5. berekenen van limieten en asymptoten

Maat: px
Weergave met pagina beginnen:

Download "5. berekenen van limieten en asymptoten"

Transcriptie

1 hoodstuk : berekenen van ieten en asymptoten. berekenen van ieten en asymptoten.. inleiding Algebraïsche uncties zijn uncties die geconstrueerd kunnen worden met enkel de constante en identieke unctie, en de bewerkingen som, verschil, product, quotiënt, veelvoud, macht en worteltrekking. Uit vorig hoodstuk weten we dat de constante en de identieke unctie continu zijn en dat al deze bewerkingen de continuïteit bewaren. Bijgevolg zijn algebraïsche uncties altijd continu op hun domein. Voor elk (niet-geïsoleerd) punt van het domein is de iet dus gelijk aan het beeld. Het eerste wat we dan ook altijd doen bij het zoeken van een iet is het beeld zoeken. Als dat bestaat, is dat meteen ook de iet. Als we het beeld niet vinden, krijgen we een goede aanduiding van wat we moeten doen om de iet te vinden... ieten van veeltermuncties... VOORBEELD : :. Het domein is, zoals bij alle veeltermuncties,, en dus hoeven we alleen een iet te zoeken in + en in -. In alle andere punten is de iet gelijk aan het beeld. We zoeken de iet naar + m.b.v. eigenschappen : en de iet naar - : - -

2 hoodstuk : berekenen van ieten en asymptoten niet gedeiniee rd Nochtans, als je de graiek maakt, zie je dat ook de iet in - zou moeten gelijk zijn aan +. We gaan dus op een andere manier op zoek. Als we de hoogstegraadsterm buitenzetten, blijkt de iet van wat overblijt tussen de haakjes, altijd gelijk te zijn aan. De iet van onze veeltermunctie is dus gewoon gelijk aan de iet van de hoogstegraadsterm, en die kan nooit een onbepaaldheid opleveren. Dat systeem kunnen we nu dus altijd toepassen. Boven het gelijkheidsteken schrijven we dan. Ook de iet in + gaan we vana nu zo zoeken, ook al leverde de vorige methode de oplossing. We krijgen :... REGEL De iet van een veeltermunctie in + o in - is de iet van de hoogstegraadsterm. - -

3 hoodstuk : berekenen van ieten en asymptoten ieten van rationale uncties... VOORBEELD 7 : :. Het domein is, zoals bij alle rationale uncties, \{nulpunten van de noemer}, en dus zoeken we de ieten in + en in -, en in de nulpunten van de noemer. In alle andere punten is de iet gelijk aan het beeld. De ieten in + en in - gebruiken hetzelde systeem als bij veeltermuncties, want rationale uncties zijn quotiënten van veeltermuncties Volledig analoog vinden we dezelde iet in -. De nulpunten van de noemer zijn - en. Ook daar berekenen we de iet. We proberen altijd eerst met invullen. Dat leert ons o we een iet hebben van de vorm teller over o van de vorm over. Beiden vragen een verschillende oplossingsmethode. 7 Deze laatste iet is zeker. Een tekenschema leert ons dat er een linker- en een rechteriet aan te pas komt.

4 hoodstuk : berekenen van ieten en asymptoten () - + De etra actor heet geen invloed meer op het resultaat, en dus besluiten we : en Deze laatste iet is zeker. Een tekenschema bepaalt het teken () + + We besluiten : 7... LIMIET IN ± De iet van een rationale unctie in + o in - is de iet van het quotiënt van de hoogstegraadstermen. Vergeet niet te vereenvoudigen! - -

5 hoodstuk : berekenen van ieten en asymptoten... LIMIET IN EEN NULPUNT VAN DE NOEMER DAT GEEN NULPUNT IS VAN DE TELLER De iet van een rationale unctie in een nulpunt van de noemer dat geen nulpunt is van de teller, is altijd. Het teken wordt bepaald door een tekenschema. Daarbij kan de iet uiteenvallen in een linker- en een rechteriet.... VOORBEELD 8 : :. De nulpunten van de noemer zijn en. Het nulpunt is geen nulpunt van de teller en de iet daarvan zoeken we zoals in vorig voorbeeld. is echter nulpunt van de noemer én van de teller. Dat merken we als we invullen. We krijgen een derde methode. 8 OIF We hebben de oorspronkelijke unctie vervangen door een continue vervanging. De iet van de oorspronkelijke unctie in het punt is gelijk aan het beeld van van de continue vervanging. We moeten dus enkel nog invullen : LIMIET IN EEN NULPUNT VAN DE NOEMER DAT OOK NULPUNT IS VAN DE TELLER De iet van een rationale unctie in een nulpunt van de noemer dat ook nulpunt is van de teller, is gelijk aan het beeld van de continue vervanging van die unctie. Ontbind daartoe de unctie in actoren en schrap de gemeenschappelijke actoren van teller en noemer. - -

6 hoodstuk : berekenen van ieten en asymptoten.. oeeningen... bereken van volgende veeltermuncties de ieten in ± a) : : b) : : c) : : 7 8 d) : : 8... bereken van volgende rationale uncties de ieten in ± en in de gegeven punten a) b) c) d) e) ) g) : : 6 in en 8 : : 6 in - en : 6 : in en 7 : : in en 8 : : in - en 8 : : in - en : : in - en zoek nu zel de punten h) : : - 6 -

7 hoodstuk : berekenen van ieten en asymptoten ieten van irrationale uncties... LIMIET IN EEN NULPUNT VAN DE NOEMER DAT GEEN NULPUNT IS VAN DE TELLER De iet van een irrationale unctie in een nulpunt van de noemer dat geen nulpunt is van de teller, is altijd. Het teken wordt bepaald door een tekenschema. Meestal is er enkel een linker- o enkel een rechteriet.... VOORBEELD 6 : :. De nulpunten van de noemer zijn en. We zoeken daar de ieten Deze laatste iet is zeker. Een tekenschema bepaalt het teken. We besluiten : 6. Uit hetzelde tekenschema volgt : 6 6 en dus : () + +

8 hoodstuk : berekenen van ieten en asymptoten LIMIET IN EEN NULPUNT VAN DE NOEMER DAT OOK NULPUNT IS VAN DE TELLER De iet van een irrationale unctie in een nulpunt van de noemer dat ook nulpunt is van de teller, is gelijk aan het beeld van de continue vervanging van die unctie. Ontbind daartoe de unctie in actoren en schrap de gemeenschappelijke actoren van teller en noemer. Als het ontbinden problemen oplevert, vermenigvuldigen we teller en noemer met de toegevoegde.... VOORBEELDEN : :. Het nulpunt van de noemer is. Dit is echter nulpunt van de noemer én van de teller. Dat merken we als we invullen. TGV 6 OIF. : : Het nulpunt van de noemer is. TGV OIF 6 6

9 hoodstuk : berekenen van ieten en asymptoten Opnieuw brengt een tekenschema de oplossing () + + We besluiten :.... LIMIET IN ± De iet van een irrationale unctie in + o in - is de iet van (het quotiënt van) de hoogstegraadsterm(en). Vergeet niet te vereenvoudigen indien mogelijk! Als de hoogstegraadstermen problemen opleveren, vermenigvuldigen we met de toegevoegde...6. VOORBEELDEN want - - -

10 hoodstuk : berekenen van ieten en asymptoten.6. oeeningen.6.. bereken van volgende irrationale uncties de ieten in ± (indien mogelijk) en in de gegeven punten a) b) c) : : 6 in : : 6 in en : : in d) : : in 8 e) 8 : : in - en zoek nu zel de punten ) g) : : : : bereken van volgende irrationale uncties de ieten in ± a) : : b) : : c) : : d) : : a b e) : : 6 ) : : - -

11 hoodstuk : berekenen van ieten en asymptoten g) : :.6.. bereken van volgende uncties de ieten in de ophopingspunten van het domein die niet tot het domein behoren a) : : b) : : c) : : 6 d) : 6 : 6 e) : : ) : : 6 g) : : h) : : i) : : 6 6 j) : : 7 - -

12 hoodstuk : berekenen van ieten en asymptoten a.6.. bereken als a a a) : : 7 b) : : c) d) : : : : n e) : : ) : :.6.. a 7 : :. Als, bereken dan a en deze iet a b : : bereken dan a en b en deze laatste iet.. Als en,.6.7. a b : : 6 b.. Als, bereken dan a en.6.8. bereken van volgende rijen de ieten a) n t : IN : n n b) c) t : IN : n t : IN : n n 7n n n d) t : IN : n n n - -

13 hoodstuk : berekenen van ieten en asymptoten.7. asymptoten.7.. HORIZONTALE EN VERTICALE ASYMPTOTEN : VOORBEELD : :. Dom = \{-,} We zoeken de ieten in -, -, en + deze iet valt uiteen in een linker- en een rechteriet : 7 De betekenis van deze ieten is belangrijk : langs links begint de unctie op hoogte - op breedte - gaat de unctie langs links helemaal naar beneden; langs rechts begint ze helemaal boven op breedte hebben we een gat ; de unctie is doorboord en 7 kan opgevuld worden met het punt, langs rechts eindigt de unctie op hoogte - We zeggen dat de unctie in - een verticale asymptoot heet en een horizontale asymptoot op hoogte -. We zien dit ook op de graiek : een asymptoot raakt op oneindig. - -

14 hoodstuk : berekenen van ieten en asymptoten VA : = - en HA : y = SCHUINE ASYMPTOTEN : VOORBEELD : :. Dom = \ We zoeken de ieten in -, en +, - -

15 hoodstuk : berekenen van ieten en asymptoten Er is opnieuw duidelijk een verticale asymptoot in =, maar langs links en rechts gaat de unctie oneindig laag en oneindig hoog. Er is dus geen horizontale asymptoot. Dit wordt bevestigd op de graiek : We zien nu echter een schuine asymptoot met vergelijking y. Deze asymptoot vinden is niet zo gemakkelijk. We gebruiken volgende deinitie..7.. ASYMPTOTEN : DEFINITIES De rechte met vergelijking = a is een verticale asymptoot bij de graiek van de unctie asa o a a De rechte met vergelijking y = b is een horizontale asymptoot bij de graiek van de unctie asa b o b De rechte met vergelijking y = a + b is een schuine asymptoot bij de graiek van de unctie asa a b o a b - -

16 hoodstuk : berekenen van ieten en asymptoten Schuine asymptoten kan je enkel vinden als je de getallen a en b kan vinden. Daarvoor bestaan volgende ormules : a en b a bewijs Als y = a + b een SA is, dan zal het verschil tussen deze rechte en de unctie in oneindig, nul worden. Noem V a b dan is a V b en V. Dan is : a a V b Verder is : b a V en dus is : b b a V a.7.. HET AANTAL ASYMPTOTEN Verticale asymptoten kunnen alleen voorkomen in nulpunten van de noemer. Er kunnen dus maimaal zoveel VA zijn als de graad van de noemer. Het aantal horizontale en schuine asymptoten samen kan hoogstens twee zijn, want er zijn alleen in - en in + ieten te zoeken..7.. NOG ENKELE VOORBEELDEN : : met dom = ]-,-] U [,+ [ VA : geen : het enige nulpunt van de noemer valt buiten het domein HA : twee ieten zoeken y = - y = SA : er zijn reeds twee horizontale asymptoten - 6 -

17 hoodstuk : berekenen van ieten en asymptoten : : VA : geen noemer, dus geen verticale asymptoten HA : twee ieten zoeken geen HA geen HA SA : nog twee schuine asymptoten mogelijk a b TGV SA : y = - + a b TGV SA : y = - 7 -

18 hoodstuk : berekenen van ieten en asymptoten.8. oeeningen.8.. bereken alle asymptoten van volgende uncties a) : : b) c) d) : : : : : : 6 e) : : 7 ) : : g) : : h) : : 6 i) : : 8 j) : : cot.8.. als de unctie : : een asymptoot heet a a 6 met vergelijking =, bereken dan a en alle andere asymptoten. b.8.. als de unctie : : twee asymptoten heet a b 6 met vergelijkingen = en y =, bereken dan a en b en alle andere asymptoten. a als de unctie : : twee asymptoten heet b a 6 met vergelijkingen = - en =, bereken dan a en b en alle andere asymptoten

Asymptoten. Hoofdstuk Basis. 1.2 Verdieping. 1. Bepaal alle asymptoten van de volgende functies:

Asymptoten. Hoofdstuk Basis. 1.2 Verdieping. 1. Bepaal alle asymptoten van de volgende functies: Hoofdstuk 1 Asymptoten 1.1 Basis 1. Bepaal alle asymptoten van de volgende functies: a) f) 5 + 6 5 + 1 b) f) + 5 c) f) 5 + d) f) + + e) f) + + f) f) + 1 + + 4 g) f) 5 + h) f) + 1 i) f) cos 1 1. Verdieping

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Modelvraagstukken: Limieten van Rationale Functies (RF).

Modelvraagstukken: Limieten van Rationale Functies (RF). Sint-Norbertusinstituut Duffel Modelvraagstukken: Limieten van Rationale Functies RF) Inhoudsopgave Basisieten Nulpunten en hun multipliciteit 3 Limietwaarden op oneindig 4 3 Berekening in detail 4 3 Verkorte

Nadere informatie

1. Algebraïsche functies

1. Algebraïsche functies Algebraïsche uncties Sir Isaac Newton Gottried Wilhelm Leibniz Algemene begrippen ) Deinities in verband met uncties a) Het unctiebegrip Een relatie is een verzameling koppels y,, waarbij alle -waarden

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a a 8 8. Ageleiden bladzijde 5 Uit de ormule voor de omtrek van een cirkel (omtrek r ) volgt dat een volledige cirkel (60 ) overeenkomt met radialen. Een halve cirkel (80 ) komt dus overeen met radialen.

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

Paragraaf 13.0 : Limieten en absolute waarde

Paragraaf 13.0 : Limieten en absolute waarde Hoofdstuk 13 Limieten en Asymptoten (V6 Wis B) Pagina 1 van 13 Paragraaf 13.0 : Limieten en absolute waarde Definitie absoluuttekens pp = { p absoluut of de absolute waarde van p } pp = { altijd positief

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0. Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen ( 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (  15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

Tussentoets Analyse 1

Tussentoets Analyse 1 Tussentoets Analyse Maandag 0 oktober 008, 0.00 -.00u Schrijf op ieder vel je naam en studentnummer, de naam van de docent S. Hille, O. van Gaans en je studierichting. Geef niet alleen antwoorden, leg

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 23 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 23 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAVO 06 tijdvak donderdag 3 juni 3:30-6:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 75 punten te behalen. Voor elk

Nadere informatie

Paragraaf 5.1 : Wortelvormen en Breuken

Paragraaf 5.1 : Wortelvormen en Breuken Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 1 van 11 Paragraaf 5.1 : Wortelvormen en Breuken Les 1 : Wortelformules, Domein en Bereik Definities Domein = { alle -en die je mag invullen in de formule

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Oefentoets uitwerkingen

Oefentoets uitwerkingen Vak: Wiskunde Onderwerp: Hogere machtsverb., gebr. func=es, exp. func=es en logaritmen Leerjaar: 3 (206/207) Periode: 3 Oefentoets uitwerkingen Opmerkingen vooraf: Geef je antwoord al=jd mét berekening

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2E HUISWERKOPDRACHT CONTINUE WISKUNDE Inleverdatum maandag 8 oktober 2017 voor het college Niet losse velletjes aan elkaar vast. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven.

Nadere informatie

Didactische wenken bij het onderdeel analyse

Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse 1/21 1. Eindtermen analyse Eindtermen ASO tweede graad ET 22 3 (4) aspecten van een functie ET 23 Standaardfuncties

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

1E HUISWERKOPDRACHT CONTINUE WISKUNDE E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

3.1 Negatieve getallen vermenigvuldigen [1]

3.1 Negatieve getallen vermenigvuldigen [1] 3.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5-3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 3 = -15 Voorbeeld 4: -5 3 9 2

Nadere informatie

Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben. Hier is ( ) ( ) = 8+ a. De rico van r is m x

Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben. Hier is ( ) ( ) = 8+ a. De rico van r is m x Gegeven is de functie f a a) Voor welke a R heeft f geen etrema? + +, met parameter a R Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben Hier is Er zijn dus geen etrema als en slechts

Nadere informatie

lesbrief Inverse functie en TI-nspire 6/7N5p

lesbrief Inverse functie en TI-nspire 6/7N5p lesbrie Inverse unctie TI-nspire 6/7N5p GGHM@EE 01-01 De inverse unctie De inverse 1 () van e unctie () doet precies het omgekeerde (inverse) van wat () zel doet Je kunt ook stell dat e inverse unctie

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3 HOOFDSTUK 6: RIJEN 1 Limiet van een rij 2 1.1 Het begrip rij 2 1.2 Bepaling van een rij 2 1.2.1 Expliciet voorschrift 2 1.2.2 Recursief voorschrift 3 1.2.3 Andere gevallen 3 1.2.4 Rijen met de grafische

Nadere informatie

Hoofdstuk 9: NEGATIEVE GETALLEN

Hoofdstuk 9: NEGATIEVE GETALLEN 1 H9. Negatieve getallen Hoofdstuk 9: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 53 57) 9.1 Getallen onder 0 Het verschil verwoorden tussen positieve en negatieve getallen. Weten dat we 0 zowel

Nadere informatie

Proefexemplaar. Wendy Luyckx Mark Verbelen Els Sas. Dirk Vandamme. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door. Cartoons.

Proefexemplaar. Wendy Luyckx Mark Verbelen Els Sas. Dirk Vandamme. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door. Cartoons. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door Wendy Luyckx Mark Verbelen Els Sas Cartoons Dirk Vandamme Leerboek Getallen ISBN: 78 0 4860 48 8 Kon. Bib.: D/00/047/4 Bestelnr.: 4 0 000

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Hoofdstuk 3: NEGATIEVE GETALLEN

Hoofdstuk 3: NEGATIEVE GETALLEN 1-6 H3. Negatieve getallen Hoofdstuk 3: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 96 123) 3.1 Positieve en negatieve getallen Het verschil verwoorden tussen positieve en negatieve getallen.

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Memoriseren: Een getal is deelbaar door 10 als het laatste cijfer een 0 is. Of: Een getal is deelbaar door 10 als het eindigt op 0.

Memoriseren: Een getal is deelbaar door 10 als het laatste cijfer een 0 is. Of: Een getal is deelbaar door 10 als het eindigt op 0. REKENEN VIJFDE KLAS en/of ZESDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Luc Cielen: Regels van deelbaarheid, grootste gemene deler en kleinste gemeen veelvoud 1 Deelbaarheid door 10, 100, 1000. Door

Nadere informatie

Te kennen leerstof Wiskunde

Te kennen leerstof Wiskunde - 1 - Te kennen leerstof Wiskunde Wiskundeproeven voor de faculteit sociale en militaire wetenschappen (SSMW) en voor de polytechnische faculteit (POL) De te kennen leerstof is gebaseerd op de richtingen

Nadere informatie

Paragraaf 5.1 : Machten en wortels

Paragraaf 5.1 : Machten en wortels Hoofdstuk 5 Machten, exponenten en logaritmen (H Wis B) Pagina 1 van 1 Paragraaf 5.1 : Machten en wortels Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL : a p a q = a p+q a p aq =

Nadere informatie

Breuken met letters WISNET-HBO. update juli 2013

Breuken met letters WISNET-HBO. update juli 2013 Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie. 1) Met een positief exponent in de term(en) ( )

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie. 1) Met een positief exponent in de term(en) ( ) Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen ).

Nadere informatie

Calculus I, 19/10/2015

Calculus I, 19/10/2015 Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,

Nadere informatie

Limieten. EEB2-7N5p GGHM

Limieten. EEB2-7N5p GGHM Limieten EEB - 7N5p GGHM - Inhoud Limieten... Nog meer limieten... 7 Continuïteit... 9 Links- en rechtscontinu... Limieten berekenen... Limiet van a... De insluitstelling... 6 Limieten van... 7 Differentieerbaarheid...

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Convexe functies op R (niet in het boek)

Convexe functies op R (niet in het boek) Convee uncties op R (niet in het boe Een unctie : R R heet conve, als voor alle, R en ele λ [0,] geldt dat (λ + (-λ λ( + (-λ(. Voor een unctie op R beteent dit dat als je twee willeeurige punten op de

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Wat kan er (niet) zonder ε-δ?

Wat kan er (niet) zonder ε-δ? Oneindig klein. Wat kan er (niet) zonder ε-δ? Michel Roelens University Colleges Leuven Limburg Maria-Boodschaplyceum Brussel Hilde Eggermont Sint-Pieterscollege Leuven Redactie Uitwiskeling Afgeleide

Nadere informatie

WPP 5.1: Reële functies. Oplossing onderzoeksopdrachten. Werkbladen ICT : Opgaven en oplossingen

WPP 5.1: Reële functies. Oplossing onderzoeksopdrachten. Werkbladen ICT : Opgaven en oplossingen WPP 5.1: Reële functies onderzoeksopdrachten Werkbladen ICT : Opgaven en oplossingen Onderzoeksopdracht leerboek bladzijde 0 Het gedrag op oneindig van een veeltermfunctie 5 = + Gegeven : de functie f

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

De notatie van een berekening kan ook aangeven welke bewerking eerst moet = = 16

De notatie van een berekening kan ook aangeven welke bewerking eerst moet = = 16 Rekenregels De voorrangsregels van de hoofdbewerkingen geven aan wat als eerste moet worden uitgerekend. Voorrangsregels 1. Haakjes 2. Machtsverheffen en Worteltrekken. Vermenigvuldigen en Delen 4. Optellen

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Eigenschappen van continue en afleidbare functies

Eigenschappen van continue en afleidbare functies Eigenshappen van ontinue en afleidbare funties Mihel Rolle april 65 - Ambert 8 november 79 - Parijs Augustin Louis Cauhy augustus 789 - Parijs mei 857 - Seau Joseph-Louis Lagrange 5 januari 76 Turijn 0

Nadere informatie

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 +

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 + I Getall 0 e π 8 9 Dit deel gaat over het rek met getall. Ze kom in allerlei soort voor: positieve getall, negatieve getall, gehele getall, rationale irrationale getall. De getall, π e zijn voorbeeld van

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

Download gratis de PowerPoint rekenen domein getallen:

Download gratis de PowerPoint rekenen domein getallen: Getallen Bron: Examenbladmbo.nl, SYLLABUS REKENEN 2F en 3F vo en mbo, Versie mei 2015 Download gratis de PowerPoint rekenen domein getallen: http://nielspicard.nl/download/powerpoint-rekenen-domein-getallen/

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

Willem van Ravenstein

Willem van Ravenstein Willem van Ravenstein 1. Variabelen Rekenen is het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken je de bewerkingen machtsverheffen en worteltrekken.

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Copyright 2017 Gertjan Laan Versie 3.1. uitgeverij czarina

Copyright 2017 Gertjan Laan Versie 3.1. uitgeverij czarina G E R T J A N L A A N A N A LY S E B O E K U I T G E V E R I J C Z A R I N A Copright 07 Gertjan Laan Versie. uitgeverij czarina www.uitgeverijczarina.nl www.gertjanlaan.nl tufte-late.github.io/tufte-late

Nadere informatie

Breuken in de breuk. 1 Breuken vermenigvuldigen en delen (breuken in de breuk)

Breuken in de breuk. 1 Breuken vermenigvuldigen en delen (breuken in de breuk) Breuken in de breuk update juli 2013 WISNET-HBO De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

wiskunde B havo 2019-II

wiskunde B havo 2019-II Een logaritmische en een eponentiële unctie De uncties en g worden gegeven door: 1 en g 1 ( ) 4 3 ( ) 8 log 4 1 p de graiek van ligt een punt met -coördinaat 13. Dat is het punt. p de graiek van g ligt

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

DE GRAFIEK VAN EEN FUNCTIE KOPPELEN AAN DE GRAFIEK VAN DE AFGELEIDE

DE GRAFIEK VAN EEN FUNCTIE KOPPELEN AAN DE GRAFIEK VAN DE AFGELEIDE DE GRAFIEK VAN EEN FUNCTIE KOPPELEN AAN DE GRAFIEK VAN DE AFGELEIDE Auteur: Henk Gijsbers, Nijmeegse Scholengemeenschap Groenewoud, h.gijsbers@nsg-groenewoud.nl Dank gaat uit naar collega s Roy Loos en

Nadere informatie

De studie van vlakke krommen gegeven in parametervorm. Lieve Lemmens en Andy Snoecx

De studie van vlakke krommen gegeven in parametervorm. Lieve Lemmens en Andy Snoecx De studie van vlakke krommen gegeven in parametervorm Doelstellingen Lieve Lemmens en An Snoecx Deze tekst stelt een voorbeeld van de analyse van een kromme met de Texas TI-NSpire (en/of computersoftware)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Algemeen deel. Bij het vermenigvuldigen met van de ongelijkheid moet u rekening houden met twee gevallen, te weten > 0 en < 0 en u moet

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

7.1 Grafieken en vergelijkingen [1]

7.1 Grafieken en vergelijkingen [1] 7.1 Grafieken en vergelijkingen [1] Voorbeeld: Getekend zijn de grafieken van y = x 2 4 en y = x + 2. De grafieken snijden elkaar in de punten A(-2, 0) en B(3, 5). Controle voor x = -2 y = x 2 4 y = x

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Reële functies. 1. Algebraïsche functies Algemene begrippen. Gottfried Wilhelm Leibniz Leipzig 1 juli 1646 Hannover 14 november 1716

Reële functies. 1. Algebraïsche functies Algemene begrippen. Gottfried Wilhelm Leibniz Leipzig 1 juli 1646 Hannover 14 november 1716 Reële functies Algebraïsche functies Sir Isaac Newton Woolsthorpe 4 januari 643 Kensington 3 maart 77 Gottfried Wilhelm Leibniz Leipzig juli 646 Hannover 4 november 76 Algemene begrippen ) Definities in

Nadere informatie

VAKANTIEWERK WISKUNDE

VAKANTIEWERK WISKUNDE A -> Hn 0 / 06 / 06 VAKANTIEWERK WISKUNDE NEEM UW MAP WISKUNDE!! Herhalingsoefening : Optellen in Q (60 ptn) gevallen : - voor twee rationale getallen met hetzelfde teken * behoud dit teken * maak de som

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048

Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048 Blz: 1/5 04 09 09 1.1 STELLING VAN PYTHAGORAS ouwregel tot Pythagoras: formulering. 07 09 09 11 09 09 14 09 09 18 09 09 21 09 09 22 09 09 25 09 09 29 09 09 01 10 09 02 10 09 06 10 09 08 10 09 09 10 09

Nadere informatie

rekenregels voor machten en logaritmen wortels waar of niet waar

rekenregels voor machten en logaritmen wortels waar of niet waar Hoofdstuk 5 - machten, eponenten en logaritmen rekenregels voor machten en logaritmen wortels waar of niet waar 0. voorkennis HERLEIDEN VAN MACHTEN - rekenregels voor machten Bij het vermenigvuldigen van

Nadere informatie

Inhoud. 1 Basisbegrippen. 1

Inhoud. 1 Basisbegrippen. 1 Inhoud 1 Basisbegrippen. 1 2 Machtfuncties (MF). 3 2.1 Machtfuncties in R +........................ 3 2.2 Machtfuncties in R......................... 6 2.2.1 Machtfuncties in R met positieve exponent.......

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

wiskunde B havo 2016-II

wiskunde B havo 2016-II Drie snijpunten 3 3 De unctie is gegeven door ( ) = + 3 +. De graiek van snijdt de -as in drie punten. Zie de iguur. iguur O p Bereken de -coördinaten van de drie snijpunten van de graiek van met de -as.

Nadere informatie

Verbanden en functies

Verbanden en functies Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.

Nadere informatie

Breuksplitsen WISNET-HBO NHL. update juli 20014

Breuksplitsen WISNET-HBO NHL. update juli 20014 Breuksplitsen WISNET-HBO NHL update juli 20014 1 Inleiding Bij sommige opleidingen is het belangrijk dat er enige vaardigheid ontwikkeld wordt om grote breuken te manipuleren en om te zetten in een aantal

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Goed aan wiskunde doen

Goed aan wiskunde doen Goed aan wiskunde doen Enkele tips Associatie K.U.Leuven Tim Neijens Katrien D haeseleer Annemie Vermeyen Maart 2011 Waarom? Dit document somt de belangrijkste aandachtspunten op als je een wiskundeopgave

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te

Nadere informatie

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie