Paragraaf 5.1 : Wortelvormen en Breuken

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Paragraaf 5.1 : Wortelvormen en Breuken"

Transcriptie

1 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 1 van 11 Paragraaf 5.1 : Wortelvormen en Breuken Les 1 : Wortelformules, Domein en Bereik Definities Domein = { alle -en die je mag invullen in de formule } Bereik = { alle y-waarden die als uitkomst uit de formule kunnen komen } Stappenplan domein en bereik bepalen: (1) Bereken de coördinaten van het beginpunt (wortel = 0) (2) Bereken met GR een aantal punten een schets de grafiek. (3) Lees uit de grafiek het domein en bereik af. a. Bepaal het domein en bereik van f() = 2 + b. Los algebraïsch op : f() > 1 c. Schrijf als functie van y bij de formule y = 2 + Oplossing 1 a. (1) + = 0 = - y = 2 Beginpunt = (-,2) (2) Y1 = 2 + geeft de volgende schets : (3) D f = [, > en B f =<,2 > b. Een ongelijkheid bestaat altijd uit drie stappen (1) Los de gelijkheid op 2 + = 1 (2) Maak een schets : + = 3 + = 9 = 5 (3) Lees de oplossing af en let op het randpunt!!! 5

2 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 2 van 11 c. y = 2 + y 2 = + y + 2 = + y 2 y + = + = y 2 y Opmerkingen Om de wortelgrafiek te tekenen heb je stap 1 en 2 nodig. Uiteraard moet je dan bij stap 2 een aantal punten precies uitrekenen en de grafiek netjes tekenen. Je kunt ook gebruik maken van translaties. We bespreken dat pas in paragraaf 5.3.

3 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 3 van 11 Les 2 : Breuken en Asymptoten Definitie Asymptoten Asymptoot = { Lijn waar de grafiek steeds dichter naar toe kruipt, maar waar hij nooit komt } lim f() = { de limiet voor gaat naar oneindig. Waar gaat f() dan naar toe? } Soorten Asymptoten Er zijn twee soorten asymptoten : (1) Horizontale Asymptoot (HA) lim f() (d.w.z. voor een groot getal invullen) Vergelijking : y = getal (2) Verticale Asymptoot (VA) Noemer = 0 Vergelijking : = getal Bepaal alle asymptoten en schets de grafiek van : a. f() = b. g() = Oplossing 1 a. (1) Horizontale Asymptoot (HA) 6 2 lim = lim = = 2 Dus HA : y = 2 (2) Verticale Asymptoot (VA) = 0 = -2. Dus VA : =2

4 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina van 11 b. (1) Horizontale Asymptoot (HA) lim = lim Dus HA : y = = = = 3 (2) Verticale Asymptoot (VA) 5 = 0 = 5. Dus VA : = 5

5 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 5 van 11 Paragraaf 5.2 : Machten (negatief en gebroken) Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL 3 : MACHTREGEL : MACHTREGEL 5 : MACHTREGEL 6 : a p a q = a p+q a p aq = ap q a 0 = 1 (a p ) q = a p q (a b) p = a p b p 1 = a p ap 1 a = a 1 MACHTREGEL 7 : MACHTREGEL 8 : n a n a p = (a) 1 n a = (a) 1/2 = (a) p n Schrijf als macht van a. 3 b. 3 c. 1 2 Schrijf zonder gebroken en negatieven machten d. 3 e. 21 2

6 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 6 van 11 Oplossing 1 a. 3 = = 31 2 b. 3 c. 1 = 2 d. 3 = 1 1 = = = = e = 1 = 1 3 = = 1 2 Voorbeeld 2 Los algebraïsch op. Rond af op 3 decimalen. a. 3 3,2 = 12 b = 87 c. Maak vrij bij de formule y = 5 3 Oplossing 2 a. 3 3,2 = 12 3,2 = = 1 3,2 = 0,68 b = = 87 = = 1 = 33,72 c. 5 3 = y = ( 1 5 y) 1 3 = ( 1 5 y) 3 = ( 1 5 ) 3 (y) 3 = 0,117y 3

7 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 7 van 11 Paragraaf 5.3 : Standaardfunctie f() = g Les 1 : Transformaties Definities T(p,q) = { Translatie / verschuiving van de grafiek p naar rechts en q omhoog } V-as, c = { Vermenigvuldiging t.o.v. de -as met factor c } Een eponentiele functie heeft alleen Horizontale Asymptoten. Je berekent die door de limiet of te nemen. Regels bij Transformeren (1) f() T(a,b) f( a) + b (2) f() V as,c c f() Gegeven is de functie f() =. Bepaal de formule die ontstaat als : a. f eerst 5 naar rechts / 2 omlaag en vervolgens vermenigvuldigd wordt met 3. Noem deze formule g(). b. f eerst vermenigvuldigd wordt met -2 en dan 3 naar links verschoven wordt. c. Bepaal de asymptoten van g() d. Los op g() > 12 Oplossing 1 a. T(5,2) b. V as, V as,3 3 ( 5 + 2) = = g() 2 T( 3,0) c. Horizontale Asymptoot (HA) lim = 2 3 = 2 +3 (geen HA) lim = = = = 6 Dus HA : y = 6 Er zijn

8 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 8 van 11 d. Een ongelijkheid bestaat altijd uit drie stappen (1) Los de gelijkheid op = = 6 5 = 2 5 = = 1 2 = (2) Maak een schets : (3) Lees de oplossing af uit de schets > 5 1 2

9 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 9 van 11 Les 2 : Eponentiële vergelijkingen oplossen Los algebraïsch op a. 3 5 = 1 27 b. 32 = ( 1 8 )+3 c = 9 2 Oplossing 1 a. 3 5 = = = 3 = 8 b. 32 = ( 1 8 )+3 (2 5 ) = (2 3 ) = = = 9 = 9 8 c = = = 9 2 { Neem p = 2 } 1 p + 2p = p = 9 2 { Vul nu voor p weer 2 terug in } p = 2 = = = = 2 1 2

10 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 10 van 11 Paragraaf 5. : Eponentiële groei Definities Eponentiele model Formule y = b g t g = groeifactor b = begingetal Tabel Iedere keer vermenigvuldigd met Je gebruikt eponentiële formule als : Je iedere keer met hetzelfde getal vermenigvuldigt (bijv keer 2) Er iedere keer een vast percentage erbij komt of eraf gaat (bijv. +3% of -11%) Schema groeifactor berekenen (1) + 3% Oud Nieuw +3% 100% 103% ( : 100) Groeifactor = 1,03 (2) - 11% Oud Nieuw 11% 100% 89% ( : 100) Groeifactor = 0,89

11 Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 11 van 11 Jaar Muizen a. Toon aan dat het eponentieel verdeeld is. b. Stel de formule op. c. Bereken de groeifactor per 3 jaar. d. Bereken de groeifactor per half jaar. e. Bereken de groeifactor per maand. Van ratten is bekend dat in jaar 5 er 500 zijn en in jaar Het aantal ratten groeit met een vast percentage per jaar. f. Stel de formule op van het aantal ratten. Opl a. 1,5 1,5 1, 5 Gelijk dus eponentieel b. b = 70 = 6,67 y = 6,67 1,5 1,5t. c. g 3 jaar = 1,5 3 = 3,375 d. g 0,5 jaar = 1,5 0,5 = 1,22 e. g 1/12 jaar = 1,5 1/12 = 1,03 (NIET delen door 12!!!) f. (1) Bereken de groeifactor g = = 2,2 g = 1,22 (2) Bereken de b 1100 = b 1,22 9 (3) Dus y = 167 1,22 t. b = ,22 9 = 167

Paragraaf 5.1 : Machten en wortels

Paragraaf 5.1 : Machten en wortels Hoofdstuk 5 Machten, exponenten en logaritmen (H Wis B) Pagina 1 van 1 Paragraaf 5.1 : Machten en wortels Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL : a p a q = a p+q a p aq =

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

Paragraaf 4.1 : Kwadratische formules

Paragraaf 4.1 : Kwadratische formules Hoofdstuk 4 Werken met formules H4 Wis B) Pagina 1 van 10 Paragraaf 41 : Kwadratische formules Les 1 : Verschillende vormen Er zijn verschillende vormen van kwadratische vergelijkingen die vaak terugkomen

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Getallen en Variabelen (V4 Wis A) Pagina 1 van 13 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x = 12

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

VIDEO 4 4. MODULUSVERGELIJKINGEN

VIDEO 4 4. MODULUSVERGELIJKINGEN VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Rekenregels en Verhoudingen (H4 Wis A) Pagina 1 van 11 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }

Nadere informatie

Paragraaf 9.1 : Twee soorten groei

Paragraaf 9.1 : Twee soorten groei Hoofdstuk 9 Exponentiële Verbanden (H5 Wis A) Pagina 1 van 9 Paragraaf 9.1 : Twee soorten groei Les 1 Lineaire en exponentiele groei Definitie Lijn = LINEAIRE GROEI Algemene formule van een lijn : y =

Nadere informatie

De onderstaande waarden in de tabel zet je dan netjes uit in een xy-assenstelsel: naar boven, een negatief getal schuift de parabool naar beneden.

De onderstaande waarden in de tabel zet je dan netjes uit in een xy-assenstelsel: naar boven, een negatief getal schuift de parabool naar beneden. Samenvatting H29: Parabolen en Hyperbolen De standaard parabool heeft als formule y = x 2 Deze vorm moet je vlot en netjes kunnen tekenen. De onderstaande waarden in de tabel zet je dan netjes uit in een

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1.

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1. Hoofdstuk 9: Allerlei functies 9. Machtsfuncties en wortelfuncties Opgave : a. 0,0, c. y en y d. y en y Opgave : a. de grafiek van y ontstaat uit die van y door T 0, T 0,6 y y 6 Opgave : a. T 6,0 T,0 c.

Nadere informatie

Paragraaf 1.1 : Lineaire functies en Modulus

Paragraaf 1.1 : Lineaire functies en Modulus Hoofdstuk 1 Functies en Grafieken (V4 Wis B) Pagina 1 van 9 Paragraaf 1.1 : Lineaire functies en Modulus Les 1 : Lineaire Formules Definities Algemene formule van een lijn : y = ax + b a = hellingsgetal

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Paragraaf 9.1 : Logaritmen

Paragraaf 9.1 : Logaritmen Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Paragraaf 9. : Logaritmen Les Logaritmen Definitie Logaritmen Hoofdregel : g t = b t = g log b met domein b>0 Om logaritmen uit

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

wiskunde B pilot havo 2016-I

wiskunde B pilot havo 2016-I De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van

Nadere informatie

Wiskunde 20 maart 2014 versie 1-1 -

Wiskunde 20 maart 2014 versie 1-1 - Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur 1 Stelling van Pythagoras bewijs paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur c a b b

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Paragraaf 1.1 : Lineaire verbanden

Paragraaf 1.1 : Lineaire verbanden Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

mei 16 19:37 Iedere keer is de groeifactor gelijk. (een factor is een getal in een vermenigvuldiging)

mei 16 19:37 Iedere keer is de groeifactor gelijk. (een factor is een getal in een vermenigvuldiging) Wiskunde 3VWO Hoofdstuk 8 par 8.1 par 8.2 Procenten en groeifactoren Niet par 8.3 Periodieke verbanden par 8.4 Machtsfuncties par 8.5 Grafieken veranderen par 8.6 Extreme waarden mei 16 19:37 Maandag zitten

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Paragraaf 11.1 : Grafieken en Gebieden

Paragraaf 11.1 : Grafieken en Gebieden Hoofdstuk 11 Formules en Variabelen (H5 Wis A) Pagina 1 van 9 Paragraaf 11.1 : Grafieken en Gebieden Definitie Halfvlak Halfvlak = { Gebied onder / boven / links / rechts van een lijn } Om een halfvlak

Nadere informatie

denkeenheden letters vormen woorden woorden vormen zinnen zinnen vormen verhalen stenen vormen muren muren vormen huizen huizen vormen steden

denkeenheden letters vormen woorden woorden vormen zinnen zinnen vormen verhalen stenen vormen muren muren vormen huizen huizen vormen steden letters vormen woorden woorden vormen zinnen zinnen vormen verhalen stenen vormen muren muren vormen huizen huizen vormen steden denkeenheden hoe zit dat bij algebraische epressies?,,,.. maken,5,5 maken

Nadere informatie

buigpunt (0,0) randpunt (0,0) domein [0, > asymptoot y=0 snijpunt y-as (0,1) bereik <0, >

buigpunt (0,0) randpunt (0,0) domein [0, > asymptoot y=0 snijpunt y-as (0,1) bereik <0, > De standaardfuncties: = = = Parabool top (0,0) buigpunt (0,0) randpunt (0,0) domein [0, > = f ( ) = = log( ) hyperbool vert. asymptoot =0 hor. asymptoot y=0 asymptoot y=0 snijpunt y-as (0,) bereik

Nadere informatie

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1 Lineaire verbanden 4 HAVO wiskunde A getal en ruimte deel 0. voorkennis Letterrekenen Regels: a(b + c ) = a b + ac (a + b )c = a c + bc (a + b )(c + d ) = a c + a d + b c + bd Vergelijkingen oplossen Je

Nadere informatie

opdracht 1 opdracht 2 opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen 1 Versie DD 2014

opdracht 1 opdracht 2 opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen 1 Versie DD 2014 Algebra Anders Parabolen 1 Versie DD 014 1 Parabolen herkennen opdracht 1 We beginnen heel eenvoudig met y = x Een tabel en een grafiek is snel gemaakt. top x - -1 0 1 3 y 0 1 4 + 1 + 3 toename tt + a)

Nadere informatie

HOOFDSTUK 3 : LOGARITMISCHE FUNCTIES

HOOFDSTUK 3 : LOGARITMISCHE FUNCTIES HOOFDSTUK : LOGARITMISCHE FUNCTIES Kern : Logaritmen a) D t 5 t (D in grammen ; t in dagen) D 5 9 gram b) 5 t t 6 t log 6 log 6 log a) log9 9 b) 5 log5 5 5 5 c) log 5 5 d) 5 e loge 7 e e 7 7 e) log 5 5

Nadere informatie

Opgave 1: 2 is de richtingscoëfficiënt, d.w.z. 1 naar rechts en 2 omhoog. 3 is het snijpunt met de y-as, dus ( 0,3)

Opgave 1: 2 is de richtingscoëfficiënt, d.w.z. 1 naar rechts en 2 omhoog. 3 is het snijpunt met de y-as, dus ( 0,3) Hoofdstuk : Functies en grafieken.. Lineaire functies Ogave : is de richtingscoëfficiënt, d.w.z. naar rechts en omhoog. is het snijunt met de y-as, dus ( 0,). Ogave : rc en het snijunt met de y-as is (

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10 B M De getallenlijn 0 + = = + = = Nee 0 0 = 9 = 0 6 = = 9 = 6 = 6 = = C a b a b 0 = 0 0 = 0 a b < 0 ; a b < 0 ; a > b ; b > a = = = = C Nee, hij loopt steeds maar verder. < x H x < x < x < x + + = x +

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Analyse. Samenvatting: logaritmen. Frank Derks Gerard Heijmeriks www.demathe.nl

Analyse. Samenvatting: logaritmen. Frank Derks Gerard Heijmeriks www.demathe.nl Analyse Samenvatting: logaritmen Frank Derks Gerard Heijmeriks www.demathe.nl 1. Inhoudsopgave 1. Inhoudsopgave... 2 2. Exponentiële functies... 3 2.1. Inleiding... 3 2.2. Groeifactoren en groeipercentages...

Nadere informatie

Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen.

Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen. Netwerk Havo B uitwerkingen Hoofdstuk, Functies en de GRM Hoofdstuk Functies en de GRM Kern Functies met de GRM a H (dm) 5 Na ongeveer 6 dagen. 6 8 0 t a De functie heeft geen functiewaarde voor X < 0.

Nadere informatie

Kwadratische verbanden - Parabolen klas ms

Kwadratische verbanden - Parabolen klas ms Kwadratische verbanden - Parabolen klas 01011ms Een paar basisbegrippen om te leren: - De grafiek van een kwadratisch verband heet een parabool. - Een parabool is dalparabool met een laagste punt (minimum).

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

9.1 Logaritmische en exponentiële vergelijkingen [1]

9.1 Logaritmische en exponentiële vergelijkingen [1] 9.1 Logaritmische en eonentiële vergelijkingen [1] Voor logaritmen gelden de volgende rekenregels: (1) log( ab) log( a) log( b) g g g () g g g (4) (3) g n g (5) g log() = y volgt = g y Voorbeeld: a log

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur

Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur Examen HAVO 014 tijdvak 1 woensdag 14 mei 1.0-1.0 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur Examen HAVO 204 tijdvak woensdag 4 mei.0-6.0 uur wiskunde B (pilot) Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 1. Lineair verband. 1a. na 1 min 36 cm, na min. 3 cm, daling 4 cm per minuut. b. h = 40 4t h in cm en t per minuut b. k: rc = -3 m: rc = 0.5 p: rc

Nadere informatie

Paragraaf 10.1 : Vectoren en lijnen

Paragraaf 10.1 : Vectoren en lijnen Hoofdstuk 10 Meetkunde met Vectoren (V5 Wis B) Pagina 1 van 13 Paragraaf 10.1 : Vectoren en lijnen Les 1 : Vectoren tekenen Definities Vector x = ( a ) wil zeggen a naar rechts en b omhoog. b Je kunt vectoren

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. 7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Hoofdstuk 9 - Rekenen met functies

Hoofdstuk 9 - Rekenen met functies 5 Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0 = 0 : 6 9 = 5 : 0 = 0 5 = 00 : 0 = 0 e 8 + ( ) = 7 + + = 8 + ( 6) =

Nadere informatie

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Reader Wiskunde MBO Niveau 4 Periode. M. van der Pijl. Transfer Database

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Reader Wiskunde MBO Niveau 4 Periode. M. van der Pijl. Transfer Database Noorderpoortcollege School voor MBO Stadskanaal Reader Reader Wiskunde MBO Niveau Periode M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Paragraaf K.1 : Substitutiemethode

Paragraaf K.1 : Substitutiemethode Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Groep I les 1/3 HS 8 verschillende functies

Groep I les 1/3 HS 8 verschillende functies Groep I les 1/3 HS 8 verschillende functies Hoi, dit is het eerste deel van jouw programma voor dit hoofdstuk. Er zijn verschillende soorten opgaven: O betekent ontdekkende opgaven, K om te kiezen, A afsluitend

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 vrijdag 17 mei uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 vrijdag 17 mei uur Eamen HAVO 013 tijdvak 1 vrijdag 17 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

H9 Exponentiële verbanden

H9 Exponentiële verbanden H9 Exponentiële verbanden Havo 5 wiskunde A Getal & Ruimte deel 3 PTA 1 Oefenmateriaal examens 2 Voorkennis Rekenen met procenten Formule van procentuele verandering Vermenigvuldigingsfactor Procent op

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

5. berekenen van limieten en asymptoten

5. berekenen van limieten en asymptoten hoodstuk : berekenen van ieten en asymptoten. berekenen van ieten en asymptoten.. inleiding Algebraïsche uncties zijn uncties die geconstrueerd kunnen worden met enkel de constante en identieke unctie,

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke

Nadere informatie

Werkwijzers. 1 Wetenschappelijke methode 2 Practicumverslag 3 Formules 4 Tabellen en grafieken 5 Rechtevenredigheid 6 Op zijn kop optellen

Werkwijzers. 1 Wetenschappelijke methode 2 Practicumverslag 3 Formules 4 Tabellen en grafieken 5 Rechtevenredigheid 6 Op zijn kop optellen Werkwijzers 1 Wetenschappelijke methode 2 Practicumverslag 3 ormules 4 Tabellen en grafieken 5 Rechtevenredigheid 6 Op zijn kop optellen Werkwijzer 1 Wetenschappelijke methode Als je de natuur onderzoekt

Nadere informatie

Exponentiële functies

Exponentiële functies Eponentiële functies In de vorige paragraaf hebben we alleen positieve getallen in de eponent gekozen. Nu laten we alle getallen als eponent toe. 1 Als je een fles melk uit de koelkast haalt, zal de temperatuur

Nadere informatie

V6 Programma tijdens de laatste weken

V6 Programma tijdens de laatste weken V6 Programma tijdens de laatste weken Datum ma. 18-4-11 di. 19-4-11 ma. 5-4-11 di. 6-4-11 ma. -5-11 di. 3-5-11 ma. 9-5-11 di. 10-5-11 Activiteit 1. Differentiëren. Vergelijkingen oplossen e Paasdag 3.

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Hoofdstuk 11B - Rekenen met formules

Hoofdstuk 11B - Rekenen met formules Hoofdstuk B - Rekenen met formules Hoofdstuk B - Rekenen met formules Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0

Nadere informatie

Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek

Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek Onderstaande verbeteringen zijn gebaseerd op de eerste druk van deze titel. In bijdrukken worden fouten hersteld. Het is dus goed mogelijk, dat hier verbeteringen staan, die bij een nieuwe druk al zijn

Nadere informatie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie Wiskunde 2 september 2008 versie 1-1 - Op hoeveel verschillende manieren kun je drie zwarte pionnen verdelen over de 32 zwarte velden van een schaakbord? (Neem aan dat op elk veld hooguit één pion staat.)

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk - Machtsfuncties Voorkennis: Functies en symmetrie ladzijde 9 V-a Kies als vensterinstelling voor je GR ijvooreeld X en Y en voer in Y = X X + Je krijgt: + = 0, dan D = ( ) = en = = = + = of

Nadere informatie

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen Beschrijf in eigen woorden: Waar gaat de opdracht over? Welke signaalwoorden staan in de tekst? Wijst een signaalwoord naar een strategie? Welke

Nadere informatie

Aantekening VWO 6 Wis D Hfst 9 : Lijnen en Cirkels. Het voordeel van de laatste is dat (a,0) en (0,b) de snijpunten met de assen zijn!!

Aantekening VWO 6 Wis D Hfst 9 : Lijnen en Cirkels. Het voordeel van de laatste is dat (a,0) en (0,b) de snijpunten met de assen zijn!! Aantekening VWO 6 Wis D Hfst 9 : Lijnen en Cirkels Les 1 Lijnen Een lijn kun je op verschillende manieren weergeven = a + b p + q = r 1 (niet zelfde a en b van manier 1) a b Het voordeel van de laatste

Nadere informatie

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. 14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.

Nadere informatie

10 log sin 20. Naam:

10 log sin 20. Naam: 10 log 10 80 24sin 20 Naam: 1 Inhoud Voorbereiding op het examen 3 Onderwerpen in grote lijnen 4-9 LOC-methode 9 Tips voor het examen 10 Vergelijkingen van parabolen 11 Planning opgaven examenbundel 12-15

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

Eindexamen wiskunde B1 havo 2006-II

Eindexamen wiskunde B1 havo 2006-II Toename lichaamsgewicht zwangere vrouw Een vrouwenarts heeft van een zwangere vrouw gedurende de zwangerschap allerlei gegevens verzameld. In tabel 1 staan enkele resultaten. Daaruit is onder andere af

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking.

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking. G&R havo B deel Differentiaalrekening C von Schwartzenberg /0 Toets voorkennis EXTRA: Differentiëren op bladzijde 56 aan het einde van deze uitwerking a f ( ) 5 7 f '( ) 8 5 b g( ) ( 5) 5 g '( ) 6 0 c

Nadere informatie

Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429)

Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) - een lijst met operationele en concrete doelen van de lessenserie, indien mogelijk gerelateerd

Nadere informatie

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

Wortels met getallen. 2 Voorbeeldenen met de vierkantswortel (Tweedemachts wortel)

Wortels met getallen. 2 Voorbeeldenen met de vierkantswortel (Tweedemachts wortel) Wortels met getallen 1 Inleiding WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht van de

Nadere informatie

H10: Allerlei functies H11: Kansverdelingen..6-7

H10: Allerlei functies H11: Kansverdelingen..6-7 Oefenmateriaal V5 wiskunde A Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-3 H10: Allerlei functies....4-5 H11: Kansverdelingen..6-7 Hoofdstuk 9: Rijen & Reeksen Recursieve

Nadere informatie