INHOUDSOPGAVE LEERGANG BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

Maat: px
Weergave met pagina beginnen:

Download "INHOUDSOPGAVE LEERGANG BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN"

Transcriptie

1 INHOUDSOPGAVE LEERGANG BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

2

3 TEN GELEIDE Deze Leergang Besliskunde bevat de dictaten die ik heb geschreven voor de diverse besliskundecolleges die door mij zijn gegeven. Het betreft de colleges: I. Caleidoscoop (onderdeel besliskunde) II. Besliskunde 1 III. Besliskunde 2 IV. Besliskunde 3 V. Besliskunde 4 VI. Markov Decision Processes Hieronder een overzicht met enkele gegevens over deze colleges. Vak Jaar EC s Pagina s Vragen Opgaven Caleidoscoop 1-ste jaar Besliskunde 1 2-de jaar Besliskunde 2 3-de jaar 6 of Besliskunde 3 3-de of 4-de jaar 6 of Besliskunde 4 3-de of 4-de jaar 4 tot Markov Decision Processes Master of PhD 4 tot De oplossingen van de vragen staan achterin de dictaten. De oplossingen van de opgaven staan in aparte dictaten die voor docenten op aanvraag beschikbaar zijn. 6 EC als alleen de eerste drie hoofdstukken worden gedaan. 6 EC als alleen de eerste vijf hoofdstukken worden gedaan. Het aantal EC s is afhankelijk van het aantal hoofdstukken dat wordt gedaan. Het geheel bevat 2239 pagina s, 1775 pagina s stof inclusief de oplossingen van de vragen en 464 pagina s met oplossingen van de opgaven. De stof is deels ontleend aan een groot aantal boeken, dictaten en ander materiaal dat door de auteur is geraadpleegd. De auteur stelt verbeteringen, aanvullingen en opmerkingen zeer op prijs. Leiden, december 2009 Lodewijk Kallenberg

4

5 DEEL I: ONDERDEEL BESLISKUNDE IN CALEIDOSCOOP (45 pagina s) 1. INLEIDING (7 pagina s) 1.1 Wat is besliskunde? 1.2 Geschiedenis 1.3 Voorbeeld 1.4 Overzicht van een aantal besliskundige modellen 1.5 Opgaven 2. MATHEMATISCHE PROGRAMMERING (17 pagina s) 2.1 Lineaire programmering 2.2 Geheeltallige lineaire programmering 2.3 Niet-lineaire programmering Onbeperkte optimalisering Beperkte optimalisering 2.4 Opgaven 3. NETWERK OPTIMALISATIE (7 pagina s) 3.1 Dijkstra s algoritme voor het kortste pad probleem 3.2 Ford-Fulkerson algoritme voor het maximale-stroom-probleem 3.3 Opgaven 4. MARKOV (BESLISSINGS)KETENS (14 pagina s) 4.1 Markov ketens 4.2 Markov beslissingsketens 4.3 Opgaven DEEL II: BESLISKUNDE 1 (265 pagina s) 1. COMPLEXITEITSTHEORIE (16 pagina s) 1.1 Inleiding 1.2 De klassen P en N P 1.3 Opgaven 2. GRAFENTHEORIE (50 pagina s) 2.1 Inleiding Niet-gerichte grafen Gerichte grafen Opgaven 2.2 Bomen Algemeen Binaire bomen 1

6 2.2.3 Huffman code Depth-first Search en Breadth-First Search Streng samenhangende componenten Minimale opspannende boom Opgaven 2.3 Euler en Hamilton grafen Euler grafen Hamilton grafen Opgaven 3. COMBINATORIEK EN ENUMERATIE (52 pagina s) 3.1 Permutaties, combinaties, rangschikkingen en partities Permutaties Combinaties Rangschikkingen Partities Opgaven 3.2 Recurrente betrekkingen en voortbrengende functies Homogene recurrente betrekkingen Fibonacci-getallen Inhomogene recurrente betrekkingen Voortbrengende functies Opgaven 3.3 Het principe van inclusie en exclusie Zeefformule Torenveelterm De functies van Euler en Möbius Opgaven 3.4 Het tellen van grafen; multinomiaalcoëfficiënten Grafen met genummerde knooppunten Multinomiaalcoëfficiënten Opspannende bomen met genummerde knooppunten Opgaven 3.5 Burnside s Lemma en de theorie van Polya Het Lemma van Burnside De theorie van Polya Het tellen van niet-isomorfe grafen Opgaven 2

7 4. LINEAIRE OPTIMALISERING (56 pagina s) 4.1 Model en toepassingen Het model Enkele toepassingen Opgaven 4.2 Lineaire (on)gelijkheden en polyhedra Theorie van de lineaire (on)gelijkheden Polyhedra Opgaven 4.3 Dualiteit Zwakke en sterke dualiteit Stricte complementariteit Gelijkheden en vrije variabelen Complexiteit Economische interpretatie Enkele resultaten afgeleid via dualiteit Opgaven 4.4 De simplex methode Inleiding en voorbeeld Fase I - fase II techniek Degeneratie: de regel van BLand Complexiteit Opgaven 5. DISCRETE MARKOV KETENS (42 pagina s) 5.1 Inleiding en voorbeelden 5.2 Klassificatie van toestanden 5.3 Het limietgedrag van de overgangsmatrix Opgaven 6. VERNIEUWINGSTHEORIE (18 pagina s) 6.1 Inleiding 6.2 Vernieuwingsvergelijking en Vernieuwingsstelling 6.3 Markov ketens met aftelbare toestandsruimte (vervolg) 6.4 Opgaven OPLOSSING VAN DE VRAGEN (26 pagina s) INDEX (5 pagina s) 3

8 DEEL III: BESLISKUNDE 2 (272 pagina s) 1. LINEAIRE OPTIMALISERING (deel 2) (30 pagina s) 1.1 Inleiding 1.2 Implementatie aspecten Begrensde variabelen Herziene simplex methode en de productvorm Opgaven 1.3 Gevoeligheidsanalyse Veranderingen in één coëfficiënt van de doelfunctie Veranderingen in één coëfficiënt van het rechterlid Veranderingen in meer coëfficiëntenan het rechterlid (of de doelfunctie) Veranderingen in een kolom van een niet-basisvariabele Toevoegen van een nieuwe activiteit/variabele Parametrische programmering Opgaven 1.4 De duale en de primale-duale simplex methode De duale simplex methode De primale-duale methode Opgaven 2. GEHEELTALLIGE LINEAIRE OPTIMALISERING (44 pagina s) 2.1 Model, formuleringen en voorbeelden Model en formuleringen Voorbeelden Opgaven 2.2 Branch-and-bound Het generieke algoritme Behandeling van en opsplitsing in deelproblemen Opgaven 2.3 Sneden Gomory s fractie-snede algoritme Gomory s snede voor gemengd geheeltallige optimalisering Opgaven 2.4 Handelsreizigersprobleem Inleiding en formuleringen Branch-and-Bound methode Heuristieken Opgaven 4

9 3. NIET- LINEAIRE OPTIMALISERING (64 pagina s) 3.1 Inleiding Klassificatie van niet-lineaire optimaliseringsproblemen Voorbeelden Afgeleiden Optimaliteitsvoorwaarden Convexiteit OPgaven 3.2 Onbeperkte optimalisering Inleiding Eéndimensionale optimalisatie Meerdimensionale optimalisatie Opgaven 3.3 Beperkte optimalisering: theorie Inleiding Lagrange multipliers bij gelijkheidsbeperkingen Karush-Kuhn-Tucker voorwaarden bij gelijkheden en ongelijkheden Fritz John voorwaarden Convexe optimalisering en dualiteit Opgaven 3.4 Beperkte optimalisering: methoden Kwadratische optimalisering Methode van toelaatbare richtingen Gereduceerde gradiënt methode Gegeneraliseerde gereduceerde gradiënt methode Barrièrre methode Opgaven 4. NETWERK OPTIMALISERING (50 pagina s) 4.1 Kortste paden Inleiding Methode van Dijkstra Methode van Bellman en Ford Methode van Floyd en Warshall De kortste gemiddelde ronde Enkele toepassingen Opgaven 4.2 Netwerkstromen Maximale stromen Minmale kostenstromen 5

10 4.2.3 Enkele toepassingen Opgaven 5. SCHEDULING (24 pagina s) 5.1 Inleiding 5.2 Eén machine Model A: 1 L max Model B: 1 n j=1 w jc j Model C: 1 n j=1 w ju j 5.3 Twee machines Model D: O 2 C max Model E: F 2 C max Model F: J 2 C max 5.4 Parallelle machines 5.5 Verbanden met het handelsreizigersprobleen Model K: 1 s jk C max Model L: F m no wait C max 5.6 Opgaven 6. SPELTHEORIE (20 pagina s) 6.1 Inleiding 6.2 Tweepersonen nulsomspel 6.3 Bi-matrix spelen 6.4 Coöperatieve spelen 6.5 Opgaven OPLOSSING VAN DE VRAGEN (35 pagina s) INDEX (5 pagina s) DEEL IV: BESLISKUNDE 3 (253 pagina s) 1. SPECIALE LINEAIRE MODELLEN (34 pagina s) 1.1 Unimodulariteit en totaal unimodulariteit 1.2 Grafen en lineaire algebra 1.3 Transportprobleem Inleiding Tableau en startoplossing Algemene iteratiestap Gevoeligheidsanalyse Toepassing 6

11 1.3.6 Het overslagprobleem 1.4 Toewijzingsprobleem Probleemstelling en LP-formulering Huwelijksstelling en transversalen De Hongaarse methode 1.5 Opgaven 2. KNAPZAKPROBLEEM (28 pagina s) 2.1 Inleiding 2.2 Het fractionele knapzakprobleem 2.3 Het 0-1 knapzakprobleem Complexiteit Dynamische programmering Branch-and-bound Het gretige algoritme Polynomiale approximaties 2.4 Het begrensde knapzakprobleem Transformatie tot een 0-1 knapzakprobleem LP-relaxatie Dynamische programmering Branch-and-bound Approximaties 2.5 Het onbegrensde knapzakprobleem 2.6 Bin-packing probleem Inleiding De Next-Fit heuristiek De First-Fit en Best-Fit heuristieken De First-Fit Decreasing en Best-Fit Decreasing heuristieken 2.7 Opgaven 3. PROJECT PLANNING (18 pagina s) 3.1 Probleemstelling en modellering 3.2 Berekening van het kritieke pad 3.3 Bepaling van het kritieke pad met lineaire programmering 3.4 Het PERT-model 3.5 Projectplanning met kosten 3.6 Een alternatief model 3.7 Opgaven 7

12 4. DYNAMISCHE PROGRAMMERING (12 pagina s) 4.1 Inleiding 4.2 Terminologie 4.3 Deterministische dynamische programmering 4.4 Stochastische dynamische programmering 4.5 Opgaven 5. CONTINUE MARKOV KETENS (24 pagina s) 5.1 Inleiding 5.2 Differentiaalvergelijkingen en transiënt gedrag 5.3 Geboorte-sterfte processen 5.4 Stationair gedrag 5.5 Reversibiliteit 5.6 Uniformizatie 5.7 Opgaven 6. WACHTTIJDTHEORIE (34 pagina s) 6.1 Inleiding 6.2 Wachttijdparadox 6.3 De formule van Little en PASTA 6.4 Geboorte-sterfte processen (vervolg) 6.5 Modellen gebaseerd op het geboorte-sterfte proces 6.6 Met M/G/1 model 6.7 Netwerken van wachtrijen De tandem wachtrij Open netwerk van wachtrijen (Jackson netwerken) Gesloten netwerken van wachtrijen 6.8 Opgaven 7. MARKOV BESLISSINGSTHEORIE (48 pagina s) 7.1 Inleiding Het model Strategiën en optimaliteitscriteria Voorbeelden 7.2 Eindige horizon en totale opbrengsten 7.3 Oneindige horizon en verdisconteerde opbrengsten Contraherende en monotone afbeeldingen Strategie verbetering Lineaire programmering Waarde iteratie 7.4 Oneindige horizon en totale opbrengsten 8

13 7.4.1 Inleiding Rood-zwart casino model Optimaal stoppen 7.5 Gemiddelde opbrengsten over een oneindige horizon Inleiding Optimaliteitsvergelijking Strategie verbetering Lineaire programmering Waarde iteratie 7.6 Opgaven 8. SIMULATIE (24 pagina s) 8.1 Inleiding 8.2 Statistische verwerking van gegevens 8.3 Voorbeelden van simulaties 8.4 Aselecte getallen en aselecte trekkingen 8.5 Variantie reducerende technieken Stratificatie Complementaire aselecte getallen 8.6 Opgaven OPLOSSING VAN DE VRAGEN (23 pagina s) TABELLEN (5 pagina s) INDEX (3 pagina s) DEEL V: BESLISKUNDE 4 (509 pagina s) 1. GRAFENTHEORIE (deel 2) (86 pagina s) 1.1 Grafen en matrices Grafen en vectorruimtes De incidentiematrx De kringenmatrix De snedenmatrix De padenmatrix De structuurmatrix Opgaven 1.2 Vlakke en duale grafen Vlakke grafen en Euler s veelvlakkenformule Scheidingspunten Separabiliteit en blokken 9

14 1.2.4 Stelling van Kuratowski Algoritme om te bepalen of een graaf vlak is Rechte grafen en driehoeksgrafen Minimum en maximum aantal snijpunten Duale grafen Opgaven 1.3 Kleurproblemen Het kleuren van takken Het kleuren van knooppunten Het kleuren van gebieden in een vlakke graaf: het vierkleurenprobleem Het kleurenpolynoom Opgaven 2. NETWERK OPTIMALISERING (deel 2) (50 pagina s) 2.1 Netwerkstromen Disjuncte paden en de Stelling van Menger Maximale stromen en minmale sneden Circulatiestromen met minimale kosten Opgaven 2.2 Netwerk simplex methode Inleiding Bases en opspannende bomen Algoritme voor problemen zonder capaciteiten Problemen met onder- en bovengrenzen Duale netwerk simplex methode De netwerk simplex methode voor het kortste pad probleem Maximale stroom probleem Opgaven 3. KOPPELINGEN (52 pagina s) 3.1 Algemene theorie Eigenschappen in algemene grafen Eigenschappen in bipartiete grafen Equivalente combinatorische resultaten Opgaven 3.2 Algoritmen voor bipartiete grafen Koppeling met maximale cardinaliteit in een bipartiete graaf Koppeling met maximaal gewicht in een bipartiete graaf Gilmore-Gomory en Gale-Shapley koppelingen Opgaven 3.3 Algoritmen voor algemene grafen 10

15 3.3.1 Koppeling met maximale cardinaliteit in een willekeurige graaf Koppeling met maximaal gewicht in een willekeurige graaf Opgaven 4. MATROÏDEN (50 pagina s) 4.1 Inleiding en definities 4.2 Duale matroïde 4.3 Voorbeelden van matroïden 4.4 Grafen en matroïden 4.5 Het gretige algoritme 4.6 Onafhankelijkheidssystemen 4.7 Doorsnede van matroïden Inleiding Onafhankelijke verzameling met maximale cardinaliteit Onafhankelijke verzameling met maximaal gewicht 4.8 Grafoïden 4.9 Representeerbaarheid van matroïden 4.10 Polymatroïden 4.11 Opgaven 5. INWENDIGE PUNT METHODEN (66 pagina s) 5.1 Inleiding 5.2 De methode van Karmarkar Het idee van projectieve schaling Het algoritme 5.3 De affiene schaling methode De primale affiene schaling methode De duale affiene schaling methode De duale-primale affiene schaling methode 5.4 Potentiaal reductie methode 5.5 Pad-volgende methoden Primale pad-volgende methode Primale-duale pad-volgende methode Predictor-corrector methode Vergelijking van de richtingen van diverse inwendige punt methoden 6. VOORAADTHEORIE (34 pagina s) 6.1 Inleiding 6.2 Continue deterministische modellen met één product 6.3 Continue deterministische modellen met meer producten De afwegingskromme 11

16 6.3.2 Een cyclisch productieproces 6.4 Periodieke deterministische modellen Geen tekorten toegestaan Wel tekorten toegestaan Silver-Meal heuristiek 6.5 Continue stochastische modellen 6.6 Periodieke stochastische modellen Eén periode en geen vaste bestelkosten:(krantenjongenprobleem) Eén periode, vaste bestelkosten en een beginvoorraad Oneindig veel perioden en geen vaste bestelkosten 6.7 Opgaven 7. BESLISSINGSTHEORIE (10 pagina s) 7.1 Inleiding 7.2 Beslissen zonder kansen 7.3 Beslissen met kansen 7.4 Beslissingsbomen 7.5 Opgaven 8. BETROUWBAARHEIDSTHEORIE (24 pagina s) 8.1 Structuurfuncties 8.2 Betrouwbaarheidsfuncties 8.3 Levensduur van het systeem 8.4 De verwachte levensduur 8.5 Systemen met reparatie 8.6 Opgaven 9. SPECIALE TECHNIEKEN (50 pagina s) 9.1 Decompositie technieken Dantzig-Wolfe decompositie Benders decompositie Opgaven 9.2 Lagrange relaxatie Inleiding en voorbeelden Beste Lagrange relaxatie Opgaven 9.3 Kolomgeneratie voor geheeltallige problemen Inleiding Dantzig-Wolfe decompositie van een geheeltallig LP-probleem LP-relaxatie van het masterprobleem Branch-and-price agoritme voor 0-1 problemen 12

17 9.3.5 Opgaven 10. BOMEN (deel 2), SORTEREN EN HET CHINESE POSTBODEPROBLEEM (48 pagina s) 10.1 Bomen (deel 2) Boomwandelingen Binaire zoekbomen Steiner bomen 10.2 Sorteren Bubble sort Insertion sort Merge sort Quick sort 10.3 Het Chinese postbodeprobleem Ongerichte versie Gerichte versie Gemengde versie 10.4 Opgaven OPLOSSING VAN DE VRAGEN (52 pagina s) TABELLEN (2 pagina s) INDEX (5 pagina s) DEEL VI: MARKOV DECISION PROCESSES (437 pagina s) 1. INTRODUCTION (28 pagina s) 1.1 The MDP model 1.2 Policies and optimality criteria Policies Optimality criteria 1.3 Examples Red-black gambling Gaming: How to serve in tennis Optimal stopping Replacement problems Maintenance and repair Production control Optimal control of queues Stochastic scheduling 13

18 1.3.9 Multi-armed bandit problem 1.4 Bibliographic notes 1.5 Exercises 2. FINITE HORIZON (10 pagina s) 2.1 Introduction 2.2 Backward induction 2.3 An equivalent stationary infinite horizon model 2.4 Monotone optimal policies 2.5 Bibliographic notes 2.6 Exercises 3. DISCOUNTED REWARDS (50 pagina s) 3.1 Introduction 3.2 Monotone contraction mappings 3.3 The optimality equation 3.4 Policy iteration 3.5 Linear programming 3.6 Value iteration 3.7 Modified policy iteration 3.8 Bibliographic notes 3.9 Exercises 4. TOTAL REWARD (36 pagina s) 4.1 Introduction 4.2 Equivalent statements for contracting 4.3 The contracting model 4.4 Positive MDPs 4.5 Negative MDPs 4.6 Convergent MDPs 4.7 Special models Red-black gambling Optimal stopping 4.8 Bibliographic notes 4.9 Exercises 5. AVERAGE REWARD - GENERAL CASE (42 pagina s) 5.1 Introduction 5.2 Classification of MDPs Definitions Classification of Markov chains 14

19 5.2.3 Classification of Markov decision chains 5.3 Stationary, fundamental and deviation matrix The stationary matrix The fundamental matrix and the deviation matrix 5.4 Extension of Blackwell s theorem 5.5 The Laurent series expansion 5.6 The optimality equation 5.7 Policy iteration 5.8 Linear programming 5.9 Value iteration 5.10 Bibliographic notes 5.11 Exercises 6. AVERAGE REWARD - SPECIAL CASES (36 pagina s) 6.1 The irreducible case Optimality equation Policy iteration Linear programming Value iteration Modified policy iteration 6.2 Unichain case Optimality equation Policy iteration Linear programming Value iteration Modified policy iteration 6.3 Communicating case Optimality equation Policy iteration Linear programming Value iteration Modified policy iteration 6.4 Bibliographic notes 6.5 Exercises 7. MORE SENSITIVE OPTIMALITY CRITERIA (44 pagina s) 7.1 Introduction 7.2 Eqiuvalence between n-discount and n-average optimality 7.3 Stationary optimal policies and optimality equations 7.4 Lexicographic ordering of Laurent series 7.5 Policy iteration for n-discount optimality 15

20 7.6 Linear programming and n-discount optimality (irreducible case) Average optimality Bias optimality n-discount optimality 7.7 Blackwell optimality and linear programming 7.8 Bias optimality and linear programming The general case The unichain case 7.9 Overtaking and average overtaking optimality 7.10 Bibliographic notes 7.11 Exercises 8. SPECIAL MODELS (86 pagina s) 8.1 Replacement problems A general replacement model A replacement model with increasing deterioration Skip to the right model with failure A separable replacement model 8.2 Maintenance and repair problems A surveillance-maintenance-replacement problem Optimal repair allocation in a series system 8.3 Production and inventory control No backlogging Backlogging Inventory control and single-critical-number policies Inventory control and (s, S)-policies 8.4 Optimal control of queues The single-server queue Parallel queues 8.5 Stochastic scheduling Maximizing finite-time returns on a single processor Optimality of the µc-rule Optimality of threshold policies Optimality of join-the-shortest-queue policies Optimality of LEPT and SEPT policies Maximizing finite-time returns on two processors Tandem queues 8.6 Multi-armed bandit problems Introduction A single project with a terminal reward 16

21 8.6.3 Multi-armed bandits Methods for the computation of the Gittins indices 8.7 Separable problems Introduction Examples (part 1) Discounted rewards - unichain case Discounted rewards - general case Examples (part 2) 8.8 Bibliographic notes 8.9 Exercises 9. OTHER TOPICS (32 pagina s) 9.1 Additional constraints Introduction Infinite horizon and discounted rewards Infinite horizon and average rewards 9.2 Multiple objectives Discounted rewards Average rewards 9.3 Mean-variance tradeoffs Formulations of the problem A unifying framework Determination of an optimal solution Determination of an optimal policy 9.4 Bibliographic notes 9.5 Exercises 10. STOCHASTIC GAMES (54 pagina s) 10.1 Introduction The model Optimality criteria Matrix games 10.2 Discounted rewards Value and optimal policies Mathematical programming Iterative methods Finite methods 10.3 Average rewards Value and optimal policies The Big Match Mathematical programming 17

22 Perfect information and irreducible games Finite methods 10.4 Bibliographic notes 10.5 Exercises BIBLIOGRAPHY (16 pagina s) INDEX (3 pagina s) 18

23

24

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord Dit vak is een voortzetting van het tweedejaarscollege Besliskunde. Een aantal andere mathematische beslissingsproblemen komt aan de orde en

Nadere informatie

BESLISKUNDE 2 EN 3 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 2 EN 3 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE 2 EN 3 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN VOORJAAR 2007 Voorwoord College Najaar 2004 Het derdejaarscolleges Besliskunde 2 en 3 zijn een vervolg op het tweedejaarscollege Besliskunde 1.

Nadere informatie

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN VOORJAAR 2003 Inhoudsopgave 1 Inleiding 1 1.1 Wat is Operations Research?.............................. 1 1.2 Overzicht van de te behandelen

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0 Voorbeeldtentamen Deterministische Modellen in de OR (158075) Opmerking vooraf: Geef bij elke opgave een volledige en duidelijke uitwerking inclusief argumentatie! Gebruik van de rekenmachine is niet toegestaan.

Nadere informatie

BESLISKUNDE B. Voorjaar L.C.M. KALLENBERG en F.M. SPIEKSMA

BESLISKUNDE B. Voorjaar L.C.M. KALLENBERG en F.M. SPIEKSMA BESLISKUNDE B Voorjaar 2015 L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave 1 GRAFENTHEORIE 1 1.1 Inleiding.......................................... 1 1.1.1 Niet-gerichte grafen...............................

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Branch-and-Bound en Cutting Planes

Branch-and-Bound en Cutting Planes Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme

Nadere informatie

Samenvatting college 1-12

Samenvatting college 1-12 Samenvatting college 1-12 Probleemformulering Duidelijk definiëren van beslissingsvariabelen Zinvolle namen voor variabelen bv x ij voor ingrediënt i voor product j, niet x 1,..., x 20 Beschrijving van

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 7.080 e-mail: j.b.m.melissen@ewi.tudelft.nl tel: 015-2782547 Studiemateriaal op : http://www.isa.ewi.tudelft.nl/~melissen (kijk bij onderwijs WI

Nadere informatie

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen

Nadere informatie

BESLISKUNDE 1 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 1 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE 1 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord In het college Besliskunde 1 worden verschillende onderdelen van de discrete wiskunde, de deterministische en de stochastische besliskunde

Nadere informatie

INLEIDING. Definitie Stochastisch Proces:

INLEIDING. Definitie Stochastisch Proces: Definitie Stochastisch Proces: INLEIDING Verzameling van stochastische variabelen die het gedrag in de tijd beschrijven van een systeem dat onderhevig is aan toeval. Tijdparameter: discreet: {X n, n 0};

Nadere informatie

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d.

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. 1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. een toewijzingsprobleem. 2. Het aantal toegelaten hoekpunten in een

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

Deel 2 van Wiskunde 2

Deel 2 van Wiskunde 2 Deel 2 van Wiskunde 2 Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Jacques Resing Thu 1+2 Aud 1+4 Jacques Resing Werkcollege Tue 7+8 Aud 6+15 Jacques Resing Instructie

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms R1 S0 240 ms Ack L1 R2 10 ms Internet R3 L2 D0 10 ms D1 D2 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219

Nadere informatie

1.2 Bomen Algemeen 1.2. BOMEN 7

1.2 Bomen Algemeen 1.2. BOMEN 7 1.2. BOMEN 7 1.2 Bomen 1.2.1 Algemeen Beschouw eerst een niet-gerichte graaf. Een boom is een samenhangende graaf die geen kringen bevat. Een boom wordt meestal genoteerd met de letter T (tree). Een bos

Nadere informatie

Geheeltallige programmering

Geheeltallige programmering Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 maart 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 4.150 e-mail: j.b.m.melissen@tudelft.nl tel: 015-2782547 Het project is een verplicht onderdeel van het vak Het project start in week 5. Nadere informatie

Nadere informatie

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Optimalisering/Besliskunde 1. College 1 2 september, 2015

Optimalisering/Besliskunde 1. College 1 2 september, 2015 Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+1 = j X n = i, X n 1,...,

Nadere informatie

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16 Inhoudsopgave 1 COMPLEXITEITSTHEORIE 1 1.1 Inleiding.......................................... 1 1.2 De klassen P en N P................................... 8 1.3 Opgaven..........................................

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 AI Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 www.liacs.leidenuniv.nl/ kosterswa/ai/ 1 Introductie

Nadere informatie

Chapter 4: Continuous-time Markov Chains (Part I)

Chapter 4: Continuous-time Markov Chains (Part I) Stochastic Operations Research I (2014/2015) Selection of exercises from book and previous exams. Chapter 4: Continuous-time Markov Chains (Part I) 1.1 Book pp 179 185 These are useful exercises to learn

Nadere informatie

Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, uur

Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, uur Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, 14.00-17.00 uur Het tentamen bestaat uit 6 opgaven. Motiveer je antwoorden duidelijk. De normering van de opgaves staat steeds

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

Lineaire Optimilizatie Extra sessie. 19 augustus 2010

Lineaire Optimilizatie Extra sessie. 19 augustus 2010 Lineaire Optimilizatie Extra sessie 19 augustus 2010 De leerstof Handboek: hoofdstuk 2 t.e.m. 8 (incl. errata) Slides (zie toledo) Extra opgaven (zie toledo) Computersessie: Lindo syntax en output Wat

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3.

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. 1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. Een LP probleem heeft n>2 variabelen en n+2 constraints.

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

Voorbeeld van herschrijven als transportprobleem

Voorbeeld van herschrijven als transportprobleem Voorbeeld van herschrijven als transportprobleem Het water van 3 rivieren moet worden verdeeld over 4 steden. Daar zijn kosten aan verbonden per eenheid water (zie tabel). De steden hebben minimumbehoeften

Nadere informatie

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren Analyse van algoritmen José Lagerberg FNWI, UvA José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren en Algoritmen Datastructuren, 6 ECTS eerstejaars Bachelor INF Datastructuren,

Nadere informatie

11 e editie. Inhoudsopgaven VWO 5

11 e editie. Inhoudsopgaven VWO 5 11 e editie Inhoudsopgaven VWO 5 Inhoudsopgave 5 vwo A 1 Formules herleiden 1-1 Lineaire formules 1-2 Gebroken formules 1-3 Wortelformules 1-4 Machtsformules 1-5 Gemengde opdrachten 2 Statistiek (op computer)

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

Uitwerkingen oefenopdrachten or

Uitwerkingen oefenopdrachten or Uitwerkingen oefenopdrachten or Marc Bremer August 10, 2009 Uitwerkingen bijeenkomst 1 Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van

Nadere informatie

Algoritmiek. 2 februari Introductie

Algoritmiek. 2 februari Introductie College 1 Algoritmiek 2 februari 2017 Introductie 1 Introductie -1- docent: Rudy van Vliet rvvliet@liacs.nl assistent werkcollege: Bart van Strien bartbes@gmail.com website: http://www.liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,

Nadere informatie

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi NP-Volledigheid Wil zo snel mogelijke algoritmes om problemen op te lossen Gezien: selectie [O(n)], DFS [O(n + m)], MaxFlow [O nm n + m ], MST [O(n + m)], etc De looptijd is polynomiaal: O n k - dat is

Nadere informatie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Convexe Analyse en Optimalisering Opleiding: Bacheloropleiding Econometrie Vakcode: 64200 Datum:

Nadere informatie

NETWERKEN VAN WACHTRIJEN

NETWERKEN VAN WACHTRIJEN NETWERKEN VAN WACHTRIJEN Tot nog toe keken we naar wachtrijmodellen bestaande uit 1 station. Klanten komen aan bij het station,... staan (al dan niet) een tijdje in de wachtrij,... worden bediend door

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

Uitwerkingen Sum of Us

Uitwerkingen Sum of Us Instant Insanity Uitwerkingen Sum of Us Opgave A: - Opgave B: Voor elk van de vier kubussen kun je een graaf maken die correspondeert met de desbetreffende kubus. Elk van deze grafen bevat drie lijnen.

Nadere informatie

Data Mining: Classificatie

Data Mining: Classificatie Data Mining: Classificatie docent: dr. Toon Calders Gebaseerd op slides van Tan, Steinbach, and Kumar. Introduction to Data Mining Overzicht Wat is classificatie? Leren van een beslissingsboom. Problemen

Nadere informatie

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber Tentamen TI1310 Datastructuren en Algoritmen, 15 april 2011, 9.00-12.00 TU Delft, Faculteit EWI, Basiseenheid Software Engineering Bij het tentamen mag alleen de boeken van Goodrich en Tamassia worden

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

SAMENVATTING IN HET NEDERLANDS

SAMENVATTING IN HET NEDERLANDS SAMENVATTING IN HET NEDERLANDS SUMMARY IN DUTCH INTRODUCTIE In 1909 ontving de Italiaan Marconi de Nobelprijs voor zijn baanbrekende werk op het gebied van de draadloze telegraaf. Sinds het eind van de

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. VERNIEUWINGSPROCESSEN In hoofdstuk 3 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t),

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. STAATSCOURANT Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. Nr. 30735 6 november 2013 Regeling van de Staatssecretaris van Onderwijs, Cultuur en Wetenschap van 28 oktober 2013, nr. VO/541608,

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) R1 L1 R2 1 S0 Stochastische Modellen in Operations Management (153088) 240 ms 10 ms Ack Internet Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Knowledge Engineering @Work

Knowledge Engineering @Work Knowledge Engineering @Work REGITEL-bijeenkomst Aachen, 22/10/2013 1 Een inleidend filmpje over Knowledge Engineering is hier te bekijken (3 min.) 2 Ons Voorstel β-talent binden aan uw bedrijf Inzet op

Nadere informatie

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden.

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden. . a) Een Fibonacci boom (niet te verwarren met een Fibonacci queue) van hoogte h is een AVL-boom van hoogte h met zo weinig mogelijk knopen. i. Geefvoorh =,,,,eenfibonacciboomvanhoogteh(eenboombestaande

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:

Nadere informatie

Afdeling Kwantitatieve Economie

Afdeling Kwantitatieve Economie Afdeling Kwantitatieve Economie Wiskunde AEO V Uitwerking tentamen 1 november 2005 1. De tekenschema s in opgave 1a 1e zijn de voortekens van vermenigvuldigers en de laatste leidende hoofdminoren in een

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1.

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. LIMIETGEDRAG VAN REDUCIBELE MARKOV KETEN In het voorgaande hebben we gezien hoe we de limietverdeling van een irreducibele, aperiodieke Markov keten kunnen berekenen: Voorbeeld 1: Zoek de unieke oplossing

Nadere informatie

Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche)

Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche) Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche) De onderwerpen sluiten aan bij het onderzoek in de afdeling Analyse (onderzoeksgroep klassieke analyse) en zijn zo gekozen

Nadere informatie

Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg

Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg 1 Voorwoord Welkom bij de cursus Digitaal Proefstuderen van de opleiding Econometrie en Operationele Research aan de

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast,

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast, Kansrekening voor Informatiekunde, 25 Les 8 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin knopen acties aangeven en opdrachten langs verbindingen tussen de knopen verwerkt

Nadere informatie

OptimalisereninNetwerken

OptimalisereninNetwerken OptimalisereninNetwerken Kees Roos e-mail: C.Roos@tudelft.nl, croos@otct.eu URL: http://www.isa.ewi.tudelft.nl/ roos HOVO cursus Wiskunde: zuurstof voor de wereld (deel I) 18 februari, A.D. 2009 Optimization

Nadere informatie

Convexe Analyse en Optimalisering

Convexe Analyse en Optimalisering Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,

Nadere informatie

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route Kosten Zoekalgoritmen (00 00) ollege 5: Zoeken met kosten Peter de Waal, Tekst: Linda van der aag Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd; ongemak;...

Nadere informatie

Matroïden en hun representaties

Matroïden en hun representaties 1 278 NAW 5/11 nr. 4 december 2010 Matroïden en hun representaties Stefan van Zwam Stefan van Zwam University of Waterloo, Canada, en Centrum Wiskunde en Informatica Science Park 123 1098 XG Amsterdam

Nadere informatie

Grafentheorie voor bouwkundigen

Grafentheorie voor bouwkundigen Grafentheorie voor bouwkundigen Grafentheorie voor bouwkundigen A.J. van Zanten Delft University Press CIP-gegevens Koninklijke Bibliotheek, Den Haag Zanten, A.J. van Grafentheorie voor bouwkundigen /

Nadere informatie