STATISCH ONBEPAALDE CONSTRUCTIES

Maat: px
Weergave met pagina beginnen:

Download "STATISCH ONBEPAALDE CONSTRUCTIES"

Transcriptie

1 STTISH ONEPLDE ONSTRUTIES 1 Statisch onbepaade constructies Ineiding, systematiek Statisch onbepaadheid Voorbeeden onstructies met niet-verpaatsbare knopen keuze van het statisch bepaade hoofdsysteem en de statisch onbepaade(n) Voorbeeden Stijfheidsverschien tussen constructiedeen 4 ijzondere situaties Steunpuntszettingen Verende inkemmingen Ir J.W. Weeman badnr 1

2 STTISH EPLDE ONSTRUTIES KENERK: KRHTSVERDELING IN DE ONSTRUTIE KN WORDEN EPLD OP SIS VN LLEEN HET EVENWIHT [kn/m] h [kn] a [m] b [m] v [kn] [m] v [kn] onbekende opegreacties evenwichtsvergeijkingen F ( ) 0 T h 0 F v ( ) 0 UITWENDIG EVENWIHT Ir J.W. Weeman badnr

3 STTISH ONEPLDE ONSTRUTIES KENERK: KRHTSVERDELING IN DE ONSTRUTIE KN NIET WORDEN EPLD LLEEN OP SIS VN HET EVENWIHT. h [kn] m [knm] v [kn] a [m] b [m] [m] v [kn] 4 onbekende opegreacties evenwichtsvergeijkingen F ( ) 0 h F ( ) 0 v T 0 (enkevoudig) STTISH ONEPLD n>0 Ir J.W. Weeman badnr

4 VOOREELDEN n? F F a n? n? n? Ir J.W. Weeman badnr 4

5 NTWOORDEN n0? n r vk e n r + vk e n + 6 graad van statisch onbepaadheid aan onbekende reactiekrachten aanta onbekende verbindingskrachten aanta evenwichtsvergeijkingen F F a n n1 n0? Ir J.W. Weeman badnr 5

6 EREKENEN VN STTISH ONEPLDE ONSTRUTIES KRHTENETHODE VERPLTSINGENETHODE Fundamentee onbekenden zijn krachten zoas opegreacties of staafkrachten. Fundamentee onbekenden zijn verpaatsingsgrootheden van de knooppunten. h [kn] m [knm] w(x) v [kn] a [m] b [m] [m] Ir J.W. Weeman badnr 6

7 KRHTENETHODE ethode voor handberekeningen Zef handige keuze maken om rekenwerk te minimaiseren Vergt we wat inzicht en oefening VERPLTSINGENETHODE Systematische methode Zeer geschikt om te programmeren asis voor computerprogramma s Kinematische vergeijkingen d w κ dx onstitutieve vergeijkingen d w κ dx Evenwichtsvergeijkingen d dv V en ( x) dx dx GEENGDE OF HYRIDE ETHODE Zowe krachten as verpaatsingen as onbekenden Ir J.W. Weeman badnr 7

8 KRHTENETHODE Niet aeen het EVENWIHT wordt beschouwd maar ook het VERVORINGSGEDRG van de constructie t.g.v. de beasting moet worden meegenomen in de berekening. NPK: NTL EVENWIHTSVERGELIJKINGEN + NTL VORVERNDERINGSVOORWRDEN NTL FUNDENTELE ONEKENDEN Ir J.W. Weeman badnr 8

9 STNDRD NPK Kies een statisch bepaad HOOFDSYSTEE Geef de STTISH ONEPLDEN (S.O.) aan Ste de bij de statisch onbepaade(n) horende VORVERNDERINGSVOORWRDE(N) op (v.v.v.) Werk de v.v.v. s uit met behup van bijvoorbeed de steingen v/h GEREDUEERDE OENTENVLK of de VERGEET-IJ-NIETJES LOS hieruit de statisch onbepaade(n) OP Ir J.W. Weeman badnr 9

10 RELTIE TUSSEN DE STTISH ONEPLDE EN DE IJEHORENDE VORVERNDERINGS- VOORWRDE S.O is een kracht v.v.v. heeft betrekking op een verpaatsing S.O. is een moment v.v.v. heeft betrekking op een hoekverdraaiing Ir J.W. Weeman badnr 10

11 STELLINGEN VN HET OENTENVLK punt punt x-as /-ijn a ( x) oppervak θ dx κ ( x) dx x + θ w w vervormde staafas θ t.g.v. θ kwispeeffect t.g.v. w x w w x θ a Ir J.W. Weeman badnr 11

12 VERGEET-IJ-NIETJES z x w z F x w F F z x 6 4 w 8 Ir J.W. Weeman badnr 1

13 Ir J.W. Weeman badnr 1 z x z x F z x w midden 16 6 w max F w F F max a Fab b Fab 6 ) ( 6 ) ( + + z x b a F

14 PROLEEESHRIJVING VOOR S.O. ONSTRUTIES ET NIET VERPLTSRE KNOPEN GRD van STTISH ONEPLDHD : n1 0,5 F opening moment om de opening dicht te drukken Twee statisch bepaade iggers. De igger is doorgeknipt t.p.v. de middenondersteuning. Er ontstaat een knik veroop zonder knik hoekverdraaiing inks hoekverdraaiing rechts Ir J.W. Weeman badnr 14

15 UITWERKEN VN DE ETHODE 0,5 F 1 statisch onbepaade, 1 vormveranderings voorwaarde ( ) ( ) deze vorm noemen we ook we: - hoekveranderingsvoorwaarde - gaapvergeijking 1 ½ 1 4 F? ½ os S.O. op met de vergeet-mij-nietjes Ir J.W. Weeman badnr 15

16 DOORGNDE LIGGERS D E F Onbekende opegreacties : 7 anta evenwichtsvergeijkingen : GRD van STTISH ONEPLDHD : n 4 DUS : 4 Statisch Onbepaaden EN 4 Vormveranderingsvoorwaarden! () () (D) D (ED) E () (D) (DE) D (EF) E Ir J.W. Weeman badnr 16

17 VOOREELD 1 : DOORGNDE LIGGER (ontwerpfase) h beastingen in de gebruiksfase F D 6a a 4a Vaste gegevens : F a h 100 kn 10 kn/m 1,0 m 0,6 m Variabee gegevens : 1000 knm S5 Gevraagd : - bepaa de krachtsverdeing - bepaa de zakking onder de puntast - concusie? Ir J.W. Weeman badnr 17

18 VOOREELD : RWERK (ET NIET-VERPLTSRE KNOPEN) 10 kn/m ae staven h5 m ae staven h 8 m D D () () () (D) VERGEET- IJ-NIETJES h 4 6 h Ir J.W. Weeman badnr 18

19 OPLOSSING -ijn knm 7.6 knm 7,6 knm 7,6 knm D Dwarskrachtenijn Normaakrachtenijn Opegreacties Ir J.W. Weeman badnr 19

20 VOOREELD : RWERK 0,8 0,4 0,6 Ir J.W. Weeman badnr 0

21 VOOREELD 4 : RWERK 0,8 0,4 0,6 0,6 D Ir J.W. Weeman badnr 1

22 UITWERKEN Knoopevenwicht ( ) ( ) ( ( 0 ) D) e staven en engte D -voudig statisch onbepaad statisch onbepaaden vormveranderingsvoorwaarden Ir J.W. Weeman badnr

23 OPLOSSEN VN DE ONEKENDEN Vereenvoudigen van de vergeijkingen door substitutie van : Dus: ( ) en Ir J.W. Weeman badnr

24 OENTENLIJN ,8 0,4 D Ir J.W. Weeman badnr 4

25 DWRSKRHTENLIJN D Ir J.W. Weeman badnr 5

26 STIJFHDSVERSHILLEN IN EEN ONSTRUTIE Stijfheidsverschien tussen staven Stijfheidsverschi in een staaf (a) (b) (c) INVLOED OP DE KRHTSVERDELING? Ir J.W. Weeman badnr 6

27 VOOREELD : EENVOUDIG PORTL 10 kn/m n h5 m r > k r k r < k D 8 m omentenijnen voor drie situaties n rege koom WT IS DE INVLOED VN n OP DE KRHTSVERDELING? Ir J.W. Weeman badnr 7

28 REKENKUNDIGE UITWERKING n n n n STEL n1 7,6 knm n Invoed van een stijfheidsverschi D h VOER EEN FKTOR IN : Factor n n 1 7,6 Faktor 1,6 1,4 1, 1 0,8 0,6 0,4 0, praktisch gebied stijfheidsverhouding n Ir J.W. Weeman badnr 8

29 IJZONDERE SITUTIES Steunpuntszettingen δ Verende inkemmingen k k k θ LE rotatieveer Ir J.W. Weeman badnr 9

30 STEUNPUNTSZETTING NPK HETZELFDE LS IJ DE KRHTENETHODE - kies statisch bepaad hoofdsysteem - ste vormveranderingsvoorwaarde op VORVERNDERINGSVOORWRDE UITWERKEN θ θ 1 δ θ δ θ δ δ θ Ir J.W. Weeman badnr 0

31 VERENDE INKLEINGEN NPK WEER HETZELFDE k k PROLEE : OENT IN DE VEER IS FHNKELIJK VN DE NOG ONEKENDE HOEKVERDRIING VN DE LIGGER IJ DE OPLEGGING OPLOSSING VOOR OENT IJ : k ρ 6 k 1 ρ ρ k 1.0 k og(ρ) 1 4 Ir J.W. Weeman badnr 1

32 OPLOSSING VOOR HET OENT IJ DE OPLEGGING : ρ 1 veer k k 4 met : en ρ 1 ρ 1+ 4 k ZIE VOOR DE FLDING: NVULLENDE NOTITIE OVER STTISH ONEPLDE ONSTRUTIES, apri 01, J.W. Weeman. k ρ Ir J.W. Weeman badnr

Krachtsverdeling t.g.v. een temperatuursbelasting

Krachtsverdeling t.g.v. een temperatuursbelasting Kractsverdeing t.g.v. een temperatuursbeasting Een stijging van de temperatuur in een materiaa eidt tot een verenging. Deze verenging is afankeijk van de ineaire uitzettingscoëfficiënt α [ K - ] en de

Nadere informatie

Hertentamen CT2031. ConstructieMechanica April :00 17:00 uur

Hertentamen CT2031. ConstructieMechanica April :00 17:00 uur 33 Subfacuteit Civiee Techniek Vermed op baden van uw werk: Constructiemechanica STUDIENUMMER : NAAM : Hertentamen CT031 ConstructieMechanica 3 15 Apri 013 14:00 17:00 uur As de kandidaat niet vodoet aan

Nadere informatie

NOTITIE : KRACHTENMETHODE

NOTITIE : KRACHTENMETHODE NOIIE : KRHENEHODE Een korte uiteenzetting over steunpuntszettingen, toevaige inkemmingsmomenten en temperatuurseffecten bij doorgaande iggers op buiging beast. Ir. J.W. Weeman pri 0 Kractsverdeing t.g.v.

Nadere informatie

UITWERKING MET ANTWOORDEN

UITWERKING MET ANTWOORDEN Tentamen T0 onstructieechanica Januari 0 UITWERKING ET ANTWOORDEN Opgave a) Drie rekstrookjes b) Onder hoeken van 45 graden c) Tussen 0,5l en 0,7l (basisgevallen van Euler) d) () : Nee de vergrotingsfactor

Nadere informatie

BEKNOPTE ANTWOORDEN. Opgave 1. Vragen deel 1 : Tentamen CT3109 ConstructieMechanica 4 15 april 2013 S2 B. 2,0 m. 3,0 m 2,0 m 3,0 m 3,0 m

BEKNOPTE ANTWOORDEN. Opgave 1. Vragen deel 1 : Tentamen CT3109 ConstructieMechanica 4 15 april 2013 S2 B. 2,0 m. 3,0 m 2,0 m 3,0 m 3,0 m Tentamen CT3109 Constructieechanica 4 15 ari 013 Ogave 1 Vragen dee 1 : BEKNOPTE NTWOORDEN S1 S B S3 C D,0 m 3,0 m,0 m 3,0 m 3,0 m 4,0 m,0 C B V B V 1,67 V S3-rechts 0,67 V S3-rechts knm ϕ B rechte kn

Nadere informatie

Module 5 Uitwerkingen van de opdrachten

Module 5 Uitwerkingen van de opdrachten Module 5 Uitwerkingen van de opdrachten Opdracht 1 Deze oefening heeft als doel vertrouwd te raken met het integreren van de diverse betrekkingen die er bestaan tussen de belasting en uiteindelijk de verplaatsing:

Nadere informatie

Module 6 Uitwerkingen van de opdrachten

Module 6 Uitwerkingen van de opdrachten 1 Module 6 Uitwerkingen van de opdrachten Opdracht 1 De in figuur 6.1 gegeven constructie heeft vier punten waar deze is ondersteund. A B C D Figuur 6.1 De onbekende oplegreacties zijn: Moment in punt

Nadere informatie

STABILITEIT VAN HET EVENWICHT

STABILITEIT VAN HET EVENWICHT STABILITEIT VAN HET EVENWICHT 1 Introductie Basisbegrippen en definities Vormen van instabiiteit Starre staven Stabiiteitsonderzoe op starre staafmodeen Voorbeeden 3 Buigzame staven Afeiding van Euer (statisch

Nadere informatie

OPGAVE 7 : ARBEID EN ENERGIE

OPGAVE 7 : ARBEID EN ENERGIE OPGAVE 7 : ARBD EN ENERGIE In de onderstaande figuur is een op druk beaste buigzame staaf weergegeen die haerwege beast wordt met een etra kracht. De normaakracht in de staaf is hierdoor niet constant.

Nadere informatie

VAKWERKEN. Hans Welleman 1

VAKWERKEN. Hans Welleman 1 VAKWERKEN Hans Welleman 1 WAT IS EEN VAKWERK vormvaste constructie opgebouwd uit alleen pendelstaven Hans Welleman 2 STAAFAANDUIDINGEN Randstaven Bovenrand Onderrand dd sd Wandstaven Verticalen Diagonalen

Nadere informatie

NIETJE NIET VERWIJDEREN

NIETJE NIET VERWIJDEREN NIETJE NIET VERWIJDEREN Faculteit Civiele Techniek en Geowetenschappen NAAM : Schriftelijk tentamen CTB1110 ConstructieMEchanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 21 pagina

Nadere informatie

OPGAVE FORMULIER. Tentamen CTB1110 CONSTRUCTIEMECHANICA 1 3 november :00 12:00 uur (180 min)

OPGAVE FORMULIER. Tentamen CTB1110 CONSTRUCTIEMECHANICA 1 3 november :00 12:00 uur (180 min) Opleiding Civiele Techniek Vermeld op bladen van uw werk: Constructiemechanica STUDIENUMMER : NAAM : OPGAVE FORMULIER Tentamen CTB1110 CONSTRUCTIEMECHANICA 1 3 november 2014 09:00 12:00 uur (180 min) Dit

Nadere informatie

kinematisch en statisch (on) bepaaldheid Noodzakelijk aantal opleggingen, graad van statisch onbepaaldheid Hans Welleman 1

kinematisch en statisch (on) bepaaldheid Noodzakelijk aantal opleggingen, graad van statisch onbepaaldheid Hans Welleman 1 kinematisch en statisch (on) bepaaldheid Noodzakelijk aantal opleggingen, graad van statisch onbepaaldheid Hans Welleman 1 PLAATSVASTE STARRE LICHAMEN Rotatie Centrum Horizontale roloplegging Verticale

Nadere informatie

OP BUIGING BELASTE STAAFCONSTRUCTIES

OP BUIGING BELASTE STAAFCONSTRUCTIES CT3109 : BEZWIJKNLYSE OP BUIGING BELSTE STFCONSTRUCTIES ELSTICITEIT & PLSTICITEIT VOLPLSTISCH MOMENT VORMFCTOR TOEPSSINGEN OP EENVOUDIGE DOORSNEDEN GEDRG VN DE DOORSNEDE MOMENT-KROMMINGS RELTIE PLSTISCHE

Nadere informatie

Knik van een verend gesteunde kolom in een raamwerk

Knik van een verend gesteunde kolom in een raamwerk EINDVERSIE februari 007 Knik van een verend gesteunde koom in een raamwerk ir. J. Majaars, ir. H.M.G.M. Steenbergen, dr. ir. M.C.M. Bakker, prof. ir. H.H. Snijder Johan Majaars en Henri Steenbergen zijn

Nadere informatie

Module 7 Uitwerkingen van de opdrachten

Module 7 Uitwerkingen van de opdrachten 1 Module 7 Uitwerkingen van de opdrachten Opdracht 1 Het verschil in aanpak betreft het evenwicht in de verplaatste vervormde toestand. Tot nu toe werd bij een evenwichtsbeschouwing van een constructie

Nadere informatie

Tentamen CT3109 ConstructieMechanica 4 5 juli 2006 ANTWOORDEN

Tentamen CT3109 ConstructieMechanica 4 5 juli 2006 ANTWOORDEN Tentamen CT309 Constructieechanica 4 jui 006 OPGAVE ANTWOODEN a) Voor theorievragen ie de eermiddeen. b) De cirke van ohr is hieronder getekend. scae () ( ; ) (0,-30) r0 N/mm 0 ( ; ) (0,-30) 0 () 3 0 m60

Nadere informatie

ConstructieMechanica 3

ConstructieMechanica 3 CTB10 COLLEGE 9 ConstructieMechanica 3 7-17 Stabiliteit van het evenwicht Inleiding Starre staaf (systeem met één vrijheidsgraad) Systemen met meer dan één vrijheidsgraad Buigzame staaf (oneindig veel

Nadere informatie

M-V-N-lijnen Nadruk op de differentiaalvergelijking. Hans Welleman 1

M-V-N-lijnen Nadruk op de differentiaalvergelijking. Hans Welleman 1 M-V-N-lijnen Nadruk op de differentiaalvergelijking Hans Welleman 1 Uitwendige krachten 50 kn 120 kn 98,49 kn 40 kn 40 kn 30 kn 90 kn 4,0 m 2,0 m 2,0 m werklijnen van de reactiekrachten Hans Welleman 2

Nadere informatie

CT3109 : ConstructieMechanica 4

CT3109 : ConstructieMechanica 4 CT3330 COLLEGE 17 CT3109 : ConstrtieMehania 4 17-19 Invloedslijnen Inleiding Maxwell Statish bepaalde onstrties Kwalitatief Kwantitatief Statish onbepaalde onstrties Kwalitatief Kwantitatief ijzondere

Nadere informatie

Module 4 Uitwerkingen van de opdrachten

Module 4 Uitwerkingen van de opdrachten Module 4 Uitwerkingen van de opdrachten Opdracht 1 Analyse Constructie bestaat uit scharnierend aan elkaar verbonden staven, rust op twee scharnieropleggingen: r 4, s 11 en k 8. 2k 3 13 11, dus niet vormvast.

Nadere informatie

CONSTRUCTIEMECHANICA 3

CONSTRUCTIEMECHANICA 3 CTB10 CONSTRUCTIEMECHANICA 3 Modue : Stabiiteit van het evenwicht Dee 1 : Theorie December 016 C. Hartsuijker en J.W. Weeman CTB10 MODULE : STABILITEIT VAN HET EVENWICHT COENRAAD HARTSUIJKER HANS WELLEMAN

Nadere informatie

KeCo-opgaven elektricitietsleer VWO4

KeCo-opgaven elektricitietsleer VWO4 KeCo-opgaven eektricitietseer VWO4 1 KeCo-opgaven eektricitietseer VWO4 E.1. a. Wat is een eektrische stroom? b. Vu in: Een eektrische stroomkring moet atijd.. zijn. c. Een negatief geaden voorwerp heeft

Nadere informatie

Tentamen CT2053 Constructief Ontwerpen 2 studiejaar 2009/2010 donderdag 26 augustus 2010 van 9.00 tot uur

Tentamen CT2053 Constructief Ontwerpen 2 studiejaar 2009/2010 donderdag 26 augustus 2010 van 9.00 tot uur Uitgangspunten: 1. Zet op ae baden naam en studienummer. 2. Werk netjes en systematisch, schrijf eesbaar. 3. Bij twijfe over een uitkomst kunt u toch nog punten scoren door uw twijfe te motiveren. 4. As

Nadere informatie

Module 2 Uitwerkingen van de opdrachten

Module 2 Uitwerkingen van de opdrachten 1 Modue Uitwerkingen vn de opdrchten Opdrcht 1 nyse Sttisch bepde constructie. Uitwendig evenwicht te bepen met evenwichtsvoorwrden. Drn op de gevrgde ptsen een denkbeedige snede nbrengen en met de evenwichtsvoorwrden

Nadere informatie

Elk vermoeden van fraude wordt gemeld bij de examencommissie.

Elk vermoeden van fraude wordt gemeld bij de examencommissie. Faculteit Civiele Techniek en Geowetenschappen Schriftelijk tentamen CTB1110 ConstructieMEchanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 18 pagina s excl voorblad 02-11-2015 van

Nadere informatie

INTRODUCTIE VERPLAATSINGENMETHODE

INTRODUCTIE VERPLAATSINGENMETHODE INTROUTIE ERPLTSINGENMETHOE akerk Met behup van de verpaatsngenmethode a de krachtsverdeng n het onderstaande vakerk orden bepaad. Het vakerk bestaat ut vf staven en s opgeegd n en. 40 kn a = 1,0 m 1 2

Nadere informatie

Construerende Technische Wetenschappen

Construerende Technische Wetenschappen Faculteit: Opleiding: Construerende Technische Wetenschappen Civiele Techniek Tentamen Mechanica I Datum tentamen : 14-4-2009 Vakcode : 226014 Tijd : 3½ uur (09:00-12:30) Beoordeling: Aantal behaalde punten

Nadere informatie

Struct4U Berekeningsnummer : Revisie : Blad 1 van 13 Projectnummer : Datum - tijd : :33

Struct4U Berekeningsnummer : Revisie : Blad 1 van 13 Projectnummer : Datum - tijd : :33 Berekeningsnummer : Revisie : Blad 1 van 13 Bestand :C:\Users\Rob\Documents\demo.xfr2 1 Invoergegevens Projectnummer : Gebruiker : Aantal knopen : 6 Aantal staven : 6 Aantal voorgeschreven knoopverplaatsingen

Nadere informatie

Projectopdracht Bovenloopkraan

Projectopdracht Bovenloopkraan Projectopdracht Bovenloopkraan De opdrachten: Om op een veilige, en verantwoorde manier te kunnen werken, moet er in een werkplaats een bovenloopkraan met een loopkat worden gemonteerd. Een loopkat is

Nadere informatie

Projectopdracht Bovenloopkraan

Projectopdracht Bovenloopkraan Projectopdracht Bovenloopkraan De opdrachten: Om op een veilige, en verantwoorde manier te kunnen werken, moet er in een werkplaats een bovenloopkraan met een loopkat worden gemonteerd. Een loopkat is

Nadere informatie

Module 9 Uitwerkingen van de opdrachten

Module 9 Uitwerkingen van de opdrachten 1 Module 9 Uitwerkingen van de opdrachten Opdracht 1 Zie voor de gevraagde begrippen de tekst van dit onderdeel. Opdracht 2 De vormfactor wordt bepaald door: W p W De weerstandmomenten van de gegeven doorsneden

Nadere informatie

S3 Oefeningen Krachtenleer Hoofdstuk VII VII-1. a) steunpuntreacties. massa balk m b = b * h * l * ρ GB = 0.5 * 0.5 * 10 * 2500 = 6250 kg

S3 Oefeningen Krachtenleer Hoofdstuk VII VII-1. a) steunpuntreacties. massa balk m b = b * h * l * ρ GB = 0.5 * 0.5 * 10 * 2500 = 6250 kg S3 Oefeningen Krachtenleer Hoofdstuk VII VII-1. Een gewapend-betonbalk ligt op planken met een grondoppervlak van 1000 x 50 mm². De volumemassa van gewapend beton is 500 kg/m³. Gevraagd : a) de steunpuntsreacties

Nadere informatie

Antwoordenbundel. Module: Stabiliteit van het evenwicht. Constructiemechanica 3. ANTWOORDEN Constructiemechanica 3

Antwoordenbundel. Module: Stabiliteit van het evenwicht. Constructiemechanica 3. ANTWOORDEN Constructiemechanica 3 ANTWOORDEN Constrctiemechanica Mode: Stabiiteit van het evenwicht Dee : Antwoordenbnde Antwoordenbnde Mode: Stabiiteit van het evenwicht Constrctiemechanica Behorend bij: Constrctiemechanica Mode: stabiiteit

Nadere informatie

UITWERKINGSFORMULIER. Tentamen CT1031-CT CONSTRUCTIEMECHANICA 1 23 januari :00 12:00 uur

UITWERKINGSFORMULIER. Tentamen CT1031-CT CONSTRUCTIEMECHANICA 1 23 januari :00 12:00 uur Subfaculteit iviele Techniek Vermeld op bladen van uw werk: onstructiemechanica STUIENUMMER : NM : UITWERKINGSFORMULIER Tentamen T101-T106-1 ONSTRUTIEMEHNI 1 2 januari 201 09:00 12:00 uur it tentamen bestaat

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie

Doorbuiging. Rekenvoorbeelden bij Eurocode 2 (10)

Doorbuiging. Rekenvoorbeelden bij Eurocode 2 (10) Rekenvoorbeeden bij Eurocode (0 In de serie met rekenvoorbeeden, waarin de diverse onderdeen van de Eurocode worden toegeicht, is het in dit tiende artike de beurt aan doorbuiging In het voorbeed wordt

Nadere informatie

Technische Universiteit Delft Faculteit der Civiele Techniek en Geowetenschappen. De effectieve kiplengte van houten liggers

Technische Universiteit Delft Faculteit der Civiele Techniek en Geowetenschappen. De effectieve kiplengte van houten liggers Technische Universiteit Deft Facuteit der Civiee Techniek en Geowetenschappen De effectieve kipengte van houten iggers Roeand van Straten November 1 Technische Universiteit Deft Facuteit der Civiee Techniek

Nadere informatie

De eenvoudig statisch bepaalde ligger

De eenvoudig statisch bepaalde ligger 1 e eenvoudig sttisch eplde ligger Inleiding : e drgende constructie vn een geouw of een rug is opgeouwd uit een ntl liggers. Voor een rug is dit : 1. de lngsligger die ondersteuning geeft n het rugdek

Nadere informatie

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de

Nadere informatie

CTB3330 : ConstructieMechanica 4

CTB3330 : ConstructieMechanica 4 CTB3330 COLLEGE 13 CTB3330 : Constructieechanica 4 13-14 Niet-smmetrische en/of inhomogene doorsneden Inleiding lgemene theorie voor etensie en buiging Niet-smmetrische doorsneden Voorbeelden kromming

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Elk vermoeden van fraude wordt gemeld bij de examencommissie.

Elk vermoeden van fraude wordt gemeld bij de examencommissie. Faculteit Civiele Techniek en Geowetenschappen Schriftelijk tentamen CTB1110 ConstructieMEchanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 5 pagina s excl voorblad 02-11-2015 van

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

DOORBUIGING VAN BETONCONSTRUCTIES

DOORBUIGING VAN BETONCONSTRUCTIES DOORBUIGING VAN BETONCONSTRUCTIES 1. De buigstijfheid EI 1.1 Inleiding 1.2 De relatie tussen moment en kromming: EI 1.3 Tension Stiffening 1.4 M-κ diagrammen voor de UGT en de BGT 1.4.1 Berekening van

Nadere informatie

Elk vermoeden van fraude wordt gemeld bij de examencommissie.

Elk vermoeden van fraude wordt gemeld bij de examencommissie. Faculteit Civiele Techniek en Geowetenschappen Naam : Studienr : Schriftelijk tentamen CTB1110 ConstructieMechanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 20 pagina s excl voorblad

Nadere informatie

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10 H. 10 Goniometrie 10.1 Bsisegrippen Regelmtig voeren we erekeningen uit, wrin één of meerdere hoeken voorkomen. Voor een sherpe hoek kunnen we 3 goniometrishe verhoudingen definiëren. Deze lten zih het

Nadere informatie

NOTITIES OVER KABELS EN BOGEN

NOTITIES OVER KABELS EN BOGEN NOTITIES OVER KBELS EN BOGEN Parametrisch modeeren met MPLE Ir J.W. Weeman Oktober 0 ans Weeman, Den oorn 00-0 Niets uit deze uitgave mag worden verveevoudigd en/of openbaar gemaakt worden door midde van

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

Uitwerking tentamen CT2053 Constructief Ontwerpen 2 studiejaar 2009/2010 donderdag 24 juni 2010 van 14.00 tot 17.00 uur

Uitwerking tentamen CT2053 Constructief Ontwerpen 2 studiejaar 2009/2010 donderdag 24 juni 2010 van 14.00 tot 17.00 uur Vraag 1 Ontwerpen agemeen Vraag 1.1 Weke zaken wi je as constructief ontwerper aan het eind van de anaysefase vasteggen? PvE, Randvoorwaarden, Uitgangspunten, Ontwerpcriteria, mogeijkheden ontwerp Vraag

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

m p Tabel: I plaat 3 m pa 2

m p Tabel: I plaat 3 m pa 2 VRIJE UNIVERSITEIT BRUSSE FACUTEIT TOEGEPASTE WETENSCHAPPEN MECHANICA Een e kndidtuur Burgerlijk Ingenieur-Architect Acdeiejr -3 Zterdg juni 3 Vrg O R Bovenstnd voorwerp werd gevord door uit een vlkke

Nadere informatie

Analyse. Lieve Houwaer Dany Vanbeveren

Analyse. Lieve Houwaer Dany Vanbeveren Anlyse Lieve Houwer Dny Vnbeveren . Relties, functies, fbeeldingen, bijecties Voor niet-ledige verzmelingen A en B noemen we elke deelverzmeling vn de productverzmeling A x B een reltie vn A nr B. We noemen

Nadere informatie

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Kerstvkntieursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de

Nadere informatie

WELK LICHTSCHERM MOET IK GEBRUIKEN VOOR INLOOPBEVEILIGING?

WELK LICHTSCHERM MOET IK GEBRUIKEN VOOR INLOOPBEVEILIGING? ICK KEUZEHULP WELK LICHTCHERM MOET IK GEBRUIKEN VOOR INLOOPBEVEILIGING? Voor inloopeveiliging geldt onder meer de norm EN 13855. Dit is de norm voor het eplen vn de veiligheidsfstnd. Deze fstnd is fhnkelijk

Nadere informatie

Breuken en verhoudingen

Breuken en verhoudingen WISKUNDE IN DE BOUW Breuken en verhoudingen Leerdoelen N het estuderen vn dit hoofdstuk moet je in stt zijn om: te rekenen met reuken en verhoudingen; reuken toe te pssen in erekeningen vn onder ndere

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

CT2121 EXPERIMENT 1 ONDERZOEK NAAR DE VALIDITEIT VAN DE BUIGINGSTHEORIE FORMULIER 1: AFTEKENFORMULIER

CT2121 EXPERIMENT 1 ONDERZOEK NAAR DE VALIDITEIT VAN DE BUIGINGSTHEORIE FORMULIER 1: AFTEKENFORMULIER CT2121 EXPERIMENT 1 ONDERZOEK NAAR DE VALIDITEIT VAN DE BUIGINGSTHEORIE FORMULIER 1: AFTEKENFORMULIER Naam Studienummer LET OP: NA HET JUIST INVULLEN VAN DE VERPLAATSINGEN BIJ ONDERDEEL 4 KRIJG JE EEN

Nadere informatie

Tentamen CT2053 Constructief Ontwerpen 2 studiejaar 2009/2010 donderdag 24 juni 2010 van 14.00 tot 17.00 uur

Tentamen CT2053 Constructief Ontwerpen 2 studiejaar 2009/2010 donderdag 24 juni 2010 van 14.00 tot 17.00 uur Uitgangspunten: 1. Zet op ae baden naam en studienummer, en ever deze na het tentamen in de omsag in. 2. Werk netjes en systematisch, schrijf eesbaar. 3. Bij twijfe over een uitkomst kunt u toch nog punten

Nadere informatie

Mechanica, deel 2. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Mechanica, deel 2. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Mechanica, deel Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 010-011 Voorwoord Dit is een verzameling van opgeloste oefeningen van vorige jaren die ik heb

Nadere informatie

ENERGIEPRINCIPES. Opgave 1 : Op extensie belaste staaf. Opgave 2 : Niet-prismatische doorsnede

ENERGIEPRINCIPES. Opgave 1 : Op extensie belaste staaf. Opgave 2 : Niet-prismatische doorsnede ENERGIEPRINCIPES Opgve : Op etensie beste stf -s Er is evenwicht s e virtuee rbeisvergeijking voor ek kinemtisch mogeijk verptsingsve get. Pst men het principe vn minime potentiëe EA, energie toe op een

Nadere informatie

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2 Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk... 8.

Nadere informatie

COLLEGE ONDERWERPEN. 1 Spanningstensor Spanningsdefinitie Spanningstoestanden en voorbeelden 2 Rektensor CTB2210 : ELASTICITEITSLEER

COLLEGE ONDERWERPEN. 1 Spanningstensor Spanningsdefinitie Spanningstoestanden en voorbeelden 2 Rektensor CTB2210 : ELASTICITEITSLEER CTB0 : ELASTICITEITSLEER COLLEGE ONDERWERPEN Spanningstensor Spanningsdefinitie Spanningstoestanden en voorbeeden Retensor Reatieve verpaatsingen Redefinities Retensor 3 Tensoreigenschappen Introdctie

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

Antwoordformulier CTB1310 Constructiemechanica 2 ~ ~ 5 ECTS ^^^^'^

Antwoordformulier CTB1310 Constructiemechanica 2 ~ ~ 5 ECTS ^^^^'^ Tentamen CTB 1310 Constructiemechanica 2 Antwoordformulier CTB1310 Constructiemechanica 2 ~ ~ 5 ECTS ^^^^'^ Maak alle opgaven op dit antwoordformulier. Lever dit formulier in. Kladpapier wordt niet ingenomen.

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

Constructief Ontwerpen met Materialen B 7P118 KOLOM- BEREKENING

Constructief Ontwerpen met Materialen B 7P118 KOLOM- BEREKENING KOLOM- BEREKENING We onderscheiden 3 soorten constructies: 1. Geschoorde constructies (pendelstaven) Com B 2. Schorende constructies (schijven, kernen) Beton 2 3. Ongeschoorde constructies (raamwerken

Nadere informatie

Module 8 Uitwerkingen van de opdrachten

Module 8 Uitwerkingen van de opdrachten Module 8 Uitwerkingen van de opdrachten Opdracht 1 Analyse De constructie bestaat uit een drie keer geknikte staaf die bij A is ingeklemd en bij B in verticale richting is gesteund. De staafdelen waarvan

Nadere informatie

Elk vermoeden van fraude wordt gemeld bij de examencommissie. NIETJE NIET LOSHALEN!!

Elk vermoeden van fraude wordt gemeld bij de examencommissie. NIETJE NIET LOSHALEN!! Faculteit Civiele Techniek en Geowetenschappen Schriftelijk tentamen CTB1110 ConstructieMechanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 5 pagina s excl voorblad 27-1-2017 van 09:00-12:00

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Emenursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit

Nadere informatie

Voor Basisberoepsgerichte leerweg en Kaderberoepsgerichte leerweg geldt: AVO 4 (profiel A b = A+b / 2 1 eindcijfer

Voor Basisberoepsgerichte leerweg en Kaderberoepsgerichte leerweg geldt: AVO 4 (profiel A b = A+b / 2 1 eindcijfer In shem Uitslgepling VMBO In shem 1 (sis- en kereroepsgerihte leerweg) stt e vrint wrij geen shoolexmen(s) over het profielvk is/zijn fgenomen. In shem (eveneens e sis en kereroepsgerihte leerweg) e vrint

Nadere informatie

3 Snijpunten. Verkennen. Uitleg

3 Snijpunten. Verkennen. Uitleg 3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls

Nadere informatie

Route F - Desert. kangoeroerat

Route F - Desert. kangoeroerat Route F - Desert Voor deze route, moet je eerst nr de Bush. Dr moet je even zoeken nr de tunnel die nr de Desert leidt. Geruik onderstnd krtje voor de Desert. Begin ij nummer 1. 1 Kngoeroertten Kngoeroertten

Nadere informatie

INTERVIEWEN 1 SITUATIE

INTERVIEWEN 1 SITUATIE INTERVIEWEN drs. W. Bontenl 1 SITUATIE Een interview vlt te omshrijven ls een gesprek tussen één of meerdere personen - de interviewers - en een ndere persoon (of diverse nderen) - de geïnterviewden -

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

6.4 Rekenen met evenwichtsreacties

6.4 Rekenen met evenwichtsreacties 6.4 Rekenen met evenwihtsreties An de hnd vn een reeks vooreelden zullen we het rekenwerk ehndelen n evenwihtsreties. Vooreeld 6.2 We estuderen het gsevenwiht: A(g) + B(g) C(g) + D(g) In een ruimte vn

Nadere informatie

ONGESCHOORDE RAAMWERKEN

ONGESCHOORDE RAAMWERKEN ONGESCHOORDE RAAMWERKEN Géén stabiliserende elementen aanwezig. De ongeschoorde constructie moet zelf de stabiliteit verzorgen en weerstand bieden tegen de erop werkende horizontale krachten. Dit resulteert

Nadere informatie

Lengteverandering bij temperatuurverandering.

Lengteverandering bij temperatuurverandering. 2 Uitzetting. Opgve 2.1 Lengteverndering ij tempertuurverndering. De ene stof zet sterker uit dn de ndere. Deze mterileigenshp wordt ngegeven met de lineire uitzettingsoëffiiënt (α). De lineire uitzettingsoëffiiënt

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

Kritische belastingen van stabiliteitselementen

Kritische belastingen van stabiliteitselementen Stabiiteit verdiepingbouw Kritiche beatingen van tabiiteiteementen Dit artike bechrijft een eenvoudige methode voor het berekenen van de kritiche beatingen van tabiiteiteementen in verdiepinggebouwen.

Nadere informatie

Tentamen CTB2210. ConstructieMechanica 3

Tentamen CTB2210. ConstructieMechanica 3 Subfaculteit iviele Technie Vermeld op bladen van uw wer: onstructiemechanica STUDIENUER : N : Tentamen T10 onstructieechanica 9 februari xxx van 09:00 1:00 uur Dit tentamen bestaat uit 5 opgaven. ls de

Nadere informatie

Form follows Force. Robert-Jan Kustermans - 1390562 Docenten: Jan Engels, Tjalling Homans en Wim Kamerling Definitief rapport, 24-01-2013

Form follows Force. Robert-Jan Kustermans - 1390562 Docenten: Jan Engels, Tjalling Homans en Wim Kamerling Definitief rapport, 24-01-2013 Form foows Force Robert-Jan Kustermans - 139056 Docenten: Jan Enges, Tjaing Homans en Wim Kamering Definitief rapport, 4-01-013 0. Voorwoord en Leeswijzer A sinds de oudheid maken mensen gebruik van boogconstructies.

Nadere informatie

Schöck Isokorb type D

Schöck Isokorb type D Schöck Isokorb type Inhoud Pagina Toepassingsvoorbeelden 84 Productbeschrijving 85 Bovenaanzichten 86 apaciteitstabellen 87-92 Rekenvoorbeeld 93 Bijlegwapening 94 Inbouwhandleiding 95-96 hecklist 97 Brandwerendheid

Nadere informatie

HOGESCHOOL ROTTERDAM. Cluster: RIBACS

HOGESCHOOL ROTTERDAM. Cluster: RIBACS HOGESCHOOL ROTTERDAM Cluster: RIBACS MODULEWIJZER voor de module ribkev01c KRACHT EN VORMGEVING Een oriëntatie op het dimensioneren van draagconstructies Module-Code : ribkev01c Opgesteld door : Ing. M.

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Blz 64: Figuur De rondjes in de scharnierende ondersteuningen horen onder de doorgaande ligger te worden getekend.

Blz 64: Figuur De rondjes in de scharnierende ondersteuningen horen onder de doorgaande ligger te worden getekend. lgemene opmerking De zetter heeft bij de formuleopmaak in uitwerkingen veelal geen cursieve l gebruikt voor de lengte maar l. Dit is een storend probleem want hiermee is het onderscheid met het getal 1

Nadere informatie

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers?

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers? Route A 1 Bosrendieren en korstmossen Rendieren zijn de enige herten wrvn zowel mnnetjes ls vrouwtjes een gewei drgen. Vroeger dcht men dt het gewei geruikt werd om sneeuw weg te schuiven zodt ze ij het

Nadere informatie

Projectopdracht Bovenloopkraan

Projectopdracht Bovenloopkraan Projectopdracht Bovenloopkraan De opdrachten: Om op een veilige, en verantwoorde manier te kunnen werken, moet er in een werkplaats een bovenloopkraan met een loopkat worden gemonteerd. Een loopkat is

Nadere informatie

MEETKUNDE 2 Lengte - afstand - hoeken

MEETKUNDE 2 Lengte - afstand - hoeken MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul

Nadere informatie

Beredeneer waarom de marginale productcurve de gemiddelde productcurve in het maximum snijdt.

Beredeneer waarom de marginale productcurve de gemiddelde productcurve in het maximum snijdt. Opgaven hoofdstuk 9 Opgave 1 Beredeneer waarom de marginae productcurve de gemiddede productcurve in het maximum snijdt. Opgave Vu de vogende tabe verder in en teken de bijbehorende curven voor het totae,

Nadere informatie

ouderparticipatie keuzedossier vmbo osb in de onderbouw Gemengde Leerweg

ouderparticipatie keuzedossier vmbo osb in de onderbouw Gemengde Leerweg euzedossier ouderparticipatie keuzedossier vmbo osb in de onderbouw Gemengde Leerweg Op vijf badzijden in het werkboek wordt de medewerking van de ouders of verzorgers van de eeringen gevraagd. Wanneer

Nadere informatie

Opgave 1. Waarom kun je bij het Noorden twee getallen neerzetten? Geldt dit ook voor andere windrichtingen? Hoeveel graden hoort er bij het Oosten?

Opgave 1. Waarom kun je bij het Noorden twee getallen neerzetten? Geldt dit ook voor andere windrichtingen? Hoeveel graden hoort er bij het Oosten? Opgve 1 Hier zie je een windroos met de windrihtingen er in getekend. Hij is verder verdeeld in 360 hoekjes, elk vn die hoekjes heet 1 grd. Bij het Noorden (N) hoort 0 grden (en dus ook 360 grden). file:

Nadere informatie

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM HEREXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : TIJ : ------------------------------------------------------------------------------------------------------------------------

Nadere informatie