het punt (x n, ˆβ 1,ML x n ) ligt altijd op de regressielijn. C Door (x n,y n ) toe te voegen aan de predictors en responsen (x 1,y 1 ), (x 2,y 2 ),..., (x n,y n ) veranderen we nooit de regressielijn. D Geen van de bovenstaande uitspraken is waar. 6 Voor de wedstrijd vraag van de week zijn er zeven vragen. Het aantal studenten N k dat k van de zeven vragen correct heeft, is in de tabel hieronder weergegeven. U vindt er ook het aantal lotjes k 5 dat wordt uitgedeeld aan elke student met k juiste antwoorden, en het totale aantal lotjes N k k 5 dat voor k juiste antwoorden wordt toegekend. Na het toekennen van de lotjes wordt een van ze lukraak getrokken, en de houder van het getrokken lotje wint de loterij (en een prijs). k som N k k N k k We willen iets weten over P(k W), de waarschijnlijkheid dat als iemand de lotterij wint, hij of zij k antwoorden juist heeft gehad. De tabel bevat informatie die nuttig kan zijn om dat soort waarschijnlijkheden te berekenen. Je mag er hierbij van uitgaan dat P(k), de a priori waarschijnlijkheid om k vragen juist te beantwoorden, evenredig is met N k. Welke van de volgende uitspraken is dan waar? A P(1 W) < P(2 W) < P(3 W) < P(4 W) < P(5 W) < P(6 W) < P(7 W). B P(7 W) > P(5 W) > P(6 W). C P(7 W) > 0,3. D P(1 W) + P(2 W) > P(3 W). 7

8 7 In een urne liggen twee rode en twee witte ballen. Men haalt er op lukrake wijze twee ballen uit zonder ze terug te leggen, zodat er nog twee ballen in de urne blijven. Maar we weten niet welke ballen eruit zijn gehaald. Om het jullie makkelijk te maken: de waarschijnlijkheid dat er nog twee witte ballen in de urne zitten is 1/6, voor twee rode ballen is ze 1/6, en voor een witte en een rode bal 2/3. We gaan nu n keer na elkaar lukraak een van de overblijvende ballen uit de urne halen en weer terugplaatsten. Het (toevallige) aantal keren van die n dat daarbij een witte bal getrokken wordt, is X = n k=1 X k, met X k = 1 wanneer de k-de bal wit is, en X k = 0 anders. Welke van de volgende uitspraken is waar? A E(X) = n 3. B De uitkomsten X k en X l van twee verschillende trekkingen zijn ongecorreleerd. C E(X 2 ) = n 6 + n2 3. D var(x) = n 6. 8 Twee reële continue toevallige veranderlijken X en Y hebben een gemeenschappelijke densiteit f X,Y (x,y) die alleen van 0 verschilt voor 0 < x 2 + y 2 < 1 en 0 < x < 1. Conditioneel op X = x met 0 < x < 1, is Y uniform verdeeld over het interval ( 1 x 2, 1 x 2 ). De marginale densiteit van X voldoet aan f X (x) = 4 π 1 x 2 voor 0 < x < 1. Welke van de volgende uitspraken is dan waar? A X en Y zijn gecorreleerd. B Conditioneel op Y = y met 1 < y < 1, is X uniform verdeeld over het interval (0, 1 y 2 ). C De marginale densiteit van Y voldoet aan f Y (y) = 4 π 1 y 2 voor 1 < y < 1. D Geen van de bovenstaande uitspraken is waar. 9 Beschouw de toevallige veranderlijke Y = e X, met X standaardnormaal verdeeld. Waaraan is de variantie var(y ) gelijk? A e B e(e 1) C e 2 D 1 8

9 10 Een student vindt in zijn notities van het vak Waarschijnlijkheidsrekening en Statistiek het onderstaande kader-met-staafdiagram terug, maar weet niet meer van welke dataset het afkomstig is De student vindt ook de vier onderstaande datasets terug. Welke dataset stemt overeen met het kader-met-staafdiagram? A 0, 1, 2, 4, 6, 7, 8, 10 B 0, 1, 2, 5, 6, 7, 7, 10 C 0, 0, 1, 4, 6, 7, 10, 10 D 0, 0, 1, 5, 5, 7, 10, De gemeenschappelijke densiteit van de toevallige veranderlijken X en Y wordt gegeven door: α als 1 3 ( f X,Y (x,y) = x a )2 + ( y b )2 1 en x > 0 0 elders, waarbij α de normalisatieconstante is, a > 0 en b > 0. De toevallige veranderlijken R en V worden gedefinieerd als R = ( X a )2 + ( Y b )2 en V = ay /bx. Welke van de onderstaande uitspraken is de correcte? abr A f R,V (r,v) = α als 1 1+v 2 3 r 1 en v R. B α = 1 9 abπ 4. r C f R,V (r,v) = α ab als 1 1+v 2 3 r 1 en v R. D X en Y zijn onafhankelijk. 9

10 12 Een toevallige veranderlijke X heeft een Poisson-verdeling met parameter λ. Van de afwijking ε := X λ tussen X en haar parameter λ weten we dat P(ε < 2) 1 3. Geef de ruimste begrenzing op de parameter λ die volgt uit de bovenstaande ongelijkheid en de Chebyshev-ongelijkheid. A λ 4 3. B λ 8 3. C λ 1 3. D Je kan met deze ongelijkheden geen begrenzing vinden op λ. 13 Er wordt een steekproef met grootte n = 100 genomen uit een toevallige veranderlijke die Poisson-verdeeld is met parameter λ. Het steekproefgemiddelde x n is gelijk aan 2. Welke van de volgende intervallen geeft dan een (benaderend en tweezijdig) 95% betrouwbaarheidsinterval voor λ? A (1,61;2,39) B (1,72;2,28) C (1,77;2,23) D (1,96;2,04) 14 Op de onderstaande figuur is (een deel van) de distributiefunctie van een reële toevallige veranderlijke X getekend. F X (x) 1 3/4 1/2 1/ x Waaraan is P(X [2,3]) gelijk? A 0 B 1 4 C 3 8 D

11 15 X 1, X 2,..., X n+1 zijn n+1 onafhankelijke Bernoulli-verdeelde toevallige veranderlijken met parameter p. Definieer de toevallige veranderlijken Y 1 en Y 2 als Y 1 := n i=1 X i en Y 2 := n+1 i=2 X i. Waaraan is cov(y 1,Y 2 ) gelijk? A 0 B p n (p p n ) C p n (1 p n ) D p n+1 p n 16 We hebben twee urnes u en v. In urne u liggen drie ballen met labels a, b en c, en in urne v twee ballen met labels d en e. We kiezen urne u met waarschijnlijkheid p (0,1) en urne v met waarschijnlijkheid 1 p, en nemen daarna lukraak een bal uit de gekozen urne. De informatie, en de gebruikte notatie, zijn samengevat in de onderstaande waarschijnlijkheidsboom. p u a b c 1 p v d e Welke van de onderstaande uitspraken is niet waar? A P(b c v) = 0. B P(b c) = 2 3. C P(a d) = p. D P(b e v) =

12 17 We hebben twee muntstukken a en b. Voor muntstuk a is de waarschijnlijkheid op munt p a (0,1), en voor muntstuk b is die waarschijnlijkheid p b (0,1). We volgen deze procedure: we gooien herhaalde keren met een van de muntstukken. We beginnen met muntstuk a. Zolang met een muntstuk kop wordt gegooid, gebruiken we hetzelfde muntstuk ook bij de volgende toss. Wanneer met een muntstuk munt wordt gegooid, gebruiken we bij de volgende toss het andere muntstuk. We stoppen met tossen als we in totaal twee keer munt hebben gegooid. Wat is de verwachtingswaarde van het aantal keer dat wordt getost? A 1 p b p a B 1 p a p a C 1 p a p b p a p b D 1 p a p a + 1 p a p b + 1 p b p b + 1+p b p b 18 Het volgende stukje Matlab-code genereert een realisatie van een toevallige veranderlijke X. x = sum ( randn (10,1).^2) Waaraan is de verwachtingswaarde E(X) van X gelijk? A 9 B 10 C 9 3 D

13 19 Beschouw een toevallige steekproef X 1,..., X 10 van grootte 10 uit een normale verdeling met parameters µ = 1 en σ 2 = 1. Welke van de onderstaande uitspraken over het steekproefgemiddelde X 10 en de steekproefvariantie S10 2 is niet correct? A E(S10 2 ) = 1. B (X 10 ) 2 en S10 2 zijn onafhankelijk. C X 10 heeft een normale verdeling met verwachtingswaarde 1 en variantie D 9S 2 10 heeft een χ2 -verdeling met 9 vrijheidsgraden. 20 X 1, X 2 en X 3 zijn onafhankelijke continue toevallige veranderlijken die elk uniform verdeeld zijn over [0,1]. Wat is P(X 1 < min{x 2,X 3 }), de waarschijnlijkheid dat X 1 strikt kleiner is dan zowel X 2 als X 3? A 1 3 B 1 4 C 1 6 D Beschouw onafhankelijke, identiek verdeelde en strikt positieve reële toevallige veranderlijken X 1,..., X 100, waarbij E(ln(X i )) = 0 en var(ln(x i )) = 1. Wat is de (eventueel benaderde, en op vier beduidende cijfers achter de komma afgeronde) waarschijnlijkheid dat n i=1 X i strikt groter is dan e 100? A 0, 0000 B 0, 1587 C 0, 5000 D 1,

14 22 De toevallige veranderlijke X heeft een χ 2 -verdeling met parameter ν en de toevallige veranderlijke Y is geometrisch verdeeld met parameter 0 < p < 1. Zowel de verwachtingswaarden als de varianties van beide veranderlijken zijn aan elkaar gelijk: µ X = µ Y en σ 2 X = σ 2 Y. Welke van de volgende uitspraken is correct? A ν = 1 en p = 1/2. B ν = 2 en p = 1/3. C ν = 3 en p = 1/3. D Er zijn onvoldoende gegevens om deze vraag te kunnen beantwoorden. 23 In een peiling door de afdeling Landbouw en Visserij van de Vlaamse Overheid werd in mei 2013 aan n = 750 landbouwbedrijven gevraagd of ze tussen 1 juli en 31 december 2013 investeringen zouden doen. 270 bedrijven beantwoordden deze vraag positief. We willen met deze peiling iets kunnen besluiten over de nulhypothese dat in de laatste 6 maanden van 2013 niet meer dan p 0 = 35% van alle Vlaamse landbouwbedrijven investeringen zullen doen. Hiervoor gebruiken we een (alternatieve) Wald-teststatistiek, waarbij we de standaardfout se 0 onder de nulhypothese p = p 0 gebruiken. Het significantieniveau α 0 waarmee we testen is 5%. Met x i = 1 als het i-de landbouwbedrijf investeert in de laatste 6 maanden van 2013 en x i = 0 als het niet investeert, geeft de volgende tabel de gegevens weer: n n i=1 x i p 0 H 0 α % p p 0 5% Welke van de volgende uitspraken is de correcte? A H 0 wordt verworpen en het effectief significantieniveau is ongeveer 56,6%. B H 0 wordt niet verworpen en het effectief significantieniveau is ongeveer 28,3%. C H 0 wordt verworpen en het effectief significantieniveau is ongeveer 28,3%. D H 0 wordt niet verworpen en het effectief significantieniveau is ongeveer 56,6%. 14

15 24 We doen een hypothesetest over de verwachtingswaarde µ van een normaal verdeelde veranderlijke X, waarvan we weten dat var(x) = 1. We weten ook dat de verwachtingswaarde µ van X ofwel gelijk is aan µ 0, ofwel gelijk is aan µ 1 (met µ 1 > µ 0, zie de onderstaande figuur), ofwel gelijk is aan µ 2 := 2µ 0+3µ 1 5. De nulhypothese H 0 en de alternatieve hypothese H 1 zien er als volgt uit: H 0 : µ {µ 0, µ 2 }, H 1 : µ = µ 1. In de figuur zijn ook vier verschillende aanvaardingsgebieden AG1, AG2, AG3 en AG4 getekend, die overeenkomen met de respectieve testen δ 1, δ 2, δ 3 en δ 4. µ 0 µ 2 µ 1 AG1 AG2 AG2 AG3 AG4 Als de steekproefgrootte n zeer groot wordt, welke van de vier testen heeft de grootste onbetrouwbaarheid? A δ 1 B δ 2 C δ 3 D δ 4 15

16 25 De continue reële toevallige veranderlijken X en Y zijn onafhankelijk en exponentieel verdeeld met dezelfde parameter β. Wat is de waarschijnlijkheid P(X ky ) met k > 0? A B 1 2k k k+1 C 1 k+1 D geen van de bovenstaande 16

WenS oude examenvragen tot en met

WenS oude examenvragen tot en met WenS oude examenvragen 2008 2009 tot en met 204 205 Een toevallige steekproef (X,X 2,...,X n ) van lengte n wordt getrokken uit een normale verdeling met verwachtingswaarde µ = 0 en variantie σ 2. Welke

Nadere informatie

WenS eerste kans Permutatiecode 0

WenS eerste kans Permutatiecode 0 Aatekeige op de vrageblade zij NIET TOEGELATEN. Je mag gebruik make va schrijfgerief e ee eevoudige rekemachie; alle adere materiaal blijft achteri. Leg je studetekaart duidelijk zichtbaar op je bak. Klap

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

WenS eerste kans Permutatiecode 0

WenS eerste kans Permutatiecode 0 WeS eerste kas 203 204 Permutatiecode 0 Aatekeige op de vrageblade zij NIET TOEGELATEN. Je mag gebruik make va schrijfgerief e ee eevoudige rekemachie; alle adere materiaal blijft achteri. Gee GSM s toegelate:

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie

Hoofdstuk 6 Discrete distributies

Hoofdstuk 6 Discrete distributies Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33 Discrete distributies binomiale verdeling

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie Deze week: Schatten Statistiek voor Informatica Hoofdstuk 6: Schatten Cursusjaar 2009 Peter de Waal Departement Informatica Statistische inferentie A Priori en posteriori verdelingen Geconjugeerde a priori

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 1 November 1 / 26 2 Statistiek Vandaag: Power Grootte steekproef Filosofie 2 / 26 Power 3 / 26 Power Def. De power (kracht) van een hypothese toets is (1 β),

Nadere informatie

b. F (y) = 1 2 f. F (y) =

b. F (y) = 1 2 f. F (y) = Tentamen Statistische methoden MST-STM 27 juni 20, 9:00 2:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in en op het open vragen formulier graag beide, naar volgend voorbeeld:

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Statistiek voor A.I. College 12. Dinsdag 23 Oktober

Statistiek voor A.I. College 12. Dinsdag 23 Oktober Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Kansverdelingen Inductieve statistiek met Geogebra 4.2

Kansverdelingen Inductieve statistiek met Geogebra 4.2 Kansverdelingen Inductieve statistiek met Geogebra 4.2 Brecht Dekeyser Pedic 20 november 2013 Gent 1 Inhoud Nieuw in Geogebra 4.2 Kansverdelingen: Berekeningen en grafische voorstellingen Manueel in rekenblad

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Discrete Distributiefuncties 3. Er zijn 3 studenten aan het begin van de dag aanwezig bij een symposium. De kans dat een student volhoudt

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie

Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek

Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek UNIVERSITY OF GHENT Samenvatting Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek Auteur: Nicolas Vanden Bossche Lesgever: Prof. Hans De Meyer Hoofdstuk 1 Het kansbegrip en elementaire kansrekening

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

Antwoorden bij Inleiding in de Statistiek

Antwoorden bij Inleiding in de Statistiek Atwoorde bij Ileidig i de Statistiek Hoofdstuk. model: bi(, p), p [0, ], schattig: /.2 (i) i bloeddrukveraderig i e persoo i treatmet groep, Y j bloeddrukveraderig j e persoo i cotrolegroep, model:,...,,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Statistiek voor A.I. College 14. Dinsdag 30 Oktober

Statistiek voor A.I. College 14. Dinsdag 30 Oktober Statistiek voor A.I. College 14 Dinsdag 30 Oktober 1 / 16 2 Deductieve statistiek Orthodoxe statistiek 2 / 16 Grootte steekproef Voorbeeld NU.nl 26 Oktober 2012: Helft broodjes döner kebab vol bacteriën.

Nadere informatie

Algemeen overzicht inleiding kansrekening en statistiek

Algemeen overzicht inleiding kansrekening en statistiek Algemeen overzicht inleiding kansrekening en statistiek Robert Fitzner Tim Hulshof 7 Oktober 202 v.3 Voorwoord Deze tekst geeft een overzicht van de stof die behandeld wordt in de meeste cursussen inleiding

Nadere informatie

Sheets K&S voor INF HC 10: Hoofdstuk 12

Sheets K&S voor INF HC 10: Hoofdstuk 12 Sheets K&S voor INF HC 1: Hoofdstuk 12 Statistiek Deel 1: Schatten (hfdst. 1) Deel 2: Betrouwbaarheidsintervallen (11) Deel 3: Toetsen van hypothesen (12) Betrouwbaarheidsintervallen (H11) en toetsen (H12)

Nadere informatie

Statistiek voor A.I. College 9. Donderdag 11 Oktober

Statistiek voor A.I. College 9. Donderdag 11 Oktober Statistiek voor A.I. College 9 Donderdag 11 Oktober 1 / 48 2 Deductieve statistiek Bayesiaanse statistiek 2 / 48 Reistijd naar college (minuten). Jullie - onderzoek Tim Histogram of CI Frequency 0 1 2

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Kansrekenen en statistiek. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Kansrekenen en statistiek. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Kansrekenen en statistiek Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 2010-2011 Hoofdstuk 2 Beschrijvende statistiek Meerkeuzevraag 1 Opeenvolgende metingen

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

Zin en onzin van normale benaderingen van binomiale verdelingen

Zin en onzin van normale benaderingen van binomiale verdelingen Zin en onzin van normale benaderingen van binomiale verdelingen Johan Walrave, docent EHSAL 0. Inleiding Voordat het grafisch rekentoestel in onze school ingevoerd werd, was er onder de statistiekdocenten

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e.

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e. Tentamen Statistische methoden MST-STM 1 april 2011, 9:00 12:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

WI1102CT Kansrekening en Statistiek

WI1102CT Kansrekening en Statistiek WI02CT Kansrekening en Statistiek Oefententamen juni 200 oktober 2009 januari 2009 oktober 2008 januari 2008 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" 63 pagina s Oefententamen

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Toegepaste Wiskunde 2: Het Kalman-filter

Toegepaste Wiskunde 2: Het Kalman-filter Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

Het gebruik van Excel 2007 voor statistische analyses. Een beknopte handleiding.

Het gebruik van Excel 2007 voor statistische analyses. Een beknopte handleiding. Het gebruik van Excel 2007 voor statistische analyses. Een beknopte handleiding. Bij Excel denken de meesten niet direct aan een statistisch programma. Toch biedt Excel veel mogelijkheden tot statistische

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

4.2 Mean Square Error

4.2 Mean Square Error 4 Schatters 4.1 Introductie Een statistisch model bestaat uit alle kansverdelingen welke a priori mogelijk worden geacht voor de gegeven data. Gegeven een correct opgesteld model gaan we ervan uit dat

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt A. Effect & het onderscheidingsvermogen Effectgrootte (ES) De effectgrootte (effect size) vertelt ons iets over hoe relevant de relatie tussen twee variabelen is in de praktijk. Er zijn twee soorten effectgrootten:

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Introductie tot de statistiek

Introductie tot de statistiek Introductie tot de statistiek Hogeschool Gent 04/05/2010 Inhoudsopgave 1 Basisbegrippen en beschrijvende statistiek 8 1.1 Onderzoek............................ 8 1.1.1 Data........................... 8

Nadere informatie

Herkansing eindtoets statistiek voor HBO

Herkansing eindtoets statistiek voor HBO Herkansing 1A 1 Herkansing eindtoets statistiek voor HBO Schrijf de antwoorden op de vragen alleen op deze pagina s. Antwoorden geschreven op andere vellen papier worden niet meegenomen in de beoordeling.

Nadere informatie

Formules Excel Bedrijfsstatistiek

Formules Excel Bedrijfsstatistiek Formules Excel Bedrijfsstatistiek Hoofdstuk 2 Data en hun voorstelling AANTAL.ALS vb: AANTAL.ALS(A1 :B6,H1) Telt hoeveel keer (frequentie) de waarde die in H1 zit in A1:B6 voorkomt. Vooral bedoeld voor

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Statistiek voor economen Uitkomsten van de oefeningen. Luc Lauwers

Statistiek voor economen Uitkomsten van de oefeningen. Luc Lauwers Statistiek voor economen Uitkomsten van de oefeningen Luc Lauwers Oktober 2011 2 Het formuleren van een antwoord op een vraagstuk is meer dan een uitkomst geven! Formuleer Uw antwoord zorgvuldig. Introduceer

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 11 juni 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

5 Toetsen. 5.1 Nulhypothese en Alternatieve Hypothese

5 Toetsen. 5.1 Nulhypothese en Alternatieve Hypothese 5 Toetsen Bij wetenschappelijk onderzoek, in de industrie en in het dagelijks leven is het vaak gewenst na te gaan of bepaalde vragen al dan niet bevestigend beantwoord kunnen worden. Helpt een bepaalde

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 24 juni 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Tentamen Voortgezette biostatistiek / Biomedische wiskunde

Tentamen Voortgezette biostatistiek / Biomedische wiskunde Tentamen Voortgezette biostatistiek / Biomedische wiskunde 22 maart 2016; 08:45-10:45 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau.

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Kruis per vraag slechts één vakje aan op het antwoordformulier.

Kruis per vraag slechts één vakje aan op het antwoordformulier. Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor

Nadere informatie

Handout limietstellingen Kansrekening 2WS20

Handout limietstellingen Kansrekening 2WS20 Handout limietstellingen Kansrekening WS0 Remco van der Hofstad 13 januari 017 Samenvatting In deze hand out bespreken we een aantal limietstellingen en hun bewijzen. In meer detail, behandelen we de volgende

Nadere informatie

E Y = ln(β 1 x) ln β 1 + β 2

E Y = ln(β 1 x) ln β 1 + β 2 Tentamen Statistische Methoden MST STM 1 april 2009, 9.00 12.00 uur Toelichting. Een antwoord alleen is niet voldoende: er dient een motivatie, toelichting of berekening aanwezig te zijn. Gebruik, tenzij

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

Testen omtrent µ (normale populatie): BI. Testen omtrent µ (normale populatie): fouten. Testen omtrent µ (normale populatie): P-waarde

Testen omtrent µ (normale populatie): BI. Testen omtrent µ (normale populatie): fouten. Testen omtrent µ (normale populatie): P-waarde Testen omtrent µ (normale populatie) Hoofdstuk VII: HYPOTHESETESTEN Voorbeeld : X: Mortaliteit N(µ, σ ) µ = 1000 of µ 1000? x = 940.35 X µ S/ n tn 1 als µ = 1000: Terminologie: X 1000 S/ 60 t59 P ( t 59,0.05

Nadere informatie

Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen. Poisson Processen. Arno Weber.

Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen. Poisson Processen. Arno Weber. Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen Poisson Processen Arno Weber email: aeweber@cs.vu.nl Januari 2003 1 Inhoudsopgave 1. Computersimulaties 3 2. Wachttijd-paradox 6 3.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie