Bewerkingen met krachten

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Bewerkingen met krachten"

Transcriptie

1 21 Bewerkingen met krachten Opgeloste Vraagstukken 2.1. Bepaal het moment van de kracht van 2N uir Fig. 2-3 rond het punt O. Laat de loodrechte OD neer vanuit O op de rechte waarlangs de kracht van 2N ageert. Volgens de gegeven schaal is de lengte ervan 4,33 m. Het moment van de kracht rond O (en in feite is dit rond een as door O loodrecht op het xy-vlak) is daarom (2 4,33) = - 86,6 Nm.

2 22 Fig. 2-3 Fig. 2-4 Het minteken werd gebruikt om de richting van de draaiing de wijzerzin is Los Vraagstuk 2.1 op met behulp van de stelling van Varignon. Zie Fig De toepassing van deze stelling bestaat erin de kracht van 2N te verschuiven langsheen de rechte waarlangs ze ageert zodat de x- of y-component eenvoudig wordt. Als het punt B gekozen wordt op de x-as, dan is het duidelijk dat de x-component geen moment veroorzaakt rond O. Het moment van de kracht van 2N rond O is dan gelijk aan het moment van de y- component rond O, of (17,32 5) = -86,6 Nm. Als het punt A gekozen wordt op de y-as, dan veroorzaakt de y-component geen moment rond O. Het moment van de kracht van 2N rond O is dan gelijk aan het moment van de x-component rond O, of (1 8,66) = -86,6 Nm Een kracht van 1N is gericht langs een rechte vanaf het punt waarvan de (x, y, z)-coördinaten (2,, 4)m zijn tot het punt met coördinaten (5, 1, 1)m. Wat zijn de momenten van deze kracht rondom de x, y, en z- as? In Fig. 2-5 veronderstellen we dat de schaal zo is dat de 1N-kracht gegeven wordt door de diagonaal van het parallellepipedum waarvan de zijden evenwijdig zijn met de coördinaatassen. De zijden stellen hierbij in dezelfde schaal de componenten van de kracht voor. Fig. 2-5

3 23 De x zijde is 5 2 = 3m lang; de y zijde is 1 = 1m lang en de z zijde is 1 4 = -3m lang. Dit betekent dat de component F z gericht is naar achteren of langs de negatieve richting van de z-as. lengte van de x zijde 3 3 F x = 1N = 1N = 1N = 68,7N. lengte van de diagonaal Op dezelfde wijze, is F y = 1N = 22,9N, Fz = 1N = 68,7N Om het moment van de 1N-kracht te vinden om de x-as, bepalen we de momenten van de componenten rondom de x-as. Een aanblik toont dat de enige component die zulk een moment heeft F y is. Daarom is F y voor de 1N-kracht het moment van F y rond de x-as en is die gelijk aan -22,9 4 = -91,6Nm. Het minteken toont dat de draaiing van F y in wijzerzin gaat rond de x-as. Om het moment om de y-as te bepalen, moet worden opgemerkt F y evenwijdig is aan de y-as en dus geen moment heeft rondom die as. Nu moeten zowel F z en F y worden beschouwd. Het is eenvoudiger om het teken te bepalen door directe aanschouwing dan door het schrijven van tekens voor de componenten en de arm. Op deze wijze komt er: M y = + (68,7 2) + (68,7 4) = 412Nm. Op dezelfde wijze volgt door alleen F y te gebruiken (vermits F z evenwijdig is aan de z-as en F x die snijdt): M z = + (22,9 2) = 45,8Nm. Let er op om tekens toe te kennen aan de momenten en de betekenis ervan te verstaan Herhaal Vraagstuk 2.3 door gebruik te maken van de vectorproductdefinitie van een moment. In Vraagstuk 2.3 is F = 68,7i + 22,9j - 68,7k. Stel dat de vector r de positievector voorstelt van een willekeurig punt langsheen de rechte waarlangs F ageert met respect tot de oorsprong. Als we het punt (2,, 4) gebruiken, dan is r = 2i + j + 4k. Dan is M = r F = r i 2 68,7 r j 22,9 r k 4 68,7 = [ 4(22,9)]i - [2(-68,7) 4(68,7)]j + [2(22,9) - ]k = 91,6i + 412j + 45,8k Nm. Vervolgens gebruiken we het punt (5, 1, 1) op de rechte waarlangs F ageert: r = 5i + j + k. Dus M = 5 68,7 1 22,9 1 68,7 = [-1(68,7) 1(22,9)]i - [5(-68,7) 1(68,7)]j + [5(22,9) 68,7(1)]k = 91,6i + 412j + 45,8k Nm. De momenten om de x-, y-, en z-as zijn de coëfficiënten van de eenheidsvectoren, i, j en k Bepaal het moment van de kracht F = 2i + 3j k N agerend op het punt (3, 1, 1) omheen de lijn door (2, 5, -2) en (3, -1, 1). De coördinaten zijn gegeven in m. De momentenarm r kan gevonden worden door een vector naar gelijk welk punt te gebruiken op de lijn van de kracht. Met (2, 5, -2) wordt dit de vector r = i - 4j + 3k. Het moment M rond het gekozen punt is M = r F = = 5i + 7j + 11k 1

4 24 (3 2) i + ( 1 5) j + (1 + 2) k Nu is e L = = (1) + ( 6) + (3) i 6 j + 3k 46 En dus is het moment van F rondom de rechte: M L = M. e L = ( 5i + 7j + 11k). i 6 j + 3k = = = 2,6 Nm Als de arm voor het moment gekozen wordt vanuit het punt (3, -1, 1), is de arm r = 2j. Het moment M is: M = r F = 2 = 2i - 4k Dus is het moment van M langs de rechte M. e L = ( 2i + j - 4k). i 6 j + 3k = = = 2,6 Nm Bepaal het moment van een kracht P waarvan de componenten zijn P x =22 N, P y =23 N, P z =7 N, en agerend op het punt (1, -1, -2). Neem het moment om de rechte vanuit de oorsprong door het punt (3, -1, ). De coördinaten zijn gegeven in m. P = 22i + 23j + 7k N De momentenarm is = (1 - )i + (-1 - )j + (-2 - )k m. M = r F = = 39i - 51j - 45k N. m Een momentenkoppel van +6Nm ageert in een vlak. Duidt dit koppel aan met (a) krachten van 1N en (b) krachten van 3N. In het geval van (a) moet de momentenarm 6m zijn, terwijl het in het geval (b) 2m moet zijn. De richting van de draaiing moet tegenwijzerzin zijn. De evenwijdige krachten mogen onder gelijk welke hoek getekend worden, zoals getoond in Fig Fig. 2-6 Fig Combineer het koppel C 1 = +2 N. m met het koppel C 2 = -5 N. m, beide in het zelfde vlak. Zie Fig. 2-7.

5 25 Om beide grafisch te combineren, kan men beide koppels uitdrukken met krachten van een zelfde grootte, bijvoorbeeld 1N, en een zodanige tekening maken dat twee van de krachten, waaronder één van elk koppel, collineair zijn maar in tegenovergestelde zin. Het spreekt vanzelf dat collineaire krachten elkaar opheffen, zodat twee krachten van 1N met een arm van 3m overblijven. Het resulterende koppel is -3N. m, en dit resultaat kan ook verkregen worden door een algebraïsche optelling Vervang een met een moment van -1 N. m en een verticale kracht van 5 N, agerend in de oorsprong, door één enkele kracht. Waar oefent deze enkele kracht zich dan uit? In Fig. 2-8 wordt het koppel voorgesteld door twee gelijke maar tegengestelde krachten van 5N op een afstand van 2m. Een kracht van het koppel is gericht volgens de gegeven 5N-kracht in de oorsprong. Deze twee krachten annuleren elkaar en laten een enkele naar boven gerichte kracht van 5N over, die zich op 2m links van de oorsprong uitoefent. Fig Combineer een kracht van 3 N, 6 met een +5N. m koppel in het zelfde vlak. Zie Fig Zo n koppel kan niet tot een eenvoudiger stelsel worden herleid, maar het kan worden gecombineerd met een andere kracht. Teken het gegeven koppel met 3-N-krachten en op zulke wijze dat een van de krachten collineair is met de gegeven enkele kracht van 3N maar in tegengestelde zin. Het blijkt dat de collineaire krachten elkaar opheffen, en dit laat een enkele kracht van 3N over evenwijdig aan en in de zelfde richting als de oorspronkelijke kracht maar op een afstand van 1,67m. Fig. 2-9 Fig. 2-1

6 Zoals getoond in Fig. 2-1, ageert een koppel C 1 van 2N. m in het xy-vlak, een koppel C 2 van 4N. m in het yz-vlak, en een koppel C 3 van -55N. m in het xz-vlak. Bepaal het resulterende koppel. Het koppel C 1 is positief en ageert in het xy-vlak. Gezien vanuit de positieve zin van de z-as, geeft het de indruk een draaiing te weeg te brengen in tegenwijzerzin rond de z-as. Door de regel van de rechterhand, wordt het voorgesteld door een vector langs de z-as in de positieve richting. Op deze wijze worden alle drie koppels in de figuur getekend. Door de vectoren op te tellen komt er dan: C = C 1 + C2 + C3 = ( 2) + (4) + ( 55) = 7,9 N. m. cos φ x = C 2 /C = +,564 cos φ y = C 3 /C = +,777 cos φ z = C 1 /C = +,282 Dit zijn de cosinusrichtingen van het koppel C. Het koppel ageert in een vlak loodrecht op deze vector. Het koppel C wordt als volgt geschreven in vectornotatie: C = + 4i - 55j + 2k N. m. waaruit ook de waarde van C volgt zoals hierboven Een pijp van 2cm diameter wordt onderworpen aan een kracht van 25N, die verticaal toegepast wordt op een horizontale staaf met een arm van 14cm. Vervang de 25N door (1) een kracht op het einde van de pijp om die de buiging te veroorzaken en (2) een koppel die de pijp doet draaien en het een torsie te geven. Wat zijn de momenten van de kracht en het koppel? Zie Fig. 2-11(a). Fig Plaats twee verticale krachten van 25N in tegenovergestelde richting door het centrum van de pijp zoals getoond in Fig. 2-11(b). De drie krachten zijn equivalent aan de originele kracht. De naar boven gerichte kracht combineert met de originele kracht tot een koppel C = = 35Ncm. Dit koppel neigt om de pijp te doen draaien in tegenwijzerzin wanneer het gezien wordt van rechts. De andere 25N-kracht veroorzaakt een buigingsmoment M = = -5Ncm rondom de z- as.

7 Los Vraagstuk 2.12 op door het moment van de 25N-kracht rond O te bepalen. De positievector van het punt waar de 25n-kracht wordt toegepast is, vanuit de oorsprong, r = 2i + 14k. De kracht is F = - 25j. Dus is het moment van de 25N-kracht met respect tot de oorsprong: M = r F = 2 25 Dit komt overeen met de resultaten van Vraagstuk = [ 14(-25)]i - [ ]j + [2(-25) - ]k = 35i 5k N. m De kraan in Fig staat op grondniveau. De x-as gaat door de punten waar de achterste wielen de grond raken, de y-as is evenwijdig aan de dwarse middellijn van de kraan van achter naar voor, en de z-as loopt volgens de verticale. Het platform van de kraan staat 9cm boven de grond. Om praktische redenen kan verondersteld worden dat het draaiende steunpunt van de onderkant van de arm in het vlak van de kraan ligt en op 18cm van het middelpunt van het voertuig. Het middelpunt van het voertuig ligt op de middellijn 45cm naar voren (naar links) van de achterste wielaslijn. De 15cm lange arm maakt een hoek van 6 met het vlak van de kraan in een verticaal vlak, en het voertuig en de arm zijn horizontaal gedraaid over 45 tegenover de voorkant en middellijn van het vlak van het voertuig. De afstand tussen de contactpunten tussen de achterste wielen is 24cm. Bepaal het draaimoment van de 4N zware lading over de x-as. Fig Met betrekking tot de oorsprong O op de as, zijn de coördinaten van het middelpunt van het voertuig (-12, -45, 9). De coördinaten van de onderkant van de arm zijn ( sin 45, cos 45, 9) of (7,2 ; -324; 9). De coördinaten van de bovenkant van de arm zijn (7, cos 6 sin 45 ; cos 6 cos 45 ; sin 6 ) of (537 ; 27,3 ; 1389).

8 28 Het moment van de 4N kracht rond O is dan: M = r F = , De scalaire coëfficiënt van de i term is het moment rond de x-as. Dus is M x = N. m. Het moment gaat dus in wijzerzin rond de x-as wanneer gezien vanaf de voorzijde. Aanvullende vraagstukken Bepaal in elk van de volgende gevallen het moment van de kracht F rond de oorsprong. Gebruik de stelling van Varignon. Grootte van F Hoek van F met de horizontale Coördinaten van het punt van toepassing van F. Antwoord 2N 3 (5, -4) m 119 Nm 64N 14 (-3, 4) m 72,9 Nm 15N 337 (8, -2) m -19,3Nm 8N 45 (6, 1) m 28,3Nm 4N 9 (, -2) m 96N 6 (4, 2) m 236Nm Gebruik in Vraagstuk 2.15 het vectorproduct van het moment (M = r F) om het moment te bepalen. Elk antwoord zal een eenheidsvector k dragen Een kracht van 5N is gericht langs de rechte doorheen een punt met x-, y-, z-coördinaten (8, 2, 3)m naar een punt met coördinaten (2, -6, 5)m. Wat zijn de scalaire momenten van de kracht om de x-, y-, z-assen? Ant. M x = 137N. m, M y = -167N. m, M z = -255N. m Gegeven de kracht P = 32,4i 29,3j + 9,9k N die uitgeoefend wordt op de oorsprong. Bepaal het moment rond een rechte door de punten (, -1, 3) en (3, 1, 1). De coördinaten worden gegeven in meter. Ant. M = -88,2N. m Een kracht wordt uitgeoefend op de oorsprong. De coördinaten van de kracht zijn P x = 68,7 N, P y = 22,9 N, P z = 68,7 N. Bepaal het moment van de kracht P rond een rechte door de punten (1,, -1) en (4, 4, -1). De coördinaten worden gegeven in meter. Ant. M = -13,7N. m Combineer C 1 = +2,7 N. m, C 2 = -8 N. m en C 3 = -18 N. m, die zich alle uitoefenen in het zelfde vlak. Ant. C = -78N. m, die zich uitoefent in het zelfde vlak of in evenwijdig vlak Vervang een verticale kracht van 27N die zich neerwaarts uitoefent in de oorsprong door een verticale kracht van 27N agerend in x = -5 en een koppel. Ant. C = -135N. m.

9 Bepaal de resultante vector van de drie koppels +16N. m, -45N. m, +12N. m, die zich respectievelijk uitoefenen in de xy, yz, en xz vlakken. Ant. C = +129N. m, cos θ x = -,349; cos θ y =,931; cos θ z =, Voeg het koppel C = 3i 2j + 35k N. m toe aan het resultante koppel uit Vraagstuk Ant. C = -15i + 1j + 51k N. m De 24-N krachten toegepast op de hoeken A en B van het parallellepipedum getoond in Fig ageren lang AE en BF, respectievelijk. Toon dat het gegeven koppel kan vervangen worden door een verzameling verticale krachten bestaande uit een naar boven wijzende 16N kracht in het punt C en een 16N naar beneden wijzende kracht in D. Fig Fig Vervang de verzameling van drie evenwijdige krachten, getoond in Fig door een enkele kracht. Wat is de grootte, de richting en zin en de plaats van de enkele kracht? Ant. 8N, verticaal naar boven,,75m links van A Op een horizontale staaf van 8m wordt een neerwaartse verticale kracht uitgeoefend van 12N aan het rechtse einde zoals getoond in Fig Toon dat deze equivalent is aan een verticale 12N kracht naar beneden uitgeoefend aan het linkse einde en een koppel in wijzerzin van 96N. m. Fig Fig Een moersleutel in horizontale positie is vastgezet rond een pijp aan het linkse einde. Een verticale kracht van 2N zal worden toegepast aan het rechtse einde met een effectieve arm van 3mm. Toon dat dit equivalent zal zijn aan een kracht van 2N die verticaal naar beneden is gericht en zich uitoefent door het centrum van de pijp en een wijzerzin koppel van 6N. m. Verwijs naar Fig

10 Reduceer het systeem van krachten in de riemen getoond in Fig naar een enkele kracht in O en een koppel. De krachten zijn ofwel verticaal of horizontaal. Ant. 78,3N, θ x = 296,5, C =. Fig Fig Reduceer het systeem van krachten zich oefenend op de balk getoond in Fig naar een kracht in A en een koppel. Ant. R = 1N naar boven in A, C = 6N. m Verwijzend naar Fig. 2-19, reduceer het systeem van krachten en koppels naar het eenvoudigste systeem gebruik makend van punt A. Ant. R x = 48,1N, R y = -3,9N, C = +36,2N. m. Fig Fig Bepaal de momenten van de twee krachten rondom de x, y en z- as getoond in Fig Ant. M = 488i + 732k N. m of M x = 488 N. m, M x =, M x = 732 N. m.

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN II - 1 HOODSTUK SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN Snijdende (of samenlopende) krachten zijn krachten waarvan de werklijnen door één punt gaan..1. Resultante van twee snijdende krachten Het

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Oefenzitting 2: Parametrisaties.

Oefenzitting 2: Parametrisaties. Oefenzitting : Parametrisaties. Modeloplossingen Oefening.5:. Beschouw vooreerst de cirkel C in het xz-vlak met straal r en middelpunt (x, y, z) = (R,, ) (zie Figuur ). De parametrisatie van C wordt dan

Nadere informatie

5. Krachtenkoppels Moment van krachten

5. Krachtenkoppels Moment van krachten Fysica hoofdstuk 1 : Mechanica 1 e jaar 2 e graad (2uur) 5. Krachtenkoppels Moment van krachten 5.1 Definitie krachtenkoppel: Onder een koppel van krachten verstaat men twee even grote, evenwijdige en

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Statica (WB/MT) college 2 Krachtvectoren. Guido Janssen

Statica (WB/MT) college 2 Krachtvectoren. Guido Janssen Statica (WB/MT) college 2 Krachtvectoren Guido Janssen G.c.a.m.janssen@tudelft.nl Scalairen en vectoren De wiskunde die wij nodig hebbben voor Statica maakt gebruik van twee soorten grootheden: Scalairen:

Nadere informatie

Wiskunde krachten als vectoren oefeningensessie 1 Bron: Wiskunde in de bouw Jos Ariëns, Daniël Baldé

Wiskunde krachten als vectoren oefeningensessie 1 Bron: Wiskunde in de bouw Jos Ariëns, Daniël Baldé Wiskunde krachten als vectoren oefeningensessie 1 Bron: Wiskunde in de bouw Jos Ariëns, Daniël Baldé Oefening 1 Een groot nieuw brugdek van 40m lang moet over een rivier geplaatst worden. Eén kraan alleen

Nadere informatie

Tentamen io1031 Product in werking (vragen) vrijdag 26 augustus 2011; 14:00 17:00 uur

Tentamen io1031 Product in werking (vragen) vrijdag 26 augustus 2011; 14:00 17:00 uur Tentamen io1031 Product in werking (vragen) vrijdag 26 augustus 2011; 14:00 17:00 uur Mededelingen Dit tentamen bestaat uit 4 bladzijden. De LAATSTE zes vragen (samen maximaal 5 punten) zijn zogenaamde

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Mechanica evenwicht en reactiekrachten November 2015 Theaterschool OTT-1 1 Stelsels van krachten Doel: het vereenvoudigen van een stelsel van meerdere krachten en momenten (paragraaf 4,7 en 4,8) November

Nadere informatie

Grafieken van veeltermfuncties

Grafieken van veeltermfuncties (HOOFDSTUK 43, uit College Mathematics, door Frank Ayres, Jr. and Philip A. Schmidt, Schaum s Series, McGraw-Hill, New York; dit is de voorbereiding voor een uit te geven Nederlandse vertaling). Grafieken

Nadere informatie

Stelsels van vergelijkingen

Stelsels van vergelijkingen Module 5 Stelsels van vergelijkingen 5.1 Definitie en voorbeelden Een verzameling van vergelijkingen in een aantal onbekenden waarvan men de gemeenschappelijke oplossing(en) zoekt, noemt men een stelsel

Nadere informatie

MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN

MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN III - 1 HOODSTUK 3 MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN De kennis vn het moment vn een krcht is nodig voor het herleiden vn een krcht en een krchtenstelsel, voor het (nlytisch) smenstellen vn niet-snijdende

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Morenaments Ornamenten met symmetrie. Werkblad vooraf met begeleidende tekst en oplossingen

Morenaments Ornamenten met symmetrie. Werkblad vooraf met begeleidende tekst en oplossingen Morenaments Ornamenten met symmetrie Fien Aelter, Liesje Knaepen en Kristien Vanhuyse, studenten SLO wiskunde KU Leuven Werkblad vooraf met begeleidende tekst en oplossingen Dit werklad is een voorbereiding

Nadere informatie

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde Analytische Meetkunde Lieve Houwaer, Unit informatie, team wiskunde . VECTOREN EN RECHTEN.. Vectoren... Het vectorbegrip De verzameling punten van het vlak noteren we door π. Kies in het vlak π een vast

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Module 5 Uitwerkingen van de opdrachten

Module 5 Uitwerkingen van de opdrachten Module 5 Uitwerkingen van de opdrachten Opdracht 1 Deze oefening heeft als doel vertrouwd te raken met het integreren van de diverse betrekkingen die er bestaan tussen de belasting en uiteindelijk de verplaatsing:

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Elektro-magnetisme Q B Q A

Elektro-magnetisme Q B Q A Elektro-magnetisme 1. Een lading QA =4Q bevindt zich in de buurt van een tweede lading QB = Q. In welk punt zal de resulterende kracht op een kleine positieve lading QC gelijk zijn aan nul? X O P Y

Nadere informatie

Eindexamen wiskunde B pilot havo II

Eindexamen wiskunde B pilot havo II Mosselen Driehoeksmosselen (zie de foto) kunnen een bijdrage leveren aan de vermindering van de hoeveelheid algen in het water. Zij filteren het water. De hoeveelheid gefilterd water in ml/uur noemen we

Nadere informatie

Doelstellingen van dit hoofdstuk

Doelstellingen van dit hoofdstuk HOOFDSTUK 1 Spanning Doelstellingen van dit hoofdstuk In dit hoofdstuk worden enkele belangrijke principes van de statica behandeld en wordt getoond hoe deze worden gebruikt om de inwendige resulterende

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets 07-0 versie C Mechanica - Sterkteleer - HWTK PROEFTOETS- 07-0-versie C - OPGAVEN en UITWERKINGEN.doc 1/16 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER!

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 21 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 21 juni uur Eamen VW 017 tijdvak woensdag 1 juni 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 74 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie.

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie. Katholieke Universiteit Leuven September 2008 Poolcoördinaten (versie 27 juni 2008) Inleiding Y y p o θ r X fig In fig worden er op twee verschillende manieren coördinaten gegeven aan het punt p Een eerste

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten. WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de

Nadere informatie

bovenaanzicht zijaanzicht vooraanzicht origineel

bovenaanzicht zijaanzicht vooraanzicht origineel Buigen Mesh; Buigen bovenaanzicht zijaanzicht vooraanzicht origineel De buigfunctie kan alleen toegepast worden op vormen en meshes. Om andere objecten te kunnen buigen, dan moet men deze zodanig de-groeperen

Nadere informatie

Langere vraag over de theorie

Langere vraag over de theorie Langere vraag over de theorie (a) Magnetisch dipooloent Zoals het elektrisch dipooloent is het agnetisch dipooloent een vectoriële grootheid. Het agnetisch dipooloent wordt gedefinieerd voor een gesloten

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 11 collegejaar college build slides Vandaag : : : : 17-18 11 23 oktober 2017 35 De sterrennacht Vincent van Gogh, 1889 1 2 3 4 5 Verband met de stelling van n 1 VA intro ection 16.7 Definitie Equation

Nadere informatie

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden college 2 - en het uitwendig collegejaar college build slides Vandaag : : : : 6-7 2 30 mei 207 30 2 3 4 5 Hoeken Orthogonaliteit en projecties Toepassing: magnetische velden.6-7[2] vandaag meetkundig Section

Nadere informatie

wiskunde B vwo 2017-II

wiskunde B vwo 2017-II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Opgave 2 Een kracht heeft een grootte, een richting en een aangrijpingspunt.

Opgave 2 Een kracht heeft een grootte, een richting en een aangrijpingspunt. Uitwerkingen 1 Opgave 1 Het aangrijpingspunt van een kracht is de plaats waar de kracht op het voorwerp werkt. De werklijn van een kracht is de denkbeeldige (rechte) lijn die samenvalt met de bijbehorende

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Eindexamen vwo wiskunde B pilot 2013-I

Eindexamen vwo wiskunde B pilot 2013-I Eindeamen vwo wiskunde pilot 03-I Formules Goniometrie sin( t u) sintcosu costsinu sin( t u) sintcosu costsinu cos( t u) costcosu sintsinu cos( t u) costcosu sintsinu sin( t) sintcost cos( t) cos t sin

Nadere informatie

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen Wiskunde oefentoets hoofdstuk 0: Meetkundige berekeningen Iedere antwoord dient gemotiveerd te worden, anders worden er geen punten toegekend. Gebruik van grafische rekenmachine is toegestaan. Succes!

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Examen Klassieke Mechanica Herbert De Gersem, Eef Temmerman 23 januari 2009, academiejaar 08-09 IW2 en BIW2 NAAM: RICHTING: vraag 1 (/4) vraag 2 (/4) vraag 3 (/5) vraag 4 (/4) vraag 5 (/3) TOTAAL (/20)

Nadere informatie

1. INLEIDING... 3 2. PERSPECTIEVEN... 4 3. PROJECTIEMETHODEN... 8 4. AANZICHTEN TEKENEN... 10 5. PERSPECTIEF TEKENEN... 14 6. BRONVERMELDING...

1. INLEIDING... 3 2. PERSPECTIEVEN... 4 3. PROJECTIEMETHODEN... 8 4. AANZICHTEN TEKENEN... 10 5. PERSPECTIEF TEKENEN... 14 6. BRONVERMELDING... 1. INLEIDING... 3 2. PERSPECTIEVEN... 4 3. PROJECTIEMETHODEN... 8 4. AANZICHTEN TEKENEN... 10 5. PERSPECTIEF TEKENEN... 14 6. BRONVERMELDING... 22 Leerplandoelstellingen Perspectieftekenen 9. De afgewerkte

Nadere informatie

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur 4 Van D naar 3D Verkennen Van D naar 3D Inleiding Verkennen Bekijk de applet. Met de rechter muisknop kun je het assenstelsel om de oorsprong draaien en de fig van alle kanten bekijken. Beantwoord nu de

Nadere informatie

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A.

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Wiskunde voor het hoger onderwijs deel A Errata 00 Noordhoff Uitgevers Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Hoofdstuk. 4 Op blz. in het Theorieboek staat halverwege de

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 07 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 4 vragen. Voor dit eamen zijn maimaal 7 punten te behalen. Voor elk vraagnummer

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

Krachten (4VWO) www.betales.nl

Krachten (4VWO) www.betales.nl www.betales.nl Grootheden Scalairen Vectoren - Grootte - Eenheid - Grootte - Eenheid - Richting Bv: m = 987 kg x = 10m (x = plaats) V = 3L Bv: F = 17N s = Δx (verplaatsing) v = 2km/h Krachten optellen

Nadere informatie

wiskunde B pilot havo 2016-I

wiskunde B pilot havo 2016-I De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

Buiging van een belaste balk

Buiging van een belaste balk Buiging van een belaste balk (Modelbouw III) G. van Delft Studienummer: 0480 E-mail: gerardvandelft@email.com Tel.: 06-49608704 4 juli 005 Doorbuigen van een balk Wanneer een men een balk op het uiteinde

Nadere informatie

Extra oefeningen: de cirkel

Extra oefeningen: de cirkel Extra oefeningen: de cirkel 1. Gegeven een cirkel met middelpunt M en straal r 5 cm en. De lengte van de raaklijnstukken PA PB uit een punt P aan deze cirkel bedraagt 1 cm. Bereken de afstand PM. () PAM

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Basisbegrippen 3D-tekenen.

Basisbegrippen 3D-tekenen. Basisbegrippen 3D-tekenen. Vroeger was het begrip 3D-tekenen onbestaande en tekende men gewoon in perspectief wanneer er een dieptezicht nodig was. Normaal werd er enkel in 2D getekend, dus enkel de aanzichten.

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Examen havo wiskunde B 2016-I (oefenexamen)

Examen havo wiskunde B 2016-I (oefenexamen) Examen havo wiskunde B 06-I (oefenexamen) De rechte van Euler Gegeven is cirkel c met middelpunt (, ) p Stel een vergelijking op van c. De punten B(, 0) en ( 4, 0) M die door het punt A( 0, 4) C liggen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde

1 Vlaamse Wiskunde Olympiade : Tweede Ronde Vlaamse Wiskunde Olympiade 988-989: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

S3 Oefeningen Krachtenleer Hoofdstuk II II-3. II-3 Grafisch: 1cm. II-3 Analytisch. Sinusregel: R F 1

S3 Oefeningen Krachtenleer Hoofdstuk II II-3. II-3 Grafisch: 1cm. II-3 Analytisch. Sinusregel: R F 1 S3 Oefeningen Krachtenleer Hoofdstuk II II-3 Bepaal grafisch en analytisch de richting en grootte van de resultante, in volgende gevallen; F 1 = 4 kn F = 7 kn : 1) α = 30 ) α = 45 F 1 3) α = 90 α 4) α

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 0 juli 008) Rekenen met vectoren is een basisvaardigheid voor vakken natuurkunde.

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur Eamen VW 016 tijdvak 1 woensdag 18 mei 13.30-16.30 uur wiskunde (pilot) it eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Imaginary - van bol naar kubus

Imaginary - van bol naar kubus Imaginary - van bol naar kubus Gommaar Maes en Tania Van Damme SLO Wiskunde - Universiteit Gent en Atheneum Mariakerke Inleiding: coördinaat en vergelijking. Vlak Coördinaat Als we werken binnen een orthonormaal

Nadere informatie

S3 Oefeningen Krachtenleer Hoofdstuk VII VII-1. a) steunpuntreacties. massa balk m b = b * h * l * ρ GB = 0.5 * 0.5 * 10 * 2500 = 6250 kg

S3 Oefeningen Krachtenleer Hoofdstuk VII VII-1. a) steunpuntreacties. massa balk m b = b * h * l * ρ GB = 0.5 * 0.5 * 10 * 2500 = 6250 kg S3 Oefeningen Krachtenleer Hoofdstuk VII VII-1. Een gewapend-betonbalk ligt op planken met een grondoppervlak van 1000 x 50 mm². De volumemassa van gewapend beton is 500 kg/m³. Gevraagd : a) de steunpuntsreacties

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts Introductieweek Faculteit Bewegings- en Revalidatiewetenschappen 25 29 Augustus 2014 Topic: Fysica Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik Lambrechts

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2005-2006: eerste ronde 1 Vier van de volgende figuren zijn het beeld van minstens één andere figuur door een draaiing in het vlak Voor één figuur is dit niet het geval Welke?

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens Dag van de wiskunde Kortrijk 26 november 2009 Ideeën voor de klaspraktijk Spreker: E. Jennekens 1. De provincie West-Vlaanderen is 3144 km² groot. Kun je de hele wereldbevolking, 6,7 miljard, verwelkomen

Nadere informatie

Vlakke Meetkunde Ruimtemeetkunde. Meetkunde. 1 december 2012. Meetkunde

Vlakke Meetkunde Ruimtemeetkunde. Meetkunde. 1 december 2012. Meetkunde Vlakke Ruimtemeetkunde 1 december 2012 Vlakke Ruimtemeetkunde 1 Vlakke Vectoren Vergelijking van een rechte 2 Ruimtemeetkunde Vectoren Vergelijking van een vlak Vergelijkingen van een rechte Vlakke Ruimtemeetkunde

Nadere informatie

Zomercursus Wiskunde. Module 6 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 6 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 6 Goniometrie, vlakke meetkunde en rekenen met vectoren in de (versie augustus 011) Inhoudsopgave 1 Goniometrie 1 1.1 Goniometrische cirkel............................

Nadere informatie

Mechanica van Materialen: Voorbeeldoefeningen uit de cursus

Mechanica van Materialen: Voorbeeldoefeningen uit de cursus Mechanica van Materialen: Voorbeeldoefeningen uit de cursus Hoofdstuk 1 : Krachten, spanningen en rekken Voorbeeld 1.1 (p. 11) Gegeven is een vakwerk met twee steunpunten A en B. Bereken de reactiekrachten/momenten

Nadere informatie

4. Maak een tekening:

4. Maak een tekening: . De versnelling van elk deel van de trein is hetzelfde, dus wordt de kracht op de koppeling tussen de 3e en 4e wagon bepaald door de fractie van de massa die er achter hangt, en wordt dus gegeven door

Nadere informatie

Hoofdstuk 6 : Projectie en Stelling van Thales

Hoofdstuk 6 : Projectie en Stelling van Thales Hoofdstuk 6 : Projectie en Stelling van Thales - 127 1. Projectie op een rechte (boek pag 175) x en y zijn twee... rechten. We trekken door het punt A een evenwijdige rechte met de rechte y en noemen het

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van

Nadere informatie

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Indien van toepassing: schrijf je berekening op. Tekening altijd met geodriehoek en potlood. Omtrek rechthoek

Nadere informatie

HOEKEN, AFSTANDEN en CIRKELS IN Klas 5N Wiskunde 6 perioden

HOEKEN, AFSTANDEN en CIRKELS IN Klas 5N Wiskunde 6 perioden HOEKEN, AFSTANDEN en CIRKELS IN Klas 5N Wiskunde 6 erioden INHOUD. Het inroduct van vectoren... 3. De normaalvector van een lijn... 3. DE AFSTAND VAN TWEE PUNTEN.... 5. De afstand van een unt tot een lijn...

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 J.Keijsper

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Een paradox bij kansrekenen

Een paradox bij kansrekenen Een paradox bij kansrekenen 1 Inleiding Sinds Zeno aantoonde dat de snelvoetige Achilles de schildpad nooit zou inhalen, hebben vele paradoxen de wiskundige gemeenschap bezig gehouden. Ook de kanstheorie

Nadere informatie