Schriftelijk tentamen - UITWERKINGEN

Maat: px
Weergave met pagina beginnen:

Download "Schriftelijk tentamen - UITWERKINGEN"

Transcriptie

1 Business Administration / Bedrijfskunde Schriftelijk tentamen - UITWERKINGEN Algemeen Vak : Statistische Methoden Groep : niet van toepassing en Technieken Vakcode : BKB009t Soort tentamen : gesloten boek Datum : 22 maart 200 Tijd : uur Docent(en) : dr J. van Dalen Aantal pagina s : 9 (incl. voorblad) Opmerkingen De uitwerkingen in dit formulier betreffen antwoordschetsen. Alternatieve formuleringen zijn niet bij voorbaat uitgesloten. De puntenverdeling die binnen de onderdelen wordt genoemd, is indicatief. Bij de precieze allocatie van punten wordt mee rekening gehouden met de kwaliteit van het gehele antwoord. Schoonheidsfoutjes in de uitwerkingen zijn niet uitgesloten. graag doorgeven. Nadruk en verdere verspreiding verboden. Eventuele missers

2 Vraag : Rook- en examengedrag in Turijn (a) Gevraagd: toetsen veronderstelling (H 0 ) dat aandeel rokende studenten gelijk is aan 0.50, uitgaande van α = %.. H 0 : p = 0.50; H : p = p Z = S p 0 p0 ( p 0 )/n 3. Z n(0, ) 4. p s << 0.50 p s >> 0.50 of Z obs << 0 Z obs >> 0 5. α = z = 2.58 en z = Z obs = ( )/ /600 = 0.07/0.020 = < 2.58 verwerp H 0 op α gelijk %: het aandeel rokende studenten in Turijn wijkt significant af van (is lager dan) Opmerking: dit is een toets voor een proportie; onjuiste bepaling standaardfout leidt standaard tot een punt aftrek. (b) Gevraagd: toetsen veronderstelling dat tentamendeelname 364 nietrokende Turijnse studenten over de vier kwartielen overeenkomt met 20%, 40%, 30% en 0%, uitgaande van α = %.. H 0 : p = 0.20, p 2 = 0.40, p 3 = 0.30, p 4 = 0.0; H : niet alle p k zoals gespecificeerd 2. Y = 4 k= (O k E k ) 2 E k, waarbij E k = np k, k =, 2, 3, 4 3. Y χ 2 (K ) = χ 2 (3); K = 4, n = Y obs >> 0 5. α = χ 2 3,0.0 = Y obs = ( ) = = 9.59 <.345 handhaaf H 0 op α gelijk %: de waargenomen fracties niet-rokende Turijnse student in de kwartielen van tentamendeelname wijken niet significant af van de populatieproporties op een significantieniveau van % ( ) ( ) ( )2 Opmerking: dit is een χ 2 -toets op een veronderstelde verdeling. 2

3 (c) Gevraagd: berekenen minimale verwachte celfrequentie bij onderzoek onafhankelijk verdeeld-zijn van rookgedrag en tentamendeelname. Verwachte celfrequenties onder onafhankelijkheid worden gevonden als E ij = n ˆp ij = n ˆp i ˆp j. De marginale kansen ˆp i en ˆp j zijn geschat op basis van rij- en kolomtotalen: ˆp i = n i /n en ˆp j = n j /n. De minimale verwachte celfrequenties wordt gevonden voor de cel waarvoor de rijfrequentie en de kolomfrequentie beide minimaal zijn. De minimale rijfrequentie is 55 (tentamendeelname > 75%), de minimale kolomfrequentie is 236 (rokende studenten), zodat de minimale verwachte celfrequentie gelijk is aan E 4 = /600 = 2.6. De minimale verwachte celfrequentie is nodig om te beoordelen of wordt voldaan aan de rule of five (de eis dat de verwachte celfrequenties groter zijn dan vijf). Maar hierover werd bij dit onderdeel niets gevraagd. De weergave van een tabel met verwachte frequenties (niet gevraagd) zonder duiding van de minimale verwachte frequentie is met hooguit drie punten gewaardeerd. (d) Gevraagd: benoemen en toelichten geëigende toetsgrootheid voor analyseren tentamendeelname en rookgedrag als ordinale variabelen. Achtergrond: tentamendeelname en rookgedrag van Turijnse studenten zijn beide ordinaal gemeten variabelen. In het geval van tentamendeelname is dat direct duidelijk omdat het een gedegeneeerde kwantitatieve variabele betreft, terwijl het voor rookgedrag niet echt een issue is omdat het een dummyvariabele betreft. De Pearson χ 2 -grootheid laat deze attribuutinformatie onbenut. Wanneer tentamendeelname en het al dan niet roken van studenten worden beschouwd als ordinale variabelen dan is de Spearman rangcorrelatie geëigend om de samenhang te onderzoeken. Eventueel zou de Mann-Whitney-toetsgrootheid gebruikt kunnen worden, maar dan wordt in het antwoord niets gedaan met eventuele ordinaliteit van het rookgedrag. In ieder geval moet dit antwoord afdoende toegelicht worden. Het maximale aantal verkrijgbare punten is dan 3. 3

4 Vraag 2: The thrill of suspense (a) Gevraagd: (i) causaal relatieschema voor onderzoekshypothesen Bastick (2006); (ii) beschrijven rol van daadwerkelijk ervaren emotie (ErvEmot). Een causaal relatieschema op basis van de onderzoekshypothesen in de tekst (inclusief causaliteitsrichting en verwachte aard van de relatie voor zover gespecificeerd) ziet eruit als volgt (3 pnt): AntSurp AntEmot ErvSurp ErvEmot Satisfac De feitelijk ervaren emotie (ErvEmot) heeft de rol van interveniërende variabele voor met name de invloed van de ervaren verrassing (ErvSurp) op de tevredenheid over het assortiment (Satisfac). (3 pnt) (b) Gevraagd: onderzoeken of samenhang tussen feitelijk ervaren emotie (ErvEmot) en tevredenheid over assortiment (Satisfac) wordt doorkruist door invloed feitelijk ervaren verrassing (ErvSurp); stappenschema s niet nodig. Voor opschonen. De samenhang tussen feitelijk ervaren emotie (ErvEmot) en tevredenheid over assortiment (Satisfac) is (zeer) significant positief (r = 0.369, p = 0.000). De significantie volgt uit het feit dat de waargenomen waarde van de toetsgrootheid gelijk is aan / T obs = = (2 pnt) Na opschonen. Controleren voor de invloed van ervaren verrassing geeft als partiële correlatie: r 2.3 = = r 2 r 3 r 23 ( r3 2 ) ( r23 2 ) = 0.25/0.788 = ( )( ) Deze partiële correlatie is kleiner dan de paarsgewijze correlatie, maar de waargenomen waarde van de toetsgrootheid is nog altijd: T obs = / = 5.404, en dus nog steeds zeer significant (r 2.3 = 0.273, p = 0.000). (2 pnt) 4 Conclusie. Zowel voor als na opschonen voor de feitelijk ervaren verrassing (ErvSurp) is de samenhang tussen de ervaren emotie en de tevredenheid over het assortiment significant positief, zodat er geen doorkruisendheid van betekenis heeft plaatsgevonden. (2 pnt)

5 (c) Gevraagd: toetsen veronderstelling (H 0 ) dat de samenhang in de huidige steekproef overeenkomt met de eerder gevonden 0.4, uitgaande α = 5%.. H 0 : ρ = 0.4; H : ρ = Z = ( n 3 2 ln r r ) 0.4 ln Z n(0, ) 4. r obs << 0.4 r obs >> 0.4, of Z obs << 0 Z obs >> 0 5. α = z =.96 en z = Z obs = ( ln ) 0.4 ln = 362( ) = 362 ( 0.5) = <.96 verwerp H 0 op α gelijk aan 5%: de correlatiecoëfficiënt tussen ervaren verrassing (ErvSurp) en tevredenheid over het assortiment (Satisfac) wijkt in de steekproef significant af van (is lager dan) de eerder gevonden 0.4 uitgaande van significantieniveau gelijk aan 5%. (d) Gevraagd: (i) populatieregressiemodel voor samenhang tussen tevredenheid (Satisfac) en ervaren verrassing (ErvSurp); en (ii) bepalen gestandaardiseerde regressiecoëfficiënt van het verrassingseffect. (i) Het populatieregressiemodel ziet er uit als volgt (3 pnt): Satisfac = α βervsurp ɛ, ɛ n(0, σ) (ii) De waarde van de gestandaardiseerde regressiecoëfficiënt komt in dit enkelvoudige regressiemodel overeen met de correlatiecoëfficiënt van tevredenheid (Satisfac) en de ervaren verrassing (ErvSurp), beta = r = (3 pnt) Uit het antwoord bij (ii) moest wel duidelijk zijn dat men begreep dat het hier gaat om een gestandaardiseerde (dus niet een gewone) regressiecoëfficiënt. 5

6 Vraag 3: M&A s en de levenscyclus van industrieën (a) Gevraagd: onderzoeken of de variantie van de transactiewaarde groter is voor volwassen (mature) dan voor groei (growth) bedrijfstakken (H ); ga uit van α = 5%.. H 0 : σ 2 M σ2 G ; H : σ 2 M > σ2 G 2. F = S 2 M /S2 G 3. F F(n M, n G ) = F(40, 00); n M = 4, n G = 0 4. S 2 M >> S2 G, F obs >> 5. α = F 40,00,0.05 = F obs = 99 2 /8 2 =.209 <.52 (= F 40,00,0.05 ) handhaaf H 0 op α gelijk 5%: de variantie van de transactiewaarde is voor volwassen bedrijven niet significant groter dan voor groei bedrijven. Veel gemaakte fouten bij dit onderdeel zijn het niet kwadrateren van de standaarddeviaties in de berekening van F obs en het tweezijdig uitvoeren van de toets (hetgeen in het licht van de onderzoekshypothese in dit geval niet geëigend is). (b) Gevraagd: berekenen geschatte standaardfout van het verschil tussen de steekproefgemiddelden van de transactiewaarde in volwassen (mature) en groei (growth) bedrijfstakken. Ga uit van gelijke varianties van de transactiewaarde in de beide deelpopulaties. Uitgaande van gelijke varianties van de transactiewaarde in de beide deelpopulaties is de geschatte standaardfout gelijk aan S P De gepoolde variantie is gelijk aan (3 pnt): S 2 P = (n M )S 2 M (n G )S 2 G n M n G 2 = (4 )992 (0 )8 2 = nm n G Hiermee wordt de geschatte standaardfout van het verschil tussen de steekproefgemiddelden van de transactiewaarde berekend als (3 pnt): S P = n M n G 4 = =

7 (c) Gevraagd: (i) 95%-betrouwbaarheidsintervalschatting verschil tussen verwachte transactiewaarden in volwassen (mature) en groei (growth) bedrijfstakken; (ii) beoordelen of veronderstelde gelijkheid van verwachte transactiewaarden blijft gehandhaafd op α = 5% aan de hand van het berekende betrouwbaarheidsinterval. (i) Een 95%-betrouwbaarheidsintervalschatting voor µ M µ G wordt gevonden als (3 pnt): X M X G ± t n 2,α/2 S P n M n G 66 0 ± t 40, ± ± ( 2.22; 24.22) (ii) Vanwege de rekentechnische overeenkomsten, en de vergelijkbare instellingen van de betrouwbaarheidsintervalschatting (gekozen α en tweezijdigheid), betekent het feit dat het veronderstelde verschil µ M µ G = 0 in het betrouwbaarheidsinterval ligt, dat de nulhypothese bij toetsen gehandhaafd blijft. (3 pnt) Noot: zomaar nulpunt noemen bij onderdeel (ii) is niet volledig gehonoreerd, omdat niet duidelijk is wat ermee wordt bedoeld. (d) Gevraagd: (i) berekenen significantie (p-waarde) toetsresultaat van onderzoek naar de hypothese (H ) dat de verwachte transactiewaarde voor volwassen (mature) bedrijfstakken groter is dan voor groei (growth) bedrijfstakken; en (ii) beoordelen of toetsresultaat significant is, uitgaande α = %. De toetssituatie is: H 0 : µ M µ G 0, H : µ M µ G > 0 (er wordt rechtseenzijdig getoetst). De waarde van de toetsgrootheid is gelijk aan T obs = (6 0)/ =.623. De gevraagde p-waarde wordt gevonden als: p = P(T > T obs µ M µ G 0) = P(Z >.623) = Aangezien p = > 0.0 = α blijft de nulhypothese gehandhaafd: de verwachte transactiewaarde in volwassen bedrijfstakken is niet significant groter dan die in groei bedrijfstakken op basis van α gelijk aan %. Noot: de betekenis van p als kans moet in de voorgaande stap toegelicht zijn; zomaar een getal of Z obs in tabel invullen geeft... roepen levert niet de volle punten op. 7

8 Vraag 4: Verkoopresultaten familiebedrijf (a) Gevraagd: (i) berekenen vier fit-maatstaven voor het uitgebreide model : meervoudige samenhang (R), mate van verklaring (R 2 ), aangepaste mate van verklaring (R 2 adj ) en geschatte standaardfout regressiemodel (ˆσ); en (ii) benoemen preferente maatstaf voor beoordelen verklaringskracht beide modellen. De vier fit maatstaven worden gevonden als (4 pnt): R 2 = SSR SST = = R = R 2 = = R 2 adj = SSE/(n K ) = /75 SST/(n ) /8 = = = ˆσ = ˆσ 2 = MSE = = De aangepaste mate van verklaring heeft de voorkeur voor het vergelijken van de fit van deze geneste modellen, omdat deze rekening houdt met de informatie-inhoud (verklaarde variatie per vrijheidsgraad) van de toegevoegde variabelen. (2 pnt) (b) Gevraagd: onderzoek of volgen interne cursussen meer bijdraagt aan de verkoopprestaties dan lage vooropleiding, uitgaande van α = %. De coëfficiënt van dopleid3, β 2, meet het verschil tussen de verwachte verkoopprestaties van medewerkers met een interne cursus (Opleid=3) en medewerkers met alleen een lage vooropleiding (Opleid=) andere kenmerken constant houdend.. H 0 : β 2 0, H : β 2 > 0 2. T = ( ˆβ 2 β 2 )/S ˆβ 2 3. T t(n K ) = t(75); n = 82, K = 6 4. ˆβ 2 >> 0, T obs >> 0 5. α = t 75,0.0 = T obs = 5.79/2.26 = > verwerp H 0 op %: verwachte verkoopprestaties liggen significant hoger voor medewerkers met interne cursussen dan medewerkers met lager vooropleiding op significantieniveau van %. 8

9 (c) Gevraagd: onderzoek of gezamenlijke bijdrage van de opleidingsniveaus aan de verklaring van verkoopprestaties significant is op α = 2.5%. Uitvoeren toets op meervoudige restricties (partial F-test):. H 0 : β = β 2 = 0; H : β en β 2 niet beide gelijk aan nul 2. F = (SSE R SSE U )/r SSE U /(n K ) 3. F F(r, n K ) = F(2, 75) (r = 2, n = 82, K = 6) 4. F >> 5. α = F 2,75,0.025 = 3.88 ( )/2 7. F obs = = 34.77/ = > 3.88 = /75 F 2,75,0.025 verwerp H 0 op α gelijk aan 2.5%: de gezamenlijke bijdrage van de opleiding aan de verklaring van variatie in verkoopprestaties is significant op 2.5%. (d) Gevraagd: (i) berekenen significantie (p-waarde) van Branche-effect in uitgebreide ( U ) en beperkte ( R ) modellen; en (ii) onderzoeken of invloed verkoopafdeling wordt doorkruist door de opleiding van medewerkers. (i) De p-waarden van het Branche effect in beide modellen wordt uitgaande van tweezijdig toetsen gevonden als (3 pnt): U:p = 2P(T > ) 2P(Z > 0.607) = = R:p = 2P(T > ) 2P(Z > 0.400) = = (ii) Onderzoek naar doorkruisendheid komt in deze context vreemd over, maar het betekent niets meer dan het vergelijken van het geschatte Branche-effect voor ( R ) en na ( U ) opschonen het opleidingseffect (3 pnt): Voor opschonen: het Branche-effect in het beperkte model is negatief en niet-significant ( ˆβ Br = 0.400, p = 0.690). Na opschonen: na opnemen van de opleiding in het regressiemodel is het Branche-effect in het uitgebreide model nog steeds negatief en niet-significant ( ˆβ Br = 0.607, p = 0.546). Conclusie: het Branche-effect was en blijft niet-significant na opschonen voor de opleiding, zodat er geen doorkruisendheid van betekenis is. 9

Schriftelijk tentamen - UITWERKINGEN

Schriftelijk tentamen - UITWERKINGEN Business Administration / Bedrijfskunde Schriftelijk tentamen - UITWERKINGEN Algemeen Vak : Statistische Methoden Groep : niet van toepassing en Technieken Vakcode : BKB0019t Soort tentamen : gesloten

Nadere informatie

Schriftelijk tentamen - UITWERKINGEN

Schriftelijk tentamen - UITWERKINGEN Business Administration / Bedrijfskunde Schriftelijk tentamen - UITWERKINGEN Algemeen Vak : Statistische Methoden Groep : niet van toepassing en Technieken Vakcode : BKB0019t Soort tentamen : gesloten

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet? Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid

Nadere informatie

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt A. Effect & het onderscheidingsvermogen Effectgrootte (ES) De effectgrootte (effect size) vertelt ons iets over hoe relevant de relatie tussen twee variabelen is in de praktijk. Er zijn twee soorten effectgrootten:

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling Kwantitatieve Data Analyse (KDA) Onderzoekspracticum Sessie 2 11 Aanpassingen takenboek! Check studienet om eventuele verbeteringen te downloaden! Huidige versie takenboek: 09 Gjalt-Jorn Peters gjp@ou.nl

Nadere informatie

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN 4.1 PARAMETERTOESTEN 1 A. Toetsen van het gemiddelde Beschouw een steekproef X 1, X,, X n van n onafhankelijke N(µ, σ) verdeelde kansveranderlijken Men

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +++!!!!!!! Kbo!efo!Pvetufo!!! 3:2238!!!!! Sfjojfs!wbo!Iffse!! 3:287:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case Assignment Vliegtarieven.nl Statistische Methoden en technieken 2005/2006

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

Statistiek voor A.I. College 12. Dinsdag 23 Oktober

Statistiek voor A.I. College 12. Dinsdag 23 Oktober Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages.

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages. MARGES EN SIGNIFICANTIE BIJ STEEKPROEFRESULTATEN. De marges van percentages Metingen via een steekproef leveren een schatting van de werkelijkheid. Het toevalskarakter van de steekproef heeft als consequentie,

Nadere informatie

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter

Nadere informatie

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen M, M & C 7.3 Optional Topics in Comparing Distributions: F-toets 6.4 Power & Inference as a Decision 7.1 The power of the t-test 7.3 The power of the sample t- Toetsende Statistiek Week 5. De F-toets &

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

E Y = ln(β 1 x) ln β 1 + β 2

E Y = ln(β 1 x) ln β 1 + β 2 Tentamen Statistische Methoden MST STM 1 april 2009, 9.00 12.00 uur Toelichting. Een antwoord alleen is niet voldoende: er dient een motivatie, toelichting of berekening aanwezig te zijn. Gebruik, tenzij

Nadere informatie

Statistiek 2 deel A 30 minuten over statistisch toetsen

Statistiek 2 deel A 30 minuten over statistisch toetsen Statistiek 2 deel A 30 minuten over statistisch toetsen R.J. Baars, MSc Kruytgebouw N710 r.j.baars@uu.nl februari 2014 Opbouw van statistiek Statistiek 1 (periode 2: vandaag) Dit college + zelfstudie +

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

College 6 Eenweg Variantie-Analyse

College 6 Eenweg Variantie-Analyse College 6 Eenweg Variantie-Analyse - Leary: Hoofdstuk 11, 1 (t/m p. 55) - MM&C: Hoofdstuk 1 (t/m p. 617), p. 63 t/m p. 66 - Aanvullende tekst 6, 7 en 8 Jolien Pas ECO 01-013 Het Experiment: een voorbeeld

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

Introductie tot de statistiek

Introductie tot de statistiek Introductie tot de statistiek Hogeschool Gent 04/05/2010 Inhoudsopgave 1 Basisbegrippen en beschrijvende statistiek 8 1.1 Onderzoek............................ 8 1.1.1 Data........................... 8

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Beschrijvende statistiek Beschrijvende en toetsende statistiek Beschrijvend Samenvatting van gegevens in de steekproef van onderzochte personen (gemiddelde, de standaarddeviatie, tabel, grafiek) Toetsend

Nadere informatie

Experimenteel en Correlationeel Onderzoek

Experimenteel en Correlationeel Onderzoek Experimenteel en Correlationeel Onderzoek In veel onderzoek is het doel: Het vaststellen van oorzaak-gevolg (causale) relaties Criteria voor causaliteit 1. Samenhang (correlatie, covariantie) 2. Opeenvolging

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Formules Excel Bedrijfsstatistiek

Formules Excel Bedrijfsstatistiek Formules Excel Bedrijfsstatistiek Hoofdstuk 2 Data en hun voorstelling AANTAL.ALS vb: AANTAL.ALS(A1 :B6,H1) Telt hoeveel keer (frequentie) de waarde die in H1 zit in A1:B6 voorkomt. Vooral bedoeld voor

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Experimenteel en Correlationeel Onderzoek (ECO)

Experimenteel en Correlationeel Onderzoek (ECO) Experimenteel en Correlationeel Onderzoek (ECO) In veel onderzoek is het ultieme doel: Het vaststellen van oorzaak-gevolg (causale) relaties Rode draad ECO: Met behulp van onderzoek zo goed mogelijk uitspraken

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN Interim Toegepaste Biostatistiek deel december 2009 Versie A ANTWOORDEN C 2 B C A 5 C 6 B 7 B 8 B 9 D 0 D C 2 A B A 5 C Lever zowel het antwoordformulier als de interim toets in Versie A 2. Dit tentamen

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Sheets K&S voor INF HC 10: Hoofdstuk 12

Sheets K&S voor INF HC 10: Hoofdstuk 12 Sheets K&S voor INF HC 1: Hoofdstuk 12 Statistiek Deel 1: Schatten (hfdst. 1) Deel 2: Betrouwbaarheidsintervallen (11) Deel 3: Toetsen van hypothesen (12) Betrouwbaarheidsintervallen (H11) en toetsen (H12)

Nadere informatie

Klantonderzoek: statistiek!

Klantonderzoek: statistiek! Klantonderzoek: statistiek! Statistiek bij klantonderzoek Om de resultaten van klantonderzoek juist te interpreteren is het belangrijk de juiste analyses uit te voeren. Vaak worden de mogelijkheden van

Nadere informatie

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008 Examen Statistische Modellen en Data-analyse Derde Bachelor Wiskunde 14 januari 2008 Vraag 1 1. Stel dat ɛ N 3 (0, σ 2 I 3 ) en dat Y 0 N(0, σ 2 0) onafhankelijk is van ɛ = (ɛ 1, ɛ 2, ɛ 3 ). Definieer

Nadere informatie

Correlatie = statistische samenhang Meest gebruikt = Spearman s rang correlatie Ordinaal geschaalde variabelen -1 <= r s <= +1 waarbij:

Correlatie = statistische samenhang Meest gebruikt = Spearman s rang correlatie Ordinaal geschaalde variabelen -1 <= r s <= +1 waarbij: Correlatie analyse Correlatie = statistische samenhang Meest gebruikt = Spearman s rang correlatie Ordinaal geschaalde variabelen -1

Nadere informatie

Testen omtrent µ (normale populatie): BI. Testen omtrent µ (normale populatie): fouten. Testen omtrent µ (normale populatie): P-waarde

Testen omtrent µ (normale populatie): BI. Testen omtrent µ (normale populatie): fouten. Testen omtrent µ (normale populatie): P-waarde Testen omtrent µ (normale populatie) Hoofdstuk VII: HYPOTHESETESTEN Voorbeeld : X: Mortaliteit N(µ, σ ) µ = 1000 of µ 1000? x = 940.35 X µ S/ n tn 1 als µ = 1000: Terminologie: X 1000 S/ 60 t59 P ( t 59,0.05

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Statistische toetsen

Statistische toetsen Statistische toetsen Een handleiding voor elke leerling die worstelt met het toetsen van zijn gegevens bij het PWS Hanna Bodde en Annalie Koerts Karla Thie Inhoudsopgave 1. Inleiding 3 2. Criteria voor

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

Inductieve statistiek voor informatiewetenschappers

Inductieve statistiek voor informatiewetenschappers INDUCTIEVE STATISTIEK VOOR INFORMATIEWETENSCHAPPERS I 570 1 Inductieve statistiek voor informatiewetenschappers HENK VOORBIJ 1. Inleiding Er zijn twee soorten statistiek: beschrijvende en inductieve (ook

Nadere informatie

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e.

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e. Tentamen Statistische methoden MST-STM 1 april 2011, 9:00 12:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend

Nadere informatie

Statistiek. Statistiek in het laboratorium van de ziekenhuisapotheek; deel 1.

Statistiek. Statistiek in het laboratorium van de ziekenhuisapotheek; deel 1. Statistiek Statistiek in het laboratorium van de ziekenhuisapotheek; deel 1. M.C. de Brouwer M.C.J. Langen Laboratorium van de ziekenhuisapotheek Midden-Brabant Maria ziekenhuis Dr. Deelenlaan 5 5042 AD

Nadere informatie

Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009

Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009 Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009 Opdracht 1 Onderstaande tabel bevat metingen aan de opbrengst van rozen bij verschillende mate van stikstofen fosfortoevoer. rozen/snijvak/dag fosfaatniveau

Nadere informatie

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995 Schriftelijk examen statistiek, data-analyse en informatica Maandag 29 mei 1995 Tweede jaar kandidaat arts + Tweede jaar kandidaat in de biomedische wetenschappen Naam: Voornaam: Vraa Kengetal g Blad 1

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing M, M & C, Chapter 6, Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Use and Abuse

Nadere informatie

College 7 Tweeweg Variantie-Analyse

College 7 Tweeweg Variantie-Analyse College 7 Tweeweg Variantie-Analyse - Leary: Hoofdstuk 12 (p. 255 t/m p. 262) - MM&C: Hoofdstuk 12 (p. 618 t/m p. 623 ), Hoofdstuk 13 - Aanvullende tekst 9, 10, 11 Jolien Pas ECO 2012-2013 Het Experiment

Nadere informatie

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA)

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) DATA STRUKTUUR Afhankelijke variabele: Eén kontinue variabele Onafhankelijke variabele(n): - één discrete variabele: één gecontroleerde factor - twee discrete variabelen:

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets Vandaag Onderzoeksmethoden: Statistiek 4 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap: Hypothese toetsen t-toets

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Causale modellen: Confounding en mediatie. Harry Ganzeboom Kwantitatieve Methoden voor PMC-BCO College 2: 25 april 2016

Causale modellen: Confounding en mediatie. Harry Ganzeboom Kwantitatieve Methoden voor PMC-BCO College 2: 25 april 2016 Causale modellen: Confounding en mediatie Harry Ganzeboom Kwantitatieve Methoden voor PMC-BCO College 2: 25 april 2016 Correlatie en causatie Een standaard wijsheid in methodologie is dat correlatie (samenhang)

Nadere informatie

DEZE PAGINA NIET vóór 8.30u OMSLAAN!

DEZE PAGINA NIET vóór 8.30u OMSLAAN! STTISTIEK 1 VERSIE MT15303 1308 1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 5 augustus 2013, 8.30-10.30 uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER,

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 17-11-2003 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een zakrekenmachine.

Nadere informatie

tul Moleculaire Levenswetenschappen Stroom 2.1 2005-2006 Statistisch modelleren Werkboek

tul Moleculaire Levenswetenschappen Stroom 2.1 2005-2006 Statistisch modelleren Werkboek tul Moleculaire Levenswetenschappen Stroom 2.1 2005-2006 Statistisch modelleren Werkboek Inhoudsopgave Rooster 2 Studiemateriaal 2 Werkvormen 2 Toetsing 3 Planningsgroep 3 Traject 4 1 Rooster Dag Datum

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

Verslag consumentenonderzoek zorgsector Breda

Verslag consumentenonderzoek zorgsector Breda Verslag consumentenonderzoek zorgsector Breda Inleiding: In het kader van het project economische barometer is in 2012 gekozen voor het onderwerp zorgverlening en vooral het gebruik van de zorgverleners,

Nadere informatie

Antwoorden bij Testtheorie. Inleiding in de theorie van de psychologische test en zijn toepassingen, door P. J. D. Drenth en K.

Antwoorden bij Testtheorie. Inleiding in de theorie van de psychologische test en zijn toepassingen, door P. J. D. Drenth en K. Antwoorden bij Testtheorie. Inleiding in de theorie van de psychologische test en zijn toepassingen, door P. J. D. Drenth en K. Sijtsma Opmerking vooraf: Enkele docenten hebben ons laten weten dat zij

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op maandag 2 juli uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op maandag 2 juli uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op maandag 2 juli 2012 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het gebruik

Nadere informatie

SPSS. Statistiek : SPSS

SPSS. Statistiek : SPSS SPSS - hoofdstuk 1 : 1.4. fase 4 : verrichten van metingen en / of verzamelen van gegevens Gegevens gevonden bij een onderzoek worden systematisch weergegeven in een datamatrix bij SPSS De datamatrix Gebruik

Nadere informatie

Kruis per vraag slechts één vakje aan op het antwoordformulier.

Kruis per vraag slechts één vakje aan op het antwoordformulier. Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor

Nadere informatie

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 12 : Regressie en correlatie Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Regressie en correlatie p 1/26 Regressielijn Vraag : vind het

Nadere informatie

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek cursus 23 mei 2012 werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen onderzoek streeft naar inzicht in relatie tussen variabelen bv. tussen onafhankelijke

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

beoordelingskader zorgvraagzwaarte

beoordelingskader zorgvraagzwaarte 1 beoordelingskader zorgvraagzwaarte In dit document geven we een beoordelingskader voor de beoordeling van de zorgvraagzwaarte-indicator. Dit beoordelingskader is gebaseerd op de resultaten van de besprekingen

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Herkansing eindtoets statistiek voor HBO

Herkansing eindtoets statistiek voor HBO Herkansing 1A 1 Herkansing eindtoets statistiek voor HBO Schrijf de antwoorden op de vragen alleen op deze pagina s. Antwoorden geschreven op andere vellen papier worden niet meegenomen in de beoordeling.

Nadere informatie

Kansrekenen en statistiek. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Kansrekenen en statistiek. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Kansrekenen en statistiek Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 2010-2011 Hoofdstuk 2 Beschrijvende statistiek Meerkeuzevraag 1 Opeenvolgende metingen

Nadere informatie

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april 2009 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

Analyse van confounders en mediatoren. Cursus Bachelor Project 2 B&O College 3 Harry B.G. Ganzeboom

Analyse van confounders en mediatoren. Cursus Bachelor Project 2 B&O College 3 Harry B.G. Ganzeboom Analyse van confounders en mediatoren Cursus Bachelor Project 2 B&O College 3 Harry B.G. Ganzeboom 1 AGENDA Nabespreking Practicum 2. Terug naar College 2: regressie met dummyvariabelen. Confounding en

Nadere informatie

Premaster Marketing Vrije Universiteit Amsterdam - Fac. der Economische Wet. en Bedrijfsk. - P Marketing - 2010-2011

Premaster Marketing Vrije Universiteit Amsterdam - Fac. der Economische Wet. en Bedrijfsk. - P Marketing - 2010-2011 Premaster Marketing Vrije Universiteit Amsterdam - - P Marketing - 2010-2011 Vrije Universiteit Amsterdam - - P Marketing - 2010-2011 I De premasteropleiding duurt maximaal één jaar en is bestemd voor

Nadere informatie

HOOFDSTUK 5 TOETSEN VAN HYPOTHESEN

HOOFDSTUK 5 TOETSEN VAN HYPOTHESEN Toetsen van hypothesen 1 HOOFDSTUK 5 TOETSEN VAN HYPOTHESEN 1. Inleiding...2 2. Beslissingsregels...5 2.1. Beslissen op grond van kritische grenzen...5 2.1.1. Het α-risico...6 2.1.2. Het β-risico...7 2.2.

Nadere informatie