Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016"

Transcriptie

1 Kwantummechanica HOVO cursus Jo van den Brand Lecture 4: 13 oktober 2016 Copyright (C) VU University Amsterdam 2016

2 Overzicht Algemene informatie Jo van den Brand / Nikhef, room: N3.47 Colleges Course information: Boeken Dictaat Zelfstudie Wiskunde: vectoren, complexe getallen, lineaire algebra Response gedurende het college

3 Week 4 Les 4: Het waterstofatoom Wiskundige inleiding SV in drie dimensies Centrale vierkante sferische potentiaal Verstrooiing aan een gelokaliseerde potentiaal Deeltje in de Coulomb-potentiaal Opgaven: zie website Copyright (C) Vrije Universiteit 2009

4 Wiskundige inleiding We gaan nu in drie dimensies werken en kiezen geschikte coördinaten Het verband tussen Cartesische en sferische coördinaten is Ook geldt De tijdsonafhankelijke SV in drie dimensies De eerste term correspondeert met kinetische energie met

5 Transformatie van coördinaten We kiezen nu de meer geschikte sferische coördinaten We maken gebruik van de volgende relaties (geschreven in matrixvorm) We kunnen deze vergelijking inverteren, en vinden Voor de Laplace operator vinden we dan

6 Toelichting We laten nu in detail zien hoe we aan de eerste term komen We hebben Voor de eerste afgeleiden vinden we met de kettingregel Voor de tweede afgeleide geldt dan We kunnen dit schrijven als Zo vinden we ook Optellen geeft Idem voor Δ θ en Δ φ

7 SV in drie dimensies We gaan de SV oplossen met scheiden van variabelen We starten met de tijdonafhankelijke SV We proberen de oplossing We vermenigvuldigen met De linkerkant hangt niet af van r en θ, en de rechterkant niet van φ Beide kanten dienen dus gelijk te zijn aan een constante, en we kiezen die als m 2 en

8 Hoekvergelijkingen voor θ en φ We beginnen met het oplossen van de hoekvergelijkingen voor φ De vergelijking voor hoek φ luidt Met als oplossing We eisen dat de oplossing eenduidig dient te zijn, bijvoorbeeld voor φ = 0 en φ = 2π De ruimtelijke richting is gekwantiseerd! In de klassieke fysica zouden we de hoekafhankelijkheid als sin- en cosfuncties opschrijven, omdat de hoekenfuncties reëel dienen te zijn. In de kwantummechanica bestaat een dergelijke beperking niet We noemen m het magnetisch kwantumgetal

9 Hoekvergelijkingen voor θ en φ We beschouwen vervolgens de hoekvergelijking voor θ Voor hoek θ geldt We hebben variabelen r en θ gescheiden, en kiezen als scheidingsconstante Dat levert Als we de dierentiaalvergelijking voor de afhankelijkheid van θ oplossen, dan vinden we dat eindige oplossingen mits Voor de oplossingen geldt We herkennen in de functies P m l cos θ de Legendrefuncties die polynomen zijn in cos θ en waarvan de vorm afhangt van de waarde van het kwantumgetal l en de absolute waarde van het kwantumgetal m

10 Sferisch harmonische functies Y m l θ, φ De Legendrefuncties komen veel in de natuurkunde voor, met name als het hoekgedrag sferisch symmetrisch is Geassocieerde Legendre polynomen Normalisaties Complete hoekafhankelijkheid van een centrale potentiaal Dit zijn de sferisch harmonische functies Y m l θ, φ en ze zijn orthogonaal Dit exacte vorm van de potentiaal is niet relevant! We vinden Er geldt

11 De radiële oplossing De radiële oplossing volgt uit de radiële vergelijking en die heeft een centrifugale term Radiële vergelijking Kies Dan vinden we de radiële vergelijking Het is een 1-dimensionale SV met effectieve potentiaal De centrifugale term ħ2 l(l+1) 2m r 2 probeert deeltjes naar buiten te drukken Verder dient nog te gelden dat De volledige golffunctie is De golffunctie moet verder begrensd zijn Als we verder willen komen, dan hebben we nu een uitdrukking voor de potentiaal nodig

12 Centrale vierkante sferische potentiaal put We sluiten een deeltje op in een drie-dimensionale put met oneindig hoge potentiaal Er geldt De golffunctie is dan nul buiten de put, terwijl de golffunctie binnen de put gegeven wordt door de radiële vergelijking met Voor l = 0 vinden we dan Voor de radiële golffunctie geldt dan We dienen B = 0 te kiezen, want De randvoorwaarde vereist sin ka = 0 en dus ka = nπ met n = 1,2,3, We vinden dan

13 Centrale vierkante sferische potentiaal put De toestanden voor l = 0 We vinden voor de energie Dit hadden we al eerder gevonden (in hoofdstukken 2 en 3) Voor l = 0 vinden we als golffunctie dus We hebben de normering gebruikt om dit te vinden We gebruiken 3 kwantumgetallen (hoofd kwantumgetal, baan kwantumgetal en magnetisch kwantumgetal) om de toestanden te labelen: n, l en m De golffunctie wordt dan geschreven als De energie E nl hangt enkel van n en l af

14 Centrale vierkante sferische potentiaal put De algemene oplossingen We algemene oplossing is Definitie sferische Neumannfunctiess sferische Besselfunctie Sferische Besselfunctie j l x We vinden bijvoorbeeld Voor kleine x geldt sin x x en cos x 1 Dus geldt

15 Centrale vierkante sferische potentiaal put De algemene oplossingen We algemene oplossing is Randvoorwaarde Kies k zo, dat De Besselfunctie heeft echter oneindig veel nulpunten We noemen β nl het n de -nulpunt van de l-de sferische Besselfunctie Dan geldt Energietoestanden Golffuncties We kunnen A nl uit de normering halen Elk energieniveau is 2l + 1 keer ontaard Dat zijn de mogelijke waarden voor m

16 Deeltje in de Coulombpotentiaal Het waterstofatoom bestaat uit een elektron dat beweegt in de Coulombpotentiaal van het veel zwaardere proton Coulombpotentiaal We kiezen de oorsprong als de positie van het proton De golffunctie schrijven we als De radiële golffunctie Met Coulombterm is aantrekkend Centrifugale term is altijd afstotend We gaan de radiële vergelijking nu oplossen Een belangrijk voorbeeld in de kwantummechanica

17 Elektron in het waterstofatoom Oplossen van de radiële vergelijking van een deeltje in de Coulompotentiaal We hadden De energie is negatief en definieer nu variabele Definieer vervolgens en We verwachten oplossingen die gedempt zijn voor In die limiet geldt Met algemene oplossing u ρ = Ae ρ + Be ρ De laatste term blaast op voor en dus geldt B = 0 voor grote

18 Elektron in het waterstofatoom Oplossen van de radiële vergelijking van een deeltje in de Coulompotentiaal In de limiet domineert de centrifugale term, en dan Dit heeft als algemene oplossing De laatste term blaast op voor en dus geldt D = 0 voor grote We scheiden dit asymptotisch gedrag af door een nieuwe functie te definiëren Met Hiermee vinden we voor de radiële vergelijking

19 Elektron in het waterstofatoom Oplossen van de radiële vergelijking van een deeltje in de Coulompotentiaal We hebben We schrijven de oplossing als een machtreeks We dienen de coëfficiënten te bepalen We hebben Invullen in de radiële vergelijking levert We vinden de recursierelatie

20 Elektron in het waterstofatoom Oplossen van de radiële vergelijking van een deeltje in de Coulompotentiaal We hebben We beginnen met en vinden dan. Vervolgens bepalen we etc, Op die manier bepalen we Grote waarden van j corresponderen met grote waar hogere machten domineren In dit gebied geldt Neem even aan dat dit de exacte oplossing is We golffunctie blaast op bij grote en dat wilden we nou net vermijden! De uitweg uit dit dilemma is dat de machtreeks moet afbreken Er bestaan een waarvoor

21 Elektron in het waterstofatoom Oplossen van de radiële vergelijking van een deeltje in de Coulompotentiaal Recursieformule Voldoet aan We definiëren het hoofdkwantumgetal We hadden En ook Energie-eigenwaarden worden gegeven door Dit is de vergelijking van Bohr

22 Elektron in het waterstofatoom Oplossen van de radiële vergelijking van een deeltje in de Coulompotentiaal Energieniveaus Ontaarding voor niveau n: l = 0, 1, 2,.., n-1 m: 2l+1 Totaal n 2

23 Elektron in het waterstofatoom We kijken nu naar de golffuncties van het elektron in het waterstofatoom We vinden Dus geldt De golffuncties met Met een polynoom van de orde in De coëfficiënten volgen uit Voor de grondtoestand geldt n = 1 Met golffunctie met

24 Elektron in het waterstofatoom We kijken nu naar de golffuncties van het elektron in het waterstofatoom Voor niveau n = 1 vinden we met Normeren Verder De eerste aangeslagen toestand is n = 2 met We vinden en De toestanden zijn ontaard, en de constante is uit de normering te halen

25 Elektron in het waterstofatoom We kijken nu naar de golffuncties van het elektron in het waterstofatoom Golffuncties Met Laguerre polynomen vinden we

26 Elektron in het waterstofatoom We kijken nu naar de golffuncties van het elektron in het waterstofatoom Golffuncties Waarschijnlijkheden

27 Elektron in het waterstofatoom Metingen van de waarschijnlijkheidsverdeling in waterstof Elektronenverstrooiing Men werkt in momentum space en gebruikt PWIA

28 Elektron in het waterstofatoom Metingen van de waarschijnlijkheidsverdeling in waterstof Coordinate space en momentum space zijn elkaars Fourier transform

29 Elektron in het waterstofatoom Metingen van de waarschijnlijkheidsverdeling in waterstof Meetgegevens: de curve is een oplossing van de SV

30 Harmonische oscillator

31 Harmonische oscillator Systeem wordt verplaatst uit evenwicht 2 dx Toenemende tegenwerkende kracht F ma m kx 2 dt Harmonische oscillaties rond evenwichtspunt x( t) Acos t Frequency Potentiële energie k 2 m T 1 2 V ( x) kx 2 2 x z

32 Quantum harmonische oscillator Hamiltoniaan 2 pˆ 1 Hˆ m xˆ 2m k 2 k m m V ( x) 1 kx 2 2 Schrödingervergelijking Ĥ E Golffuncties Energieën En n 1/4 2 m x m m 2 n n( x) e H x, n 0,1,2,... n 2 n! H ( x) 1 0 H ( x) 2x 1 H x x 2 2( ) 4 2 H x x 3 3( ) 8 12 H x x x 4 2 4( ) H x x x x 5 3 5( ) H x x x x ( ) H x x x x x ( )

33 Huiswerk: opgave 3.5.1

34 Huiswerk: opgave 3.5.2

35 Huiswerk: opgave 3.5.2

36 Huiswerk: opgave x

37 Huiswerk: opgave 3.5

38 Huiswerk: opgave 3.5

39 Huiswerk: opgave 3.5 x

40 Huiswerk: opgave 3.5

41

42

43 Voor n = 1 vinden we Huiswerk: opgave 3.5.7

44 Huiswerk: opgave 3.5.8

QUANTUM FYSICA 1 3NB50. donderdag 28 oktober uur. Dit tentamen omvat 2 opgaven.

QUANTUM FYSICA 1 3NB50. donderdag 28 oktober uur. Dit tentamen omvat 2 opgaven. 1 QUANTUM FYSICA 1 3NB5 donderdag 8 oktober 1 14. 17. uur Dit tentamen omvat opgaven. Bij ieder onderdeel wordt aangegeven wat de maximale score is op een schaal van 1 punten. Het formuleblad voor dit

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Voorbeeld 1: Oneindig diepe potentiaalput

Voorbeeld 1: Oneindig diepe potentiaalput Voorbeeld : Oneindig diepe potentiaalput In de onderstaande figuren bevindt zich een deeltje in een eendimensionale ruimte tussen x 0 en x a. Binnen dat gebied is de potentiële energie van het deeltje

Nadere informatie

Verstrooiing aan potentialen

Verstrooiing aan potentialen Verstrooiing aan potentialen In deze notitie zullen we verstrooiing beschouwen aan model potentialen, d.w.z. potentiaal stappen, potentiaal bergen en potentiaal putten. In de gebieden van de potentiaal,

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur Tentamen Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April 2014 Tijd/tijdsduur: 3 uur Docent(en) en/of tweede lezer: Dr. F.C. Grozema Prof. dr. L.D.A. Siebbeles Dit tentamen bestaat uit 5 opgaven:

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Jo van den Brand 10 oktober 2013

Jo van den Brand 10 oktober 2013 Jo van den Brand 10 oktober 2013 jo@nikhef.nl Inhoud Speciale relativiteitstheorie Viervectoren Energie en impuls Quantumfysica Formalisme Verstrooiing Elementaire deeltjes en krachten Standaard model

Nadere informatie

Tentamen QCB juni 2007, 9:00-12:00 uur, A. van der Avoird

Tentamen QCB juni 2007, 9:00-12:00 uur, A. van der Avoird Aantal pagina s: 6 1 Tentamen QCB 3 27 juni 2007, 9:00-12:00 uur, A. van der Avoird Vraagstuk 1 1a. Teken een MO energieschema (correlatiediagram) van het molecuul O 2, uitgaande van de atomaire niveau

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

Lineaire algebra 1 najaar Complexe getallen

Lineaire algebra 1 najaar Complexe getallen Lineaire algebra 1 najaar 2008 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 + 1 steeds

Nadere informatie

Impulsmoment en spin: een kort resumé

Impulsmoment en spin: een kort resumé D Impulsmoment en spin: een kort resumé In deze appendix worden de relevante aspecten van impulsmoment en spin in de kwantummechanica op een rijtje gezet. Dit is een kort resumé van de stof die in het

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 24 November, 2008 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Voorblad bij tentamen (in te vullen door de examinator) Vaknaam: Inleiding Quantumfysica Vakcode: 3BQX Datum: -6-6 Begintijd: 8. uur Eindtijd: 9. uur Aantal pagina s: Aantal vragen: vellen A4 Opgave Aantal

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

-- I HOOFDSTUK I INLEIDING TOT ENKELE QUANTUMMECHANISCHE BEGRIPPEN

-- I HOOFDSTUK I INLEIDING TOT ENKELE QUANTUMMECHANISCHE BEGRIPPEN -- I - 1 - HOOFDSTUK I INLEIDING TOT ENKELE QUANTUMMECHANISCHE BEGRIPPEN Inleiding Op basis van de klassieke mechanica kunnen het bestaan van stabiele atomen en de vorming van moleculen niet verklaard

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 6 oktober 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke echanica

Nadere informatie

1 De Hamilton vergelijkingen

1 De Hamilton vergelijkingen 1 De Hamilton vergelijkingen Gegeven een systeem met m vrijheidsgraden, geparametriseerd door m veralgemeende coördinaten q i, i {1,, m}, met lagrangiaan L(q, q, t). Nemen we de totale differentiaal van

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 27 november 2003 van 09:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 27 november 2003 van 09:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D1) d.d. 7 november 3 van 9: 1: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling

Nadere informatie

Mathematical Modelling

Mathematical Modelling 1 / 95 Mathematical Modelling Ruud van Damme Creation date: 21-08-08 Last adapt: 30-08-09 2 / 95 Overzicht 1 Inleiding 2 Complexe getallen: rekenen 3 Complexe getallen: iets meer dan rekenen alleen 3 /

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Uitwerking Tentamen Quantumfysica van 15 april 010. 1. (a) De ket α is een vector in de Hilbertruimte H, en de bra β een co-variante vector

Nadere informatie

Wiskundige functies. x is het argument of de (onafhankelijke) variabele

Wiskundige functies. x is het argument of de (onafhankelijke) variabele Wiskundige functies Een (wiskundige) functie voegt aan ieder getal een ander getal toe. Bekijk bijv. de functie f() = 2 1 Aan het getal 2, d.w.z. = 2, wordt het getal 3 toegevoegd, want f(2) = 2 2 1 =

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Complexe getallen. 5.1 Constructie van de complexe getallen

Complexe getallen. 5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 6 juli 2012, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 6 juli 2012, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 6 juli 2012, 14.00-17.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die bij

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS deel 2 LOTHAR PAPULA 2e druk > ACADEMIC 5 E R V I C Inhoud 1 Lineaire algebra 1 1.1 Vectoren I 1.2 Matrices 4 1.2.1 Een inleidend voorbeeld 4 1.2.2 Definitie

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Tentamen - uitwerkingen

Tentamen - uitwerkingen Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke

Nadere informatie

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30 Tentamen WISN11 Wiskundige Technieken 1 Ma 7 nov 16 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

B da =0, Q vrijomsloten, E = ρ vrij. , B =0, E =0, B = µ 0 J vrij. D = ρ vrij, B =0, E =0, H = J vrij. qq r 2 =( N m 2 /C 2 ) (1.

B da =0, Q vrijomsloten, E = ρ vrij. , B =0, E =0, B = µ 0 J vrij. D = ρ vrij, B =0, E =0, H = J vrij. qq r 2 =( N m 2 /C 2 ) (1. Tentamen: Elektriciteit en Magnetisme Docent: J. F. J. van den Brand Datum: 22 Augustus 2003 Zaal: KC159 Tijd: 13.30-16.30 uur Vermeld je naam op elke pagina. Vermeld je collegenummer. Alle benodigde vectorrelaties

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D d.d. 6 januari 6 van 4: 7: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d Eindtoets 3BTX1: Thermische Fysica Datum: 3 juli 2014 Tijd: 9.00-12.00 uur Locatie: paviljoen study hub 2 vak c & d Deze toets bestaat uit 3 opgaven die elk op een nieuwe pagina aanvangen. Maak de opgaven

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 9 januari 2008 van 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 9 januari 2008 van 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D d.d. 9 januari 8 van 9: : uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is niet

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

Banen in een centraal krachtveld

Banen in een centraal krachtveld C. van Zanten Banen in een centraal krachtveld Bachelorscriptie 5 juli 017 Scriptiebegeleider: dr. R.J. Kooman Universiteit eiden Mathematisch Instituut Inhoudsopgave 1 Van ruimte naar vlak 1 1.1 Centrale

Nadere informatie

Analyse, Deel III Samenvatting Martijn Boussé

Analyse, Deel III Samenvatting Martijn Boussé Analyse, Deel III Inhoudsopgave I Lineaire Differentiaalvergelijkingen... 2 I.I Algemene theorie... 2 I.II Lineaire differentiaalvergelijkingen constante coëfficiënten... 3 I.III Lineaire differentiaalvergelijking

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

-- IX (q)e - ie 2 t/h

-- IX (q)e - ie 2 t/h -- IX - -- HOOFDSTUK IX TIJDSAFHANKELIJKE PROCESSEN Dit oofdstuk is bedoeld om enig inzict te geven in de manier waarop de intensiteiten van de lijnen in een spectrum berekend kunnen worden. Omdat een

Nadere informatie

Aanwijzingen bij vraagstukken distributies

Aanwijzingen bij vraagstukken distributies Aanwijzingen bij vraagstukken distributies Vraagstuk 9.7 Voor het eerste deel, test x x + iε 1 met een testfunctie. Voor het laatste deel: vind eerst bijzondere oplosssingen door de gesuggereerde procedure

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

Deeltjes en velden. HOVO Cursus. Jo van den Brand 10 oktober 2013. jo@nikhef.nl

Deeltjes en velden. HOVO Cursus. Jo van den Brand 10 oktober 2013. jo@nikhef.nl Deeltjes en velden HOVO Cursus Jo van den Brand 10 oktober 2013 jo@nikhef.nl Docent informatie Overzicht Jo van den Brand & Gideon Koekoek Email: jo@nikhef.nl en gkoekoek@gmail.com 0620 539 484 / 020 592

Nadere informatie

Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + (

Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + ( TU Delft Mekelweg 4 Faculteit EWI, DIAM 68 CD Delft Tentamen Analyse 4 (wi6) 7 juni, 4-7 uur Het tentamen bestaat uit twee delen: Deel : opgaven, a, 3ab, 4c (normering: + + ( + ) + + ( gratis)) Deel :

Nadere informatie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie Hoofdstuk : Randwaardeproblemen en Sturm-Liouville theorie.. Tweepunts randwaardeproblemen. Bij het oplossen van partiële differentiaalvergelijkingen met behulp van de methode van scheiden van variabelen

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet).

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet). Moddergooien n.a.v. 31 augustus Allereerst: hartelijk dank voor de vragen; als dat zo doorgaat en als jullie zo blijven komen en ook nog eens huiswerk maken, dan weet ik zeker dat ik dicht bij 100% ga

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Fluorescentie. dr. Th. W. Kool, N.G. Schultheiss

Fluorescentie. dr. Th. W. Kool, N.G. Schultheiss 1 Fluorescentie dr. Th. W. Kool, N.G. Schultheiss 1 Inleiding Deze module volgt op de module de Broglie. Het detecteren van kosmische straling in onze ski-boxen geschiedt met behulp van het organische

Nadere informatie

TENTAMEN. Van Quantum tot Materie

TENTAMEN. Van Quantum tot Materie TENTMEN Van Quantum tot Materie Prof. Dr. C. Gooijer en Prof. Dr. R. Griessen Vrijdag 22 december 2006 12.00-14.45 Q105/ M143/ C121 Dit schriftelijk tentamen bestaat uit 5 opdrachten. Naast de titel van

Nadere informatie

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom 8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Supersymmetric Lattice Models. Field Theory Correspondence, Integrabillity T.B. Fokkema

Supersymmetric Lattice Models. Field Theory Correspondence, Integrabillity T.B. Fokkema Supersymmetric Lattice Models. Field Theory Correspondence, Integrabillity T.B. Fokkema De gecondenseerde materie is een vakgebied binnen de natuurkunde dat tot doel heeft om de fysische eigenschappen

Nadere informatie

Schrödinger vergelijking. Tous Spuijbroek Cursus Quantumwereld Najaar 2013

Schrödinger vergelijking. Tous Spuijbroek Cursus Quantumwereld Najaar 2013 Schrödinger vergelijking Tous Spuijbroek Cursus Quantumwereld Najaar 2013 Inhoud presentatie Algemene opmerkingen Aannemelijk maken van de vergelijking Oplossingen van de vergelijking De situatie rond

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB januari 2013, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB januari 2013, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 23 januari 2013, 1400-1700 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die

Nadere informatie

Quantum theorie voor Wiskundigen. Velden en Wegen in de Wiskunde

Quantum theorie voor Wiskundigen. Velden en Wegen in de Wiskunde Quantum theorie voor Wiskundigen door Peter Bongaarts (Rotterdam) bij het afscheidssymposium Velden en Wegen in de Wiskunde voor Henk Pijls Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam,

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Rocco van Vreumingen 29 augustus 2014 1 Inhoudsopgave 1 Hints 1 3 2 Hints 2 4 3 Hints 3 5 4 Hints 4 5 5 Hints 5 6 6 Hints 6 6 7 Hints 7 6 8 Antwoorden

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Inhoud college Quantumfysica I

Inhoud college Quantumfysica I Inhoud college Quantumfysica I Docent: Erik Verlinde Overzicht door: Lodewijk Koopman 0 mei 005 E-mail: lkoopman@science.uva.nl 1 College 1: 9 februari 005 onderscheid klassieke en kwantummechanica: klassiek

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

Tentamen: Gravitatie en kosmologie

Tentamen: Gravitatie en kosmologie 1 Tentamen: Gravitatie en kosmologie Docent: Jo van den Brand Datum uitreiken: 1 december 2011 Datum inleveren: 15 december 2011 (bij Marja of voor 17:00 in mijn postvak) Datum mondeling: 19-23 december

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

Tentamen Moleculaire Simulaties - 8C November uur

Tentamen Moleculaire Simulaties - 8C November uur Tentamen Moleculaire Simulaties - 8C030 11 November 2008-14.00-17.00 uur Vier algemene opmerkingen: Het tentamen bestaat uit 6 opgaven verdeeld over 3 pagina's. Op pagina 3 staat voor iedere opgave het

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

maplev 2010/9/8 17:01 page 349 #351

maplev 2010/9/8 17:01 page 349 #351 maplev 00/9/8 7:0 page 49 5 Module Stabiliteit van evenwichten Onderwerp Voorkennis Expressies Bibliotheken Zie ook Stabiliteit van evenwichten van gewone differentiaalvergelijkingen. Gewone differentiaalvergelijkingen

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 2011 van 14u00-17u00

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 2011 van 14u00-17u00 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 20 van 4u00-7u00 Dit tentamen bestaat uit 5 opgaven met elk 3 onderdelen. Voor elk

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen 0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b

Nadere informatie

Kwantummechanica. Prof.dr Johannes F.J. van den Brand. Department of Physics Faculty of Exact Sciences VU University Amsterdam.

Kwantummechanica. Prof.dr Johannes F.J. van den Brand. Department of Physics Faculty of Exact Sciences VU University Amsterdam. Kwantummechanica by Prof.dr Johannes F.J. van den Brand Department of Physics Faculty of Exact Sciences VU University Amsterdam and National Institute for Subatomic Physics Amsterdam, The Netherlands jo@nikhef.nl

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Deeltentamen Quantummechanica

Deeltentamen Quantummechanica 1 Deeltentamen Quantummechanica 30 januari 009 Bij het tentamen mag gebruik gemaakt worden van een A4-blad, dubbelzijdig beschreven, met eigen aantekeningen. Beantwoord de vragen kort en bondig. Geef geen

Nadere informatie

Studiewijzer Calculus A voor T, 2DS05 duaal, cursus 2005/2006

Studiewijzer Calculus A voor T, 2DS05 duaal, cursus 2005/2006 Studiewijzer Calculus A voor T, 2DS05 duaal, cursus 2005/2006 Inleiding In de cursus Calculus A voor T (2DS05) wordt gebruikt het boek Calculus, a complete course, Robert A. Adams, fifth edition, Addison

Nadere informatie

Hoofdstuk 3 Het wortellijnendiagram

Hoofdstuk 3 Het wortellijnendiagram Hoofdstuk 3 Het wortellijnendiagram 3. nleiding Het transiënt gedrag van een systeem wordt bepaald door de ligging van de wortels van de karakteristieke vergelijking (of door de polen van het gesloten

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties tussen elementaire deeltjes.

Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties tussen elementaire deeltjes. Symmetrie en behoudswetten spelen een belangrijke rol in de beschrijving en het begrip van interacties tussen elementaire deeltjes. Interacties zullen plaats grijpen voor zover ze kinematisch toegelaten

Nadere informatie

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Mechanica 1 voor N en Wsk (3NA40 en 3AA40) Donderdag 21 januari 2010 van 09.00u tot 12.00u Dit tentamen bestaat uit vier opgaven.

Nadere informatie