Buiging van een belaste balk

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Buiging van een belaste balk"

Transcriptie

1 Buiging van een belaste balk (Modelbouw III) G. van Delft Studienummer: Tel.: juli 005

2 Doorbuigen van een balk Wanneer een men een balk op het uiteinde belast, dan zal deze balk ten gevolge van die belasting doorbuigen. Deze belasting kan op verschillende manieren worden uitgeoefend. Er kunnen zowel horizontaal als verticaal krachten worden uitgeoefend. Indien er horizontaal een kracht wordt uitgeoefend op het uiteinde van een reeds doorgebogen balk, dan is te verwachten dat de balk zal buigen. De vraag is alleen hoe zal deze balk buigen. In dit onderzoek zal geprobeerd worden een verband te bepalen tussen de doorbuiging van een balk, en de belasting. Er zullen hier verschillende gevallen bekeken worden. Ten eerste zal gekeken worden naar een (ongebogen) balk die verticaal op het uiteinde belast wordt. Vervolgens zullen we gaan kijken naar hetzelfde probleem, maar dan met een reeds doorgebogen balk. Verder zullen we onderzoeken wat er zal gebeuren indien een reeds doorgebogen balk horizontaal belast wordt.

3 Inhoud Doorbuigen van een balk... Inhoud... 3 Symbolenlijst... 4 Verticaal belaste balk... 5 Gebogen balk... 8 Horizontaal belaste balk... 0 Niet lineaire doorbuiging... 3 Conclusie... 7 Literatuurlijst

4 Symbolenlijst P Kracht op uiteinde N 0 van balk x Coördinaat langs de m lengte van de balk y Coördinaat langs de m hoogte van de balk ϕ Hoek rad R Kromtestraal m ε Rek l Lengte van balk m,0 E Elasticiteitsmodulus N / m,0 0 I Oppervlaktemoment 4 m M Moment Nm η Uitwijking m R 0 Initiële kromtestraal m 00 ψ Hoek rad s Coördinaat langs de lengte van de gebogen balk m

5 Verticaal belaste balk Om te beginnen zal er dus gekeken worden naar een balk die verticaal op het uiteinde wordt belast. De balk is hierbij loodrecht op een vaste wand ingeklemd. En op het uiteinde wordt een kracht P uitgeoefend. We zullen nu een model moeten gaan opstellen waarmee we de doorbuiging kunnen gaan bepalen. Hierbij zullen we gaan kijken naar de vervormingen in de balk. Door de belasting op het uiteinde van de balk zal de balk doorbuigen. De balk wordt dus vervormd. Doordat de balk doorbuigt zullen er vezels zijn die worden samengedrukt, en vezels die worden uitgerekt. Er zullen echter ook vezels zijn die niet vervormd worden. Het vlak waarin die vezels liggen wordt het neutrale vlak genoemd. Wij zullen ons coördinatenstelsel nu zo kiezen dat de x-as in het neutrale vlak zal komen te liggen (in onvervormde toestand). We zullen de buiging van de balk gaan bepalen aan de hand van de uitwijking van de neutrale lijn ten opzichte van de plaats in onvervormde toestand. We bepalen nu de rek ε bij vaste x en op een hoogte y boven het neutrale vlak. We gaan er hierbij vanuit dat de doorbuiging beschreven kan worden met een kromtestraal R ( x ). ε = ( ) R + y ϕ x x () 5

6 Hierbij is x gelijk aan de oorspronkelijke lengte van de vezel op hoogte y. Op de neutrale x = R x φ. Substitutie levert nu lijn veranderen de vezels niet van lengte, dus ( ) y ε = () R y σ We nemen nu aan dat ε de dominante spanningscomponent is. Dus ε = =. R E In ons probleem is er sprake van een statisch model. Er zal dus sprake moeten zijn van een krachtenevenwicht en van een momentenevenwicht. We zullen nu de breedte van de balk op hoogte y, b( y ) noemen. h h E σ b y dy = y b y dy = 0 ( ) ( ) (3) R h h h h E M = σ y b y dy = y b y dy ( ) ( ) (4) R h h Uit deze twee vergelijkingen kan het volgende worden afgeleid: M EI = (5) R Hierin is M het moment dat veroorzaakt wordt door de belasting op de balk. En I is gelijk aan de integraal in het rechterlid (van (4)). Tussen de kromtestraal en de uitwijking is het volgende verband af te leiden. ( η ( )) = + ( η ( )) arctan ' x R ' s ds d dx x 0 x d x R ( s ) ds dx 0 ( arctan ( η '( )) ) = + η '( ) η ''( x) ( η ( x) ) η ''( x) = + ( η '( x) ) + ' R R = + ' { } ( η ( x) ) 3 (6) In het geval van een doorgebogen balk is er verder sprake van een kleine helling, oftewel η ' x. Voor de uitwijking hebben we dan dus de volgende differentiaalvergelijking: ( ) M = EIη ''( x) (7) 6

7 In deze vergelijking zijn E en I constanten die door het probleem bepaald worden (bijvoorbeeld door het gebruikte materiaal van de balk). Het moment M kan worden berekend indien de kracht P bekend is. Om de differentiaalvergelijking op te lossen zijn nu twee randvoorwaarden nodig. In het punt waarop de balk is ingeklemd is er geen uitwijking, verder is daar ook de verandering van de uitwijking gelijk aan nul. ( ) ( ) η 0 = 0 dη dx 0 = 0 (8) Het is eenvoudig in te zien dat het moment gelijk is aan M = Pl. De differentiaalvergelijking kan nu opgelost worden door te integreren. Dit levert het volgende op: Pl η ( x) = x + Cx + C (9) EI Nu kunnen de constanten bepaald worden door gebruik te maken van de randvoorwaarden. Als oplossing voor de doorbuiging krijgen we dan dus: Pl η ( x) = x (0) EI We zullen nu aan de hand van een plotje laten zien hoe de buiging er volgens het gebruikte model zal komen uit te zien. We zullen hierbij (en ook in het vervolg) gebruik maken voor de volgende waarden: P = 0 N, l =.0 m, E =.0 0 N / m, I = m Gekozen is voor een houten balk, met een lengte van m. De hoogte van de balk is 3cm genomen, en de breedte 5cm. Dit levert op dat I gelijk is aan de bovengenoemde waarde. Verder is hier de elasticiteitsmodulus voor hout gebruikt. De kracht P is ongeveer overeenkomstig met een gewicht van kg op het uiteinde van de balk. 7

8 Gebogen balk Het probleem zal nu worden uitgebreid. In plaats van te kijken naar een gewone blak, zullen we nu gaan kijken naar een balk die reeds doorgebogen is. De belasting zal wel weer verticaal op het uiteinde van de balk worden uitgeoefend. We zullen uitgaan van een initiële buiging waarbij de kromtestraal wordt gegeven door R 0. Om de doorbuiging bij dit probleem te bepalen zullen we op dezelfde manier te werk gaan als in het geval van een ongebogen balk. Eerst zal de rek ε berekend worden. De rek zal in dit geval niet meer hetzelfde zijn als in het voorgaande probleem. We voeren nu een constante ψ in. R ϕ = R0 ψ ε kan nu bepaald worden. ε ( R y) ϕ ( R0 y) ( ) ψ + + ψ = = y R0 + y R R0 () We hebben nu dus het volgende gevonden voor de rek: ε y = R R 0 () Indien we dit vergelijken met de rek gevonden bij het vorige probleem, (), dan is te zien dat er niet veel verschil is. Hierdoor kan er nu een groot gedeelte van de berekeningen uit het probleem met een ongebogen balk gebruikt worden. Op deze manier krijgen we de volgende differentiaalvergelijking voor de buiging: M = EI η ''( x) R0 (3) Het zal duidelijk zijn dat hier nog steeds dezelfde randvoorwaarden gelden. Dus ook deze differentiaalvergelijking kan weer opgelost worden door te integreren. Pl η ( x) = x + C x + C EI R0 (4) 8

9 Nu kunnen met behulp van de randvoorwaarden de constanten worden bepaald. Dit levert opc = C = 0. η Pl EI R0 ( x) = x (5) Hier volgt nu nog een plotje behorende bij de gevonden oplossing. Hier is gebruik gemaakt 0 van dezelfde waarden als in de vorige plot ( P = 0 N, l =.0 m, E =.0 0 N / m, I 8 4 = m ). Verder zullen we kiezen R0 00 = m. --- Initiële doorbuiging --- Doorbuiging na belasting 9

10 Horizontaal belaste balk Er zal nu gekeken worden naar het effect van een horizontale belasting. Hierbij wordt weer verondersteld dat de balk reeds gebogen is. Ten opzichte van het vorige model is dus alleen de kracht veranderd. En doordat de kracht anders wordt uitgeoefend is hier ook het moment veranderd. De rest van het model is echter hetzelfde gebleven. We zullen dus het model uit het vorige probleem moeten gebruiken dat (3), en hierbij het moment voor het geval met horizontale belasting bepalen. Het moment is gelijk aan kracht maal arm. Voor het geval waarin de doorgebogen balk horizontaal belast wordt, krijg je dus voor een vaste x het volgende moment: ( ) ( ) η ( ) η ( ) M x = P x l (6) Nu kan er weer naar de differentiaalvergelijking gekeken worden. EIη ''( x) + Pη ( x) = Pη ( l) EI (7) R 0 Gelijk is te zien dat hier niet zomaar geïntegreerd kan worden. Aan de rechterkant van de vergelijking staat nu dus nog een term die afhankelijk is van η. Deze term is echter wel constant. Er kan dus gedifferentieerd worden om die term kwijt te raken. d d ( EIη ''( x) + Pη ( x) ) = Pη ( l) EI dx dx R0 (8) P η ''' ( x) + η '( x) = 0 EI (9) Nu hebben we dus een derde orde differentiaalvergelijking gekregen. Om dit op te lossen zijn er drie randvoorwaarden nodig. Twee daarvan zijn al bekend (de eerder gebruikte randvoorwaarden). Er is dus nog één extra randvoorwaarde nodig. 0

11 We zullen hiervoor naar het uiteinde van de balk kijken. We kunnen constateren dat het moment aan het uiteinde van de balk gelijk is aan nul (zie (6)). Als we nu naar vergelijking (7) gaan kijken, dan is te zien dat η ''( l) = (0) R 0 We hebben nu dus drie randvoorwaarden, en dus kan de differentiaalvergelijking opgelost ax gaan worden. We zullen nu als oplossing η ( x) e gaan proberen. Dit levert het volgende op P = ''' ( x) + '( x) = 0 EI 3 ax ax ax a e + α ae = 0, e 0 α η α η a + α = 0 a = ± αi Het is bekend dat ix e α gelijk is aan ( α ) sin ( α ) αix e = cos x + i x () We zullen daarom veronderstellen dat de oplossing bestaat uit een sinus, een cosinus en een constante. ( ) cos( ) sin ( ) η x = A α x + B α x + C () Vervolgens kunnen we de constanten gaan bepalen met behulp van de randvoorwaarden. α = 0 P = 0 Dit geeft geen informatie(beginsituatie) η '( 0) = 0 = Bα B = 0 η ''( l) = Acos( l) A R = α α R α cos αl = 0 0 ( ) η ( 0) = 0 = + C C = R α cos αl R α αl ( ) cos ( ) 0 0 De doorbuiging is nu dus bepaald, en dus kan er weer gekeken worden naar een plotje (zie volgende pagina).

12 --- Initiële doorbuiging --- Doorbuiging na belasting Te zien is dat er vrijwel geen verschil is tussen de initiële doorbuiging, en de doorbuiging in het geval dat de balk belast is. Dit kan verklaard worden doordat in dit geval het moment een stuk kleiner is ten opzichte van het model waarin de balk verticaal belast werd. Om het verschil iets duidelijker te maken is er nog een plot gemaakt, nu met een kleinere straal R 0 (0 m), en een grotere kracht P (00 N).

13 Niet lineaire doorbuiging Tot slot zullen we ook nog gaan kijken naar het geval waarin de doorbuiging niet lineair wordt verondersteld. De balk zal hierbij nog steeds een initiële doorbuiging hebben, en de belasting zal ook weer horizontaal uitgeoefend worden. De buiging zal nu op de volgende manier aangeduid worden. We gaan nu over van een coördinatenstelsel met x en y naar een coördinatenstelsel met s en dϕ ϕ. Te zien is dat Rdϕ = ds R = ds. Dit kan gesubstitueerd worden in (). Waarna eenvoudig de volgende differentiaalvergelijking kan worden afgeleid. dϕ dψ M = EI = EI ds R ds R 0 0 (3) Het moment wordt op een soortgelijke manier als bij de doorgebogen balk bepaald. Alleen moet er in dit geval een integraal berekend worden om de arm te bepalen. s e ( ψ ( )) M = P sin s ' ds ' (4) s Dit kan vervolgens weer gesubstitueerd worden in de differentiaalvergelijking (3), en gedifferentieerd worden. dψ d d ψ P sin ( ψ ( s) ) = EI = EI ds R0 ds ds (5) 3

14 Nu kunnen beide kanten van de vergelijking vermenigvuldigd worden met dψ ds. De nu verkregen vergelijking kan herschreven worden tot: ( cos ( ψ ( ))) d d dψ P s EI ds ds ds = (6) Deze vergelijking kan nu geïntegreerd worden. Vervolgens kan de wortel getrokken worden om het kwadraat kwijt te raken. ( P ψ C ) dψ cos = + (7) ds EI d Merk hierbij op dat de wortel positief moet zijn doordat er geldt ψ > 0. Bij het probleem dat we aan het bekijken zijn is ψ erg klein. Daardoor kan cosψ worden benaderd door cosψ ψ. Nu zal de differentiaalvergelijking worden herschreven om gebruik te gaan maken van: ds d dx ( arcsin ( ax) ) = a a x (8) Na enig rekenwerk is eenvoudig te zien dat dψ ds ( P( ψ ) C) EI ( P C) Pψ ( P C ) EI EI ( P C ) = ( ) P C P = ψ EI P C ( ) dψ P ( P C ) ψ ( P C ) EI ds (9) Door te integreren krijgen we nu: ( P C) P P arcsin ψ s + C ( P C ) ( P C ) EI (30) 4

15 Na enige stappen volgt hieruit dat P ψ sin s C P + EI ( P C) (3) Nu moeten de randvoorwaarden weer gebruikt worden om de constanten te bepalen. Er zijn twee randvoorwaarden nodig. Ten eerst staat de balk loodrecht op de wand. Dit betekent dat: ψ 0 = 0 ( ) Voor de tweede randvoorwaarde moeten we weer gebruik maken van het feit dat het moment gelijk aan nul is op het uiteinde van de balk. Uit vergelijking (3) volgt hierdoor dat er geldt dψ ds ( se ) R0 = (3) Als we nu de eerste randvoorwaarde gebruiken is te zien dat er moet gelden C = kπ. Oftewel d k = 0 of k =. Nu kunnen we weer gebruik maken van het feit dat er geldt dat ψ > 0. Hieruit volgt dat k = 0 en dus C = 0. Merk nu op dat de afgeleide van ψ gelijk is aan ds P dψ EI P cos s ds P EI ( P C ) (33) Uit de tweede randvoorwaarde volgt nu EI C = + P P R0 cos l EI (34) De functie ψ is nu dus bekend, en dus kan de buiging van de balk berekend worden. Hierbij gebruiken we dat de buiging gelijk is aan: x ( ) sin ( ψ ( )) η x s ds = 0 5

16 Als we nu een plot maken dan krijgen we het volgende te zien Indien we deze grafiek nu vergelijken met de grafiek van het geval waarin we de doorbuiging lineair werd verondersteld, dan is er vrijwel geen verschil te zien. Hieruit kunnen we afleiden dat het model met lineaire doorbuiging een goede benadering is. 6

17 Conclusie Met behulp van enkele benaderingen hebben we een uitwijking kunnen bepalen voor de balk onder belasting. Te zien was dat de uitwijking in het geval van een horizontale belasting een stuk kleiner was dan in het geval van een verticale belasting. Dit is in overeenstemming met de verwachtingen. Verder hebben we ook kunnen zien dat de lineaire benadering vrij goed lijkt te zijn. Om tot nog betere resultaten te komen, zou ervoor gekozen kunnen worden nog minder concessies te doen aan het model, en numerieke methoden te gaan gebruiken bij het bepalen van de oplossing van de gevonden differentiaalvergelijkingen. Verder zou het ook interessant kunnen zijn de resultaten te vergelijken met resultaten verkregen door praktische experimenten. Dit om te zien of de gebruikte modellen inderdaad bruikbaar zijn. 7

18 Literatuurlijst [MECH] DR. IR. C. KORVING EN IR. H.F.M CORSTENS, Mechanica van continue media I, januari 00 8

1 Uitwendige versus inwendige krachten

1 Uitwendige versus inwendige krachten H1C8 Toegepaste mechanica, deel FORMULRIUM STERKTELEER 1 G. Lombaert en L. Schueremans 1 december 1 1 Uitwendige versus inwendige krachten Relaties tussen belasting en snedekrachten: n(x) = dn p(x) = dv

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7.

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7. Drs. J.H. Blankespoor Drs.. de Joode Ir. A. Sluijter Toegepaste wiskunde voor het hoger beroepsonderwijs Deel Derde, herziene druk herhalingsopgaven hoofdstuk 7 augustus 009 HBuitgevers, Baarn Toegepaste

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Module 5 Uitwerkingen van de opdrachten

Module 5 Uitwerkingen van de opdrachten Module 5 Uitwerkingen van de opdrachten Opdracht 1 Deze oefening heeft als doel vertrouwd te raken met het integreren van de diverse betrekkingen die er bestaan tussen de belasting en uiteindelijk de verplaatsing:

Nadere informatie

TOEGEPASTE MECHANICA 6 1 e Jaar. Ir J.W. (Hans) Welleman Universitair docent TU-Delft, Civiele Techniek, Constructiemechanica

TOEGEPASTE MECHANICA 6 1 e Jaar. Ir J.W. (Hans) Welleman Universitair docent TU-Delft, Civiele Techniek, Constructiemechanica blad nr 1 TOEGEPASTE MECHANICA 6 1 e Jaar Docent : Ir J.W. (Hans) Welleman Universitair docent TU-Delft, Civiele Techniek, Constructiemechanica e-mail : j.w.welleman@hetnet.nl URL : http://go.to/jw-welleman

Nadere informatie

Voorbeeld 1: Oneindig diepe potentiaalput

Voorbeeld 1: Oneindig diepe potentiaalput Voorbeeld : Oneindig diepe potentiaalput In de onderstaande figuren bevindt zich een deeltje in een eendimensionale ruimte tussen x 0 en x a. Binnen dat gebied is de potentiële energie van het deeltje

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets 07-0 versie C Mechanica - Sterkteleer - HWTK PROEFTOETS- 07-0-versie C - OPGAVEN en UITWERKINGEN.doc 1/16 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER!

Nadere informatie

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008 Wiskunde 007- //008 Vraag Veronderstel dat de concentraties in het bloed van stof A en van stof B omgekeerd evenredig zijn en positief. Als de concentratie van stof A met p % toeneemt, dan zal de concentratie

Nadere informatie

Wiskunde krachten als vectoren oefeningensessie 1 Bron: Wiskunde in de bouw Jos Ariëns, Daniël Baldé

Wiskunde krachten als vectoren oefeningensessie 1 Bron: Wiskunde in de bouw Jos Ariëns, Daniël Baldé Wiskunde krachten als vectoren oefeningensessie 1 Bron: Wiskunde in de bouw Jos Ariëns, Daniël Baldé Oefening 1 Een groot nieuw brugdek van 40m lang moet over een rivier geplaatst worden. Eén kraan alleen

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Examen Klassieke Mechanica Herbert De Gersem, Eef Temmerman 23 januari 2009, academiejaar 08-09 IW2 en BIW2 NAAM: RICHTING: vraag 1 (/4) vraag 2 (/4) vraag 3 (/5) vraag 4 (/4) vraag 5 (/3) TOTAAL (/20)

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

Bepaalde Integraal (Training) Wat reken je uit als je een functie integreert

Bepaalde Integraal (Training) Wat reken je uit als je een functie integreert Bepaalde Integraal (Training) WISNET-HBO update april 2009 Wat reken je uit als je een functie integreert De betekenis van de integraal is een optelling van uiterst kleine onderdelen. In dit voorbeeld

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early Transcendental Functions Robert T. Smith,

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Eindexamen wiskunde B pilot havo II

Eindexamen wiskunde B pilot havo II Mosselen Driehoeksmosselen (zie de foto) kunnen een bijdrage leveren aan de vermindering van de hoeveelheid algen in het water. Zij filteren het water. De hoeveelheid gefilterd water in ml/uur noemen we

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

M-V-N-lijnen Nadruk op de differentiaalvergelijking. Hans Welleman 1

M-V-N-lijnen Nadruk op de differentiaalvergelijking. Hans Welleman 1 M-V-N-lijnen Nadruk op de differentiaalvergelijking Hans Welleman 1 Uitwendige krachten 50 kn 120 kn 98,49 kn 40 kn 40 kn 30 kn 90 kn 4,0 m 2,0 m 2,0 m werklijnen van de reactiekrachten Hans Welleman 2

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30 TENTAMEN DYNAMICA (14030) 9 januari 010, 9:00-1:30 Verzoek: begin de beantwoording van een nieuwe vraag op een nieuwe pagina. En schrijf duidelijk: alleen leesbaar en verzorgd werk kan worden nagekeken.

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h Eindexamen vwo wiskunde B 0 - II Een regenton maximumscore 5 h V= ( rx ( )) d x 0 00 ( rx ( )) ( 5 5x 5x ) = + Een primitieve van 5+ 5x 5x is 5x+ 7 x 5x Dus = ( 5 + 7 5 ) V h h h 00 V = h+ h h = h+ h h

Nadere informatie

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme Wiskunde voor kunstmatige intelligentie, 006 Les Speciale functies We ebben in de vorige les een aantal elementaire functies bekeken en iervoor gezien oe we deze functies kunnen afleiden. In wezen waren

Nadere informatie

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Bewerkingen met krachten

Bewerkingen met krachten 21 Bewerkingen met krachten Opgeloste Vraagstukken 2.1. Bepaal het moment van de kracht van 2N uir Fig. 2-3 rond het punt O. Laat de loodrechte OD neer vanuit O op de rechte waarlangs de kracht van 2N

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30 Tentamen WISN11 Wiskundige Technieken 1 Ma 7 nov 16 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Eindexamen vwo wiskunde B pilot 2013-I

Eindexamen vwo wiskunde B pilot 2013-I Eindeamen vwo wiskunde pilot 03-I Formules Goniometrie sin( t u) sintcosu costsinu sin( t u) sintcosu costsinu cos( t u) costcosu sintsinu cos( t u) costcosu sintsinu sin( t) sintcost cos( t) cos t sin

Nadere informatie

Analyse 1 November 2011 Januari 2011 November 2010

Analyse 1 November 2011 Januari 2011 November 2010 WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Eindexamen havo wiskunde B pilot 0-II Beoordelingsmodel Windenergie maximumscore Als de 60 000 gigawattuur windenergie 0% van het totaal is, dan is de voorspelde totale energiebehoefte maximaal Het totaal

Nadere informatie

Examen HAVO. wiskunde B1,2

Examen HAVO. wiskunde B1,2 wiskunde 1, Examen HVO Hoger lgemeen Voortgezet Onderwijs ijdvak 1 Vrijdag 19 mei 1.0 16.0 uur 0 06 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit vragen. Voor elk vraagnummer

Nadere informatie

Examen mechanica: oefeningen

Examen mechanica: oefeningen Examen mechanica: oefeningen 22 februari 2013 1 Behoudswetten 1. Een wielrenner met een massa van 80 kg (inclusief de fiets) kan een helling van 4.0 afbollen aan een constante snelheid van 6.0 km/u. Door

Nadere informatie

Tentamen Toegepaste elasticiteitsleer (4A450)

Tentamen Toegepaste elasticiteitsleer (4A450) Tentamen Toegepaste elasticiteitsleer (4A450) Datum: 3 juni 003 Tijd: 4:00 7:00 uur Locatie: Hal Matrixgebouw Dit tentamen bestaat uit drie opgaven. Het gebruik van het dictaat, oefeningenbundel en notebook

Nadere informatie

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen?

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen? Vraag Een vloeistoftank met onbeperkte capaciteit, bevat aanvankelijk V liter zuiver water. Tijdens de eerste faze stroomt water, dat zout bevat met een concentratie van k kilogram per liter, de tank binnen

Nadere informatie

Eindexamen wiskunde B havo I

Eindexamen wiskunde B havo I Eindexamen wiskunde B havo 00 - I Beoordelingsmodel Diersoorten maximumscore = 00 0,0 = 800 0,50 00 Dus = 5 maal zo groot 800 of Volgens de formule is er een omgekeerd kwadratisch verband Als de lengte

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Vliegende parkieten Opgave 1. Het energieverbruik van de parkiet als deze vliegt met

Nadere informatie

Aanwijzingen bij vraagstukken distributies

Aanwijzingen bij vraagstukken distributies Aanwijzingen bij vraagstukken distributies Vraagstuk 9.7 Voor het eerste deel, test x x + iε 1 met een testfunctie. Voor het laatste deel: vind eerst bijzondere oplosssingen door de gesuggereerde procedure

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Opgaven bij Numerieke Wiskunde I

Opgaven bij Numerieke Wiskunde I Opgaven bij Numerieke Wiskunde I 7 november 8 1. (a) Gegeven verschillende interpolatiepunten x, x 1, x [a, b], en getallen y, y 1, y, z 1, toon aan dat er hooguit 1 polynoom p P 3 is met p(x i ) = y i,

Nadere informatie

Blz 64: Figuur De rondjes in de scharnierende ondersteuningen horen onder de doorgaande ligger te worden getekend.

Blz 64: Figuur De rondjes in de scharnierende ondersteuningen horen onder de doorgaande ligger te worden getekend. lgemene opmerking De zetter heeft bij de formuleopmaak in uitwerkingen veelal geen cursieve l gebruikt voor de lengte maar l. Dit is een storend probleem want hiermee is het onderscheid met het getal 1

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Over de functies arcsin, arccos en arctan

Over de functies arcsin, arccos en arctan Over de functies arcsin, arccos en arctan Booglengte figuur figuur De grafiek van een functie f tussen twee punten P (met a) en Q (met b) kan worden opgedeeld in stukjes die kunnen worden opgevat als lijnstukken,

Nadere informatie

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur Tentamen Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April 2014 Tijd/tijdsduur: 3 uur Docent(en) en/of tweede lezer: Dr. F.C. Grozema Prof. dr. L.D.A. Siebbeles Dit tentamen bestaat uit 5 opgaven:

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Examen HAVO. tijdvak 1 vrijdag 19 mei uur

Examen HAVO. tijdvak 1 vrijdag 19 mei uur Examen HVO 2017 tijdvak 1 vrijdag 19 mei 13.30-16.30 uur oud programma wiskunde Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel

Nadere informatie

Uitwerkingen van de opgaven uit Pi

Uitwerkingen van de opgaven uit Pi Uitwerkingen van de opgaven uit Pi Frits Beukers January 3, 2006 Opgave 2.3. Bedoeling van deze opgave is dat we alleen een schatting geven op grond van de gevonden tabel. Er worden geen bewijzen of precieze

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur Toets 3 Calculus voor MST, 450CALCY donderdag 20 oktober 206; 3:30-5:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Volgt de lessen bij: (Leids) studentnummer: A (Keijzer)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Gegeven de starre balk in figuur 1. Op het gedeelte A D werkt een verdeelde belasting waarvoor geldt: Figuur 1: Opgave 1.

Gegeven de starre balk in figuur 1. Op het gedeelte A D werkt een verdeelde belasting waarvoor geldt: Figuur 1: Opgave 1. Universiteit Twente Faculteit Construerende Technische Wetenschappen Opleidingen Werktuigbouwkunde & Industrieel Ontwerpen Kenmerk: CTW.3/TM-573 ONDERDEEL : Statica DATUM : 5 november 03 TIJD : 3:45 5:30

Nadere informatie

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen:

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: e 00

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Het Doorbuigen van een Dunne Plaat. door Menno van der Ploeg

Het Doorbuigen van een Dunne Plaat. door Menno van der Ploeg Het Doorbuigen van een Dunne Plaat door Menno van der Ploeg Inhoudsopgave Inleiding 2 Natuurkundige Afleiding van de Dunne Plaat Vergelijking 2 2. De Stress en de Strain Tensor.........................

Nadere informatie

Calculus I, 23/11/2015

Calculus I, 23/11/2015 Calculus I, /11/015 1. Beschouw de functie met a, b R 0. f = a + b + lne a Benoem het domein van de functie f. b Bepaal a en b zodat de rechte y = 1 een schuine asymptoot is voor f. c Voor a = en b = 1,

Nadere informatie

THEMA IS BEZWIJKEN HET BEREIKEN VAN DE VLOEIGRENS?

THEMA IS BEZWIJKEN HET BEREIKEN VAN DE VLOEIGRENS? CTB3330 : PLASTICITEITSLEER THEMA IS BEZWIJKEN HET BEREIKEN VAN DE VLOEIGRENS? M M - N N + + σ = σ = + f f BUIGING EXTENSIE Ir J.W. Welleman bladnr 0 kn Gebruiksfase met relatief geringe belasting WAT

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

VORtech Computing. Experts in Technisch Rekenwerk MEMO. Verwerking van diagonale overlaten in WAQUA. BvtH/M08.079. Onderwerp. Documentinformatie

VORtech Computing. Experts in Technisch Rekenwerk MEMO. Verwerking van diagonale overlaten in WAQUA. BvtH/M08.079. Onderwerp. Documentinformatie Experts in Technisch Rekenwerk Postbus 260 2600 AG DELFT MEMO Datum Auteur(s) Onderwerp BvtH/M08.079 24-nov-2008 Bas van 't Hof Verwerking van diagonale overlaten in WAQUA tel. 015-285 0125 fax. 015-285

Nadere informatie

Examen havo wiskunde B 2016-I (oefenexamen)

Examen havo wiskunde B 2016-I (oefenexamen) Examen havo wiskunde B 06-I (oefenexamen) De rechte van Euler Gegeven is cirkel c met middelpunt (, ) p Stel een vergelijking op van c. De punten B(, 0) en ( 4, 0) M die door het punt A( 0, 4) C liggen

Nadere informatie

11.1 De parabool [1]

11.1 De parabool [1] 11.1 De parabool [1] Algemeen: Het punt F heet het brandpunt van de parabool. De lijn l heet de richtlijn van de parabool. De afstand van F tot l heet de parameter van de parabool. Defintie van een parabool:

Nadere informatie

4. NUMERIEKE INTEGRATIE

4. NUMERIEKE INTEGRATIE 4. NUMERIEKE INTEGRATIE Uit het voorgaande is gebleken dat oppervlakken, volumina, zwaartepunten, statische momenten etc. een belangrijke rol spelen in de beschouwingen aangaande het evenwicht van drijvende

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

S3 Oefeningen Krachtenleer Hoofdstuk II II-3. II-3 Grafisch: 1cm. II-3 Analytisch. Sinusregel: R F 1

S3 Oefeningen Krachtenleer Hoofdstuk II II-3. II-3 Grafisch: 1cm. II-3 Analytisch. Sinusregel: R F 1 S3 Oefeningen Krachtenleer Hoofdstuk II II-3 Bepaal grafisch en analytisch de richting en grootte van de resultante, in volgende gevallen; F 1 = 4 kn F = 7 kn : 1) α = 30 ) α = 45 F 1 3) α = 90 α 4) α

Nadere informatie

Functies van één veranderlijke 191512600

Functies van één veranderlijke 191512600 Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /40 Elektrotechniek, Wiskunde en Informatica EWI Partieel Breuksplitsen a0 x m C a x m C C a m x C a m

Nadere informatie

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries)

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries) Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017 Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer) / B

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

Nauwkeurige dieptemetingen

Nauwkeurige dieptemetingen Nauwkeurige dieptemetingen overwegingen & een methode drs. ir. Eric Weijters www.weijters.net Het inmeten van een wrakveld Een in onze Nederlandse wateren goed bruikbare methode om scheepswrakken in te

Nadere informatie

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1 Eindexamen wiskunde B havo 0 - II Beoordelingsmodel Tonregel van Kepler maximumscore 6 G = B = π 9 ( 64) (cm ) Voor de cirkel op halve hoogte geldt: πr = (met r de straal van de cirkel in cm) Hieruit volgt

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-I

Eindexamen wiskunde B1-2 havo 2008-I Steeds meer vlees In wordt voor de periode 1960-1996 zowel de graanproductie als de vleesproductie per hoofd van de wereldbevolking weergegeven. Hiervoor worden twee verticale assen gebruikt. De ronde

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

Small Sample Emission Computer Tomography. G.P. Leendertse. ECN-Energie Engineering

Small Sample Emission Computer Tomography. G.P. Leendertse. ECN-Energie Engineering Small Sample Emission Computer Tomography G.P. Leendertse ECN-Energie Engineering Maart 1994 Chapter 1 Inleiding Bij de borium therapie is het van belang om vast te stellen hoe de concentratieverdeling

Nadere informatie

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8,

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8, UITWERKINGEN TENTAMEN DIFFERENTIËREN EN INTEGREREN 20 OKTOBER 2008. a) f(x) < is equivalt aan < f(x)

Nadere informatie

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 6

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 6 Drs. J.H. Blankespoor Drs. C. de Joode Ir. A. Sluijter Toegepaste wiskunde voor het hoger beroepsonderwijs Deel Derde, herziene druk Uitwerking herhalingsopgaven hoofdstuk 6 HBuitgevers, Baarn Toegepaste

Nadere informatie

Practicum Torsiebalans

Practicum Torsiebalans Practicum Torsiebalans Patrick Aeschlimann Yves Henri Nzakamwita Pieter Verbeirens 25 april 2013 1 Inleiding In dit practicum bestuderen we elastische vervormingen in vaste lichamen, hiervoor zullen we

Nadere informatie

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie