Keuzemenu - Wiskunde en economie

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Keuzemenu - Wiskunde en economie"

Transcriptie

1 1a a Keuzemenu - Wiskunde en eonomie ladzijde 6 TK( 00) GTK( 00) = = 300 = 71 euro per ezoeker TK( 600) 800 = = 71, 33 euro per ezoeker TK( 800) 9 00 GTK( 800) = = = 7 euro per ezoeker TK( ) 3, 00 ezoekers: =, dus GTK( ) = = = 7, 1 duizend euro per 100 ezoekers. Dit komt neer op 71 euro per ezoeker. Dit klopt met het antwoord van opdraht 1a. TK( ) 3, = = 7, 1 Het antwoord van opdraht is in duizenden euro s per 100 ezoekers. Het antwoord moet dus vermenigvuldig worden met duizend en dan gedeeld worden door 100. Dit is hetzelfde als vermenigvuldigen met 10. ladzijde 7 TK( 1) 3 GTK( 1) = = =, dus 00 euro per produt 1 1 TK( ) GTK( ) = = 7 = 3,, dus 30 euro per produt y TK a r OP = x = ( 1) 0 = 0 y TK =, r OQ = x = ( ) 0 = 7 0 = 3, 0 Als je de antwoorden van opdraht a vermenigvuldig met 100 (zie de geruikte eenheden: kosten in duizenden euro s en produtie in tientallen) krijg je de antwoorden van opdraht 3. Bij het punt Q hoort de produtie = 0 en ij het punt R hoort de produtie = 0. Verder geldt r = r, dus de gemiddelde totale kosten ij de produtie van 0 OQ OR stuks is gelijk aan die van 0 stuks. d De lijn OP doortrekken en kijken of deze lijn de grafiek van de totale kosten ergens snijdt. Conlusie: de gemiddelde totale kosten zijn ij de produtie van 80 stuks gelijk aan die van 10 stuks.

2 6 a De gemiddelde totale kosten ij = 10 en = 0 komen overeen met de rihtingsoëffiiënten van de lijnen OP en OQ. De rihtingsoëffiiënt van OQ is kleiner dan die van OP, dus de gemiddelde totale kosten ij een produtieaantal van 0 zijn kleiner dan ij een produtieaantal van 10. Vanuit de oorsprong een rehte lijn trekken die de grafiek van de totale kosten snijdt/raakt, zó dat helling van die rehte lijn zo klein mogelijk is. Dit levert 3, dus ij de produtie van 30 stuks zijn de gemiddelde totale kosten zo laag mogelijk. GTK = = ,,,,, GTK = 0, + 1 = 0, De vergelijking GTK = 0 oplossen levert 0, =, waaruit volgt = 8 en dus = 8, 8. (De oplossing = 8 is in deze situatie niet van toepassing.) Dus ij de produtie van 8 stuks zijn de gemiddelde totale kosten zo laag mogelijk. Dit komt goed overeen met het antwoord ij opdraht. 6a TK( 0) = 3, 31, TK( 30) =, 9, dus de extra kosten zijn, 9 3, 31 = 1, 63 euro TK( 0) = 3, 31, TK( 1) = 3, 63, dus de extra kosten zijn 3, 63 3, 31 = 0, 3 euro TK ( ) = 0, ( 3) = 0, 001 ( 3), TK ( 0) = 0, 001 ( 0 3) = 0, 3 d Een enadering van TK ( 0 ) is y op het interval [ 0 1 x, ]. Dus de antwoorden van de opdrahten en vershillen niet veel van elkaar. ladzijde 8 7a TK ( 100) = 6, 3 TK( 100) 13, 31 GK( 100) = = = 1, Als de diretie esluit de weekprodutie op te voeren, gaan de gemiddelde kosten omhoog. 8a TK ( ) = 0, 001( ( + 0)( + 30) + ( + 0) 1) TK ( 0) = 0, 7 MK( 0) = TK ( 0) = 0, 7 duizend euro per 10 stuks. Dit komt neer op 070 euro per stuk. Bij opdraht a zijn de eenheden verwerkt in de assen van de grafiek, ij opdraht moet je die eenheden in je eindantwoord verwerken. d De grafiek van de totale kosten is toenemend stijgend, dat wil zeggen dat de helling van de grafiek van de totale kosten steeds groter wordt. Dit etekent dat de marginale kosten toenemen (want MK = TK ). 7, e GTK = 0, , , +. Plotten van de grafiek van GTK laat zien dat voor 0 < < 7 de gemiddelde totale kosten afnemen en dat voor 7 < < 80 de gemiddelde totale kosten toenemen.

3 9a De gemiddelde totale kosten zijn groter dan de marginale kosten. De gemiddelde totale kosten zijn groter dan de marginale kosten. De marginale kosten en de gemiddelde totale kosten zijn gelijk ij het produtieaantal waar de gemiddelde totale kosten het laagst zijn, want wanneer de gemiddelde totale kosten stijgen, zijn de marginale kosten (de kosten voor één extra produt) hoger dan het gemiddelde en wanneer de gemiddelde totale kosten dalen zijn de marginale kosten lager dan het gemiddelde. De grafiek van de marginale kosten ligt dus onder het dalende deel van de GTK en oven het stijgende deel van de GTK. De grafiek van de marginale kosten snijdt de grafiek van de GTK in het laagste punt. 10a TK ( ) = 0, , , MK( 1000) = TK ( 1000) = 7 TO ( ) = 0, 16, MO( 1000) = TO ( 1000) = 160 Als de produtie met 1 stuk wordt verhoogd, stijgt de oprengst meer dan de kosten, dat wil zeggen: de winst wordt groter als de produtie met 1 stuk wordt verhoogd. De winst is dus maximaal ij een produtie van meer dan 1000 stuks. MK = MO oplossen met ehulp van de rekenmahine ( Y1 = 0, , en Y = 0, 16 ) geeft = 136 of = 177 d De winst is maximaal als het vershil TO TK maximaal is. Dat is het geval als de raaklijnen aan TO en TK evenwijdig zijn, dat wil zeggen als MO = MK. ladzijde a TW = TO TK = 0, 08 ( 0, , ) 3 3 = 0, 08 0, , = 0, , TW ( ) = 0, , 6 7, TW = 0 oplossen met de rekenmahine levert = 177 en = 136. Bij = 177 gaat het om een minimum en ij = 136 gaat het om een maximum. 1a Twee grootheden zijn reht evenredig als hun verhouding onstant is, dat wil zeggen dat de ene grootheid een onstant veelvoud is van de andere grootheid. Dat is hier het geval: de kosten TK zijn een onstant veelvoud van het aantal werknemers a. TW = TO TK is zo groot mogelijk als a = 70. TK en TO in honderdduizendtallen TO TK 7

4 d TO = a + met a = = 00, dus TO = Invullen van 370 ( 11 00, ) geeft = 00 + en dus = 0, waaruit volgt TO = 00. MK = TO = 00, dat wil zeggen: de marginale oprengst is onstant. e TK (tael) TK (funtie) De funtiewaarden komen goed overeen met de waarden in de tael. f MO = 00 en MK = 0, 13 37, + 0. MO = MK oplossen met ehulp van de grafishe rekenmahine levert = 309. g Bij een produtie = 309 zullen er tussen de 70 en 80 werknemers aangesteld worden. 3 3 h TW = 00 0, , = 0, , plotten en het maximum erekenen levert inderdaad = 309.

5 1a ladzijde 63 t in se J in jaren Het verinden van de punten heeft geen etekenis, omdat de wereldreords met stapjes veranderen. Het voordeel van het verinden van de punten is dat je een shatting kunt maken van wat het wereldreord in de tussenliggende perioden zou kunnen zijn, moht er dan een wereldreord gelopen worden. d - a Het verand tussen de tijd van het wereldreord en het jaartal kan niet lineair zijn, omdat dat etekent dat de tijd na verloop van tijd nul of zelfs negatief wordt. De veranden die in aanmerking komen zijn veranden waarvan de grafiek een horizontale asymptoot heeft. Dit omdat je ervan uit gaat dat er een grens is aan het wereldreord op de mijl. Dat zijn ijvooreeld mahtsfunties met een negatieve exponent en exponentiële funties. ladzijde 6 3a Voor a = en = 1, 87 komt de grafiek goed overeen met de getekende grafiek. Keuzemenu - Wereldreords t in se J in jaren De variaele geeft aan wat de grens van het wereldreord op de mijl is. 9

6 0 ladzijde 3 a Invullen van J = 1930 in t a = ( ) + = a 0 + laat zien dat de formule voor N = 0 oplevert. N = 0 komt overeen met J = = 0, de grens van het wereldreord op de mijl is 0 seonden. a De parameter epaalt de horizontale asymptoot, de parameter a epaalt waar de grafiek egint en de parameter epaalt hoe steil de grafiek naar eneden loopt. J 1880 t = , 97 + De grens van opdraht vershilt seonden met de grens van opdraht.

Hoofdstuk 2 - De kettingregel

Hoofdstuk 2 - De kettingregel Hoofdstuk - De kettingregel ladzijde V-a P ( ) 0 ( 0+ ) 0 0 + 0 0 + 0 60 W + + + a + t voor a 0 a a T u ( r ) r r 8 d R log + V-a u t wordt t en s t u t wordt t en s t 7 V-a A: t ( ) A: t ( ) ( ) 8 8 V-a

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

Hoofdstuk 3 - Differentiëren

Hoofdstuk 3 - Differentiëren Hoofdstuk - Differentiëren Moderne wiskunde 9e editie vwo B deel Voorkennis: Mahten en differentiëren ladzijde 7 6 V-a ( ) ( ) 8 f d e ( ) g 5 ( ) 6 6 ( 9 ) 9 ( ) ( ) 6 6 5 5 6 5 6 6 5 5 9 h ( ) 8 ( )

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties vwo AC deel Uitwerkingen Moderne wiskunde Hoofdstuk Mahtsfunties ladzijde 9 Va Voor elke 0 geldt: > 0. Dus de grafiek van f ligt oven de as. 9 of De yas is symmetrieas. d Het punt (0 0). Va y 0 ( ) 0 0

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk - Funties en de rekenmahine Voorkennis: Funties ladzijde V-a De formule is T = + 00, d Je moet oplossen + 00, d = dus dan geldt 00, d = en dan is d = : 00, 77 m V-a f( ) = = 0en f( ) = ( ) (

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Het edrijf rekent 35 euro voorrijkosten. 3t+ 35 = k Als de monteur 7 uur ezig is kost het 3 7 + 35 = 75 euro. d 3t + 35 = 7 3t = 3 t = 5, De monteur is,5 uur of uur en kwartier ezig geweest.

Nadere informatie

Zo n grafiek noem je een dalparabool.

Zo n grafiek noem je een dalparabool. V-a Hoofdstuk - Funties Hoofdstuk - Funties Voorkennis O A B De grafiek ij tael A is een rehte lijn, want telkens als in de tael met toeneemt neemt met toe. Het startgetal is en het hellingsgetal is. d

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk Mahtsfunties ladzijde 9 Va Voor elke 0 geldt: > 0. Dus de grafiek van f ligt oven de as. 9 of De yas is symmetrieas. d Het punt (0 0). Va y 0 ( ) 0 0 of 0 0 of 0 of of De oördinaten van de snijpunten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Meer variaelen ladzijde V-a Omdat het water met onstante snelheid uit de ak stroomt en de ak ilindervormig is, is de afname van de hoogte van de waterstand per tijdseenheid onstant. De hoogte

Nadere informatie

Hoofdstuk 9 - Rekenen met functies

Hoofdstuk 9 - Rekenen met functies 5 Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0 = 0 : 6 9 = 5 : 0 = 0 5 = 00 : 0 = 0 e 8 + ( ) = 7 + + = 8 + ( 6) =

Nadere informatie

Polynomen. De algemene vorm van een polynoom is: f(x) = a 0. + a 1. 0, n N. x +... + a n 1. x n 1 + a n. x n. met a n

Polynomen. De algemene vorm van een polynoom is: f(x) = a 0. + a 1. 0, n N. x +... + a n 1. x n 1 + a n. x n. met a n Polnomen Polnomen Funties als 4 en + 1 zijn vooreelden van een grote klasse van veelvoorkomende funties: de polnomen of veeltermfunties. Wij zullen steeds de term polnomen geruiken. Een van de redenen

Nadere informatie

Vaardigheden - Blok 4

Vaardigheden - Blok 4 ladzijde 0 a Uit de stelling van Pythagoras volgt AB = + = AB = P = 4 + 4 = + + P = P is vier keer de afstand AB, dus = 4 = 4 = 4 = a 7 = = = 4 = 9 = 9 = 00 = 00 = 00 = 0 d 7 = = = e 9 = 49 = 49 = 7 f

Nadere informatie

Vaardigheden. bladzijde 52. deel van 240 = 96 en 3 deel = 144. deel = ( 11 : 25 ) 2110 = 928, 40 euro en. deel = ( 14 : 25 ) 2110 = 1181,60 euro

Vaardigheden. bladzijde 52. deel van 240 = 96 en 3 deel = 144. deel = ( 11 : 25 ) 2110 = 928, 40 euro en. deel = ( 14 : 25 ) 2110 = 1181,60 euro Vaardigheden ladzijde 5 a 7 f 8 0 g 8 0,96 h 9 d 9 i 0 e 8 j a 7,5 e 8 5 6 f 6 g 5, 0, = 0, 3 3 9 d 9 h = = =, 5 3a 8, = 3, 88 euro a 6, 365 = 58 dagen 6 3, = 3568, gram Drie dagen is 7 uur, dus 0, 7 =

Nadere informatie

Hoofdstuk 11B - Rekenen met formules

Hoofdstuk 11B - Rekenen met formules Hoofdstuk B - Rekenen met formules Hoofdstuk B - Rekenen met formules Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0

Nadere informatie

5. Lineaire verbanden.

5. Lineaire verbanden. Uitwerkingen opgaven hoofdstuk 5 versie 15 5. Lineaire veranden. Opgave 5.1 Recht evenredig lineair verand F (N) 1 9 8 Uitrekking van een veer a = F 9 k = 37,5 x 4 = 7 6 5 4 F 9 N N k = = = 37,5 x 4 cm

Nadere informatie

Blok 3 - Vaardigheden

Blok 3 - Vaardigheden Moerne wiskune 9e eitie Havo A eel Blok 3 - Vaarigheen lazije 19 1a 1, 3 3000 = 8900 = 8310, 0, 07 000000 = 8000 = 810, 300 1700 = 6870000 = 6910, 8 0, 000 0, 007 = 0, 000001 = 1, 10 6 e 6344, 1 781, 98

Nadere informatie

9e editie. Moderne wiskunde. Uitwerkingen Op stap naar 4 havo. Dick Bos

9e editie. Moderne wiskunde. Uitwerkingen Op stap naar 4 havo. Dick Bos 9e editie Moderne wiskunde Uitwerkingen Op stap naar 4 havo Dik Bos Inhoud Hoofdstuk Getallen 000 - Rekenen met reuken 000 - Deimale getallen, proenten en fator 000-3 Kwadraten 000-4 Wortels 000-5 Mahten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt kg lengte in m gewicht in kg 7 9 c d gewicht in kg lengte in m m weegt kg dus m weegt kg meter e startgetal hellingsgetal V-a y + Dus ( ) y

Nadere informatie

OVER OMZET, KOSTEN EN WINST

OVER OMZET, KOSTEN EN WINST OVER OMZET, KOSTEN EN WINST De Totale Winst (TW) van bedrijven vindt men door van de Totale Opbrengsten (TO), de Totale Kosten (TK) af te halen. Daarvoor moeten we eerst naar de opbrengstenkant van het

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a 8 V-a Hoodstuk - Transormaties Voorkennis: Graieken en untievoorshriten ladzijde loninhoud in liter,,,,,,,,,, Van t tot t, dus seonden. loninhoud in liter O tijd in seonden 7 Moderne wiskunde 9e editie

Nadere informatie

Hoofdstuk 4 - Periodieke functies

Hoofdstuk 4 - Periodieke functies Hoofdstuk - Periodieke functies ladzijde 98 V-a Na seconden. Het hart klopt c, millivolt = slagen per minuut. V-a Ja, met periode ; nee; misschien met periode. Evenwichtsstand y = ; -; y =. Amplitude is

Nadere informatie

Hoofdstuk 8 - De afgeleide

Hoofdstuk 8 - De afgeleide Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt,, kg lengte in m gewicht in kg,,, 7, 9,, gewicht in kg lengte in m c m weegt kg dus m weegt, kg,, d, meter, e startgetal, hellingsgetal, V-a

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Hoofdstuk 7 Exponentiële formules

Hoofdstuk 7 Exponentiële formules Opstap Mahten en proenten O-a 3 5 3 3 3 3 3 43 3 78 ( 5) 4 5 5 5 5 65 d 6 ( ) 5 6 9 O- Jak heeft het goede antwoord, want de 6 staat niet tussen haakjes. O-3a 7 4 4 g 7 3 5 7 ( ) 5 48 83 h 3 4 3 9 8 4

Nadere informatie

Functies. Verdieping. 6N-3p 2010-2011 gghm

Functies. Verdieping. 6N-3p 2010-2011 gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de ijehorende grafiek. Je mag de GRM hierij geruiken. Y f ( x) x X

Nadere informatie

Onderneming en omgeving - Economisch gereedschap

Onderneming en omgeving - Economisch gereedschap Onderneming en omgeving - Economisch gereedschap 1 Rekenen met procenten, basispunten en procentpunten... 1 2 Werken met indexcijfers... 3 3 Grafieken maken en lezen... 5 4a Tweedegraads functie: de parabool...

Nadere informatie

Hoofdstuk 4 De afgeleide

Hoofdstuk 4 De afgeleide Havo B eel Uitwerkingen Moerne wiskune Hoofstuk De afgeleie lazije 9 V-a 8 8 8 kg Lengte in m Gewiht in kg 8 7 8 9 8 gewiht 8 8 lengte m weegt 8 kg us m weegt 8 : 8 kg. e 8 m 8 8 is het startgetal en 8

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Hoofdstuk 6 Matrices toepassen

Hoofdstuk 6 Matrices toepassen Hoofdstuk Matries toepassen Moderne wiskunde e editie vwo D deel Lesliematries ladijde a Van de dieren in de leeftijdsgroep van - jaar komen er, in de leeftijdsgroep - jaar Van de dieren in de leeftijdsgroep

Nadere informatie

de Wageningse Methode Antwoorden H12 GETALLEN EN GRAFIEKEN 1

de Wageningse Methode Antwoorden H12 GETALLEN EN GRAFIEKEN 1 Hoofdstuk GETALLEN EN GRAFIEKEN.0 INTRO a De slak klimt een uur met onstante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz.,5 m/u 0,5 m/u d 8 uur en 40 minuten tot 0 gram:

Nadere informatie

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van

Nadere informatie

Extra oefening bij hoofdstuk 1

Extra oefening bij hoofdstuk 1 Havo B deel Uitwerkingen Moderne wiskunde Extra oefening ij hoofdstuk a y y f(x) g(x) Plot van f Invoer: Y.X^ X Venster: Xmin en Xmax Ymin en Ymax x x y y f(x) g(x) x Plot van g Invoer: Y (X+6X+99) Venster:

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,

Nadere informatie

Hoofdstuk 5 - Tabellen, grafieken, formules

Hoofdstuk 5 - Tabellen, grafieken, formules Hoofdstuk 5 - Taellen, grafieken, formules ladzijde 130 V-1a d De grafieken van de grond en de luht vertonen veel grotere temperatuurshommelingen dan de grafiek van het water. De grafiek van de grond omdat

Nadere informatie

Domein D: markt (module 3) vwo 4

Domein D: markt (module 3) vwo 4 1. Noem 3 kenmerken van een marktvorm met volkomen concurrentie. 2. Waaraan herken je een markt met volkomen concurrentie? 3. Wat vormt het verschil tussen een abstracte en een concrete markt? 4. Over

Nadere informatie

Extra oefening bij hoofdstuk 1

Extra oefening bij hoofdstuk 1 Etra oefening ij hoofdstuk Moderne wiskunde 9e editie vwo deel t a Van is de oplossing t log t Van 8 is de oplossing t log 8 t Van is de oplossing t log De vergelijking heeft als oplossing log De vergelijking

Nadere informatie

Hoofdstuk 5 - Hypothese toetsen

Hoofdstuk 5 - Hypothese toetsen V-1a 98 ladzijde 114 Niet iedereen heeft dezelfde kans om in deze steekproef te komen. Het zijn klanten van de winkel. Het zijn alleen vrouwen. Het zijn klanten die allemaal op hetzelfde tijdstip oodshappen

Nadere informatie

Keuzemenu - De standaardnormale verdeling

Keuzemenu - De standaardnormale verdeling ladzijde 4 a Volgens de vuistregels ligt 68% innen μ σ en μ + σ en ligt 95% innen μ σ en μ + σ. a c μ σ,5% 3,5% 34% 34% 3,5% μ σ μ De oppervlakte onder de klokvorm rechts van haar gewicht is,5%, dus daar

Nadere informatie

Hoofdstuk 2 - Algebra of rekenmachine

Hoofdstuk 2 - Algebra of rekenmachine Hoofdstuk - Algera of rekenmachine ladzijde V-a x+ x= x+ 6x= 9x a a= a a= 8a c x+ ( x- ) = x+ x+ - = x+ x- 6= x - 6 d a - ( a+ ) = a - a- = a -a-8 V-a 5xx ( - ) = 5x x- 5x = 5x - 5x pp ( - ) + p- p = p

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

Hoofdstuk 4 - Normale verdelingen

Hoofdstuk 4 - Normale verdelingen ladzijde 92 V-1a De relatieve umulatieve frequenties zijn de waarden van de umulatieve frequenties (somfrequenties) uitgedrukt in perentages. De laatste waarde (dat is de hoogste waarde) van de umulatieve

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Blok - Vaarigheen lazije 0 a g h, p, p i p 0 p e q q q q q f 0 a a 0a a t t t t t t a Per weken is e groeifator,, 9 Een kwartaal heeft : weken. De groeifator per kwartaal is us, 990,. Een ag is -week,

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

De kosten van duurzame productiemiddelen

De kosten van duurzame productiemiddelen 4 hoofdstuk De kosten van duurzame produtiemiddelen 4.1 B 4.2 D 4.3 C 4.4 A 4.5 A 20.000 1,10 4 = 88.000 Afgerond naar oven is dit 4 mahines met een apaiteit van 100.000 stuks per jaar. 4.6 D Op deze korte

Nadere informatie

29 Parabolen en hyperbolen

29 Parabolen en hyperbolen 39 0 1 9 Paraolen en hyperolen 6 5 5 6 3 3 1 5 h = 0,065 0 = 100 meter + (5 ) = 5 6,5 ; 5 ; 56,5 ; 100 meter ( 3 9 ) + (3 ) = 8 16,96.. afstand PE < afstand P tot de x-as Nee! y (alleen als y > 0) 0,065

Nadere informatie

Stevin vwo deel 1 Uitwerkingen hoofdstuk 2 Versnellen ( ) Pagina 1 van 25

Stevin vwo deel 1 Uitwerkingen hoofdstuk 2 Versnellen ( ) Pagina 1 van 25 Stevin vwo deel 1 Uitwerkingen hoofdstuk Versnellen (17-10-014) Pagina 1 van 5 De uitwerkingen van dit hoofdstuk zijn aangevuld met de manier die NiNa prefereert: meer nadruk op grafieken en gemiddelde

Nadere informatie

De stelling van Pythagoras

De stelling van Pythagoras De stelling van Pythagoras Inhoud Inhoud... 1 Inleiding... 3 De stelling van Pythagoras... 3.1 De stelling van Pythagoras... 3. De omgekeerde stelling van Pythagoras... 3.3 Bewijs van de stelling van Pythagoras...

Nadere informatie

Hoofdstuk 2 - Formules en de rekenmachine

Hoofdstuk 2 - Formules en de rekenmachine Havo A deel Uitwerkingen Moderne wiskunde Hoofdstuk - Formules en de rekenmahine ladzijde 8 V-a Een snijpunt met de x-as heeft y-oördinaat gelijk nul. = x + = x x = klopt! Begingetal (startgetal) = en

Nadere informatie

Stevin vwo deel 1 Uitwerkingen hoofdstuk 1 Bewegen (31-08-2012) Pagina 1 van 20. b 12 3 5 7 c

Stevin vwo deel 1 Uitwerkingen hoofdstuk 1 Bewegen (31-08-2012) Pagina 1 van 20. b 12 3 5 7 c Stevin vwo deel 1 Uitwerkingen hoofdstuk 1 Bewegen (31-08-01) Pagina 1 van 0 0 a Opgaven 1.1 Meten van tijden en afstanden x = 1,66.. = 1,7 45 7,5 y = = 73,3.. = 73 4,6 6,3 π z = = 0,515.. = 0,5 38,4 1,7

Nadere informatie

1 De bepaling van de optimale productiegrootte

1 De bepaling van de optimale productiegrootte 1 De bepaling van de optimale productiegrootte Voor wat zorgen de bedrijven en welk probleem treed zich op? De bedrijven zorgen voor het produceren van goederen en diensten. Er treed een keuzeprobleem

Nadere informatie

Domein D: markt. 1) Noem de 4 (macro-economische) productiefactoren. 2) Groepeer de micro-economische productiefactoren bij de macroeconomische

Domein D: markt. 1) Noem de 4 (macro-economische) productiefactoren. 2) Groepeer de micro-economische productiefactoren bij de macroeconomische 1) Noem de 4 (macro-economische) productiefactoren. 2) Groepeer de micro-economische productiefactoren bij de macroeconomische productiefactoren. 3) Hoe ontwikkelt de gemiddelde arbeidsproductiviteit als

Nadere informatie

Overzicht Examenstof Wiskunde A

Overzicht Examenstof Wiskunde A Oefenoes ij hoofdsuk en Overzih Examensof Wiskunde A a X min 0, X max 0, Y min 0 en Y max 000. 0 lier per minuu. Als de ank leeg is, dan is W 0, dus 00 0 0 dus 0. Na 0 minuen is de ank leeg. a Neem de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 0 Voorkennis: Differentiëren en rekenregels lazije 0 V-a h ( ) 0 f () t 6 t + t 0 t + t n () t t t 7 t 6t e k ( p) p p + 0 0p 7 p g ( ) + 08 V-a f( ) ( + ) 6 f ( ) 6 h ( ) ( + 9) 8 gt () tt ( + t ) t +

Nadere informatie

Domein D: Concept markt. Havo 5 Module 2 en 3

Domein D: Concept markt. Havo 5 Module 2 en 3 Domein D: Concept markt Havo 5 Module 2 en 3 Domein D: Concept markt Winst = omzet kosten TW = TO TK TO = 2000 TK = 1500 TW = 500 Omzet per product = gemiddelde omzet = prijs = GO TO = 2000 Als afzet is

Nadere informatie

H23 VERBANDEN havo de Wageningse Methode 1

H23 VERBANDEN havo de Wageningse Methode 1 H23 VERBANDEN havo 23.0 INTRO a - de oven- en ondergrens van de aeroe zone. 2 Op plaats 503 23. VERBANDEN IN DE PRAKTIJK 3 a km t 0 6 2 5 8 36 a 0 2 5 6 2 d k = 30 t + 0 e k = 30 t + 20 f Zie assenstelsel

Nadere informatie

Domein D: markt. 1) Nee, de prijs wordt op de markt bepaald door het geheel van vraag en aanbod.

Domein D: markt. 1) Nee, de prijs wordt op de markt bepaald door het geheel van vraag en aanbod. 1) Geef 2 voorbeelden van variabele kosten. 2) Noem 2 voorbeelden van vaste (=constante) kosten. 3) Geef de omschrijving van marginale kosten. 4) Noem de 4 (macro-economische) productiefactoren. 5) Hoe

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a Om het edrag in euro s te erekenen vermenigvuldig je het aantal kwh met 0,08 en tel je er vervolgens 14 ij op. De formule is dus verruik 0,08 + 14 = edrag. De formule ij tarief A kun je

Nadere informatie

Onderzoeksvraag 3 Wat is de optimale productiegrootte op korte termijn?

Onderzoeksvraag 3 Wat is de optimale productiegrootte op korte termijn? Onderzoeksvraag 3 Wat is de optimale productiegrootte op korte termijn? 1 Intro Een onderneming produceert 3 000 eenheden van haar product en maakt daarbij 27 500 euro kosten. De variabele kosten verlopen

Nadere informatie

Hoofdstuk 6 - Cirkeleigenschappen

Hoofdstuk 6 - Cirkeleigenschappen Hoofdstuk 6 - irkeleigenshappen oderne wiskunde 9e editie vwo deel Voorkennis: hoeken en irkels ladzijde 56 V-a 68 ; dus S 80 SE. us SE S 56 ES 80 56 0. us SE 78. V- 60. Ook geldt 60. us. V-a 80 Er geldt:

Nadere informatie

Eindexamen wiskunde A1-2 havo 2006-I

Eindexamen wiskunde A1-2 havo 2006-I Eindexamen wiskunde A-2 havo 2006-I 4 Beoordelingsmodel Verdienen vrouwen minder? Het gemiddelde jaarinkomen is met 4200 0200 00% toegenomen 0200 2 Dit is ruim 39% 2 In 990 was het gemiddelde jaarinkomen

Nadere informatie

Hoofdstuk 8 - Periodieke functies

Hoofdstuk 8 - Periodieke functies Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk 8 - Periodieke functies ladzijde 8 V-a c Na seconden = slagen per minuut ca., millivolt V-a Ja, met periode Nee Mogelijk, met periode = en amplitude

Nadere informatie

Aantal fietsen 10 20 30 40 50 60 70 80 Kosten ( ) 2500 4500 6000 7000 7500 8700 10500 12800 Verandering kosten ( ) 2000 1500 1000 500 1200 1800 2300

Aantal fietsen 10 20 30 40 50 60 70 80 Kosten ( ) 2500 4500 6000 7000 7500 8700 10500 12800 Verandering kosten ( ) 2000 1500 1000 500 1200 1800 2300 Hoofdstuk 3, Veranderingen 1 Hoofdstuk 3 Veranderingen Kern 1 Stijgen en dalen 1 a In 2000. Begin 1993 was de stand 130, de top is 700. In totaal is er dus een toename van 570 punten. Die toename vond

Nadere informatie

ρ ρ koper = 17 10 9 Ωm (tabel 8 van Binas)

ρ ρ koper = 17 10 9 Ωm (tabel 8 van Binas) Stevin vwo deel 3 Uitwerkingen hoofdstuk 5 Los zand (16-09-2014) Pagina 1 van 13 Opgaven hoofdstuk 5 Los zand 1 a I = U G Er is niet veel aan af te leiden, het is de definitie van G. 1 = ρ A R G = σ met

Nadere informatie

Kaarten module 4 derde klas

Kaarten module 4 derde klas 1. Uit welke twee onderdelen bestaan de totale kosten? 2. Geef 2 voorbeelden van variabele kosten. 3. Geef 2 voorbeelden van vaste (of constante) kosten. 4. Waar is de totale winst gelijk aan? 5. Geef

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a Hoofdstuk - Rekenen met kansen. Kansen erekenen ladzijde vaas A R W vaas B R W R W + P( één rode en één witte) = = =, P( RW) + P( WR) = + = + = =,. Het klopt dus. a Aantal mogelijkheden is =. Elk van

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Vergelijkingen oplossen

Uitwerkingen bij 1_0 Voorkennis: Vergelijkingen oplossen Toets om inhoudsopgave (bladwijzers) wel/niet te tonen Uitwerkingen bij 1_0 Voorkennis: Vergelijkingen oplossen! " #$ % & '&() '*& ) '#! " #" ),-. % / ---.01 2 3 ---. - / %3 -.1-01 2 4 & * 5 5 & %

Nadere informatie

Hoofdstuk 12B - Breuken en functies

Hoofdstuk 12B - Breuken en functies Hoofstuk B - Breuken en funties Voorkennis V-a g V-a h 0 0 i 9 j 0 0 0 9 0 9 e k 0 f l 9 9 Elk stukje wort : 0 0, meter. a 0 0 0 00 L 0, 0, 0,0 0,0 0,0 De lengte van elk stukje wort an twee keer zo klein.

Nadere informatie

Toetsopgaven havo B deel 2 hoofdstuk 6

Toetsopgaven havo B deel 2 hoofdstuk 6 Toetsopgaven havo B deel hoofdstuk 6 pgave In de figuur hiernaast zie je de grafiek van de funtie f. Deze grafiek staat ook twee keer op het werklad. a Shets de hellinggrafiek van f op het werklad. Neem

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a Voorkennis C A m B C = 10 = 9 ABC is geen rehthoekige driehoek. V-a K m L d M = 10 = 90 L 0 M De rehthoekszijden zijn de zijden LM en KM. De langste zijde is zijde KL. d zijde kwadraat LM = 0 KL =

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

Lesbrief CBS, inflatie en indexcijfers

Lesbrief CBS, inflatie en indexcijfers 2COLLEGE RUIVEN Lesrief CBS, inflatie en indexijfers Consumptie PSB en JKH 2016-2017 Deze lesrief geeft extra informatie over CBS, inflatie en indexijfers die je nodig het voor je PTA-toetsen en eindexamen.

Nadere informatie

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met

Nadere informatie

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis Wiskunde voor economie drs. H.J.Ots Hellevoetsluis 15-2-2004, Wiskunde voor economie, ISBN 90-70619-05-9,drs. H.J. Ots, www.webecon.nl Wiskunde voor economie Drs. H.J. Ots ISBN 90-70619-05-9 Webecon, Hellevoetsluis,

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a Voor de kosten in euro s vermenigvuldig je het aantal gehuurde dvd s met 1,50 en tel je er vervolgens de eenmalige kosten van 6 euro voor het pasje ij op. Dat kost 6 + 1,50 20 = 6 + 30

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Stevin vwo Antwoorden hoofdstuk 1 Bewegen ( ) Pagina 1 van 21

Stevin vwo Antwoorden hoofdstuk 1 Bewegen ( ) Pagina 1 van 21 Stevin vwo Antwoorden hoofdstuk 1 Bewegen (016-0-0) Pagina 1 van 1 Als je een ander antwoord vindt, zijn er minstens twee mogelijkheden: óf dit antwoord is fout, óf jouw antwoord is fout. Als je er (vrijwel)

Nadere informatie

Hoofdstuk 3 - De afgeleide functie

Hoofdstuk 3 - De afgeleide functie ladzijde 7 V-a Plo de grafiek van y = x + x +. Me al-zero vind je x 8,. Plo ook de grafiek me y = x+ 5. Me al-inerse vind je x 89, en y= g( 89, ),. V-a d Exa, wan de vergelijking is lineair. Me de rekenmahine,

Nadere informatie

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5 Hoofdstuk 6: De afgeleide functie 6. Hellinggrafieken Opgave : als je vanuit punt A naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te komen, dus rc 6 b. c. d. x 0 4 helling 6,5 0, 5, 5 0,5 Opgave

Nadere informatie

De antwoorden tussen haakjes zijn de antwoorden die wij VERMOEDEN die juist zijn.

De antwoorden tussen haakjes zijn de antwoorden die wij VERMOEDEN die juist zijn. Examenvragen economie 12 juni 2002. De antwoorden tussen haakjes zijn de antwoorden die wij VERMOEDEN die juist zijn. --------------------------------------------------------------------------------- 1)

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen

Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen Hoofdstuk 0 - Lineair programmeren Meer dan twee variaelen ladzijde 90 a 8 anken, 8 stoelen en 7 tafels nemen evenveel plaats in als 8 + 8 + 7 = 6+ 8+ = 78 stoelen. Dat is meer dan de maximale opslagcapaciteit

Nadere informatie

Maak een schatting van de weerstand bij een afstand van 55 cm en laat zien hoe je aan je schatting bent gekomen.

Maak een schatting van de weerstand bij een afstand van 55 cm en laat zien hoe je aan je schatting bent gekomen. EXAMENTRAINING Hoofdstuk 9 Shakelingen 1 Een groepje leerlingen voert een praktishe opdraht uit met een LDR (zie figuur 1). a ij deze proef hoort een onderzoeksvraag. Noem een onderzoeksvraag over de LDR

Nadere informatie

Hoofdstuk 3 - Verdelingen

Hoofdstuk 3 - Verdelingen Hoofdstuk - Verdelingen ladzijde 8 V-a De gemiddelde sore is ( 7 + 7 8 + 9 + + 8 ) : 0 = 0,8. Je kunt het ook invoeren op de rekenmahine. TI 8/8: L: 7, 8, 9, 0,..,7, 8 en L:, 7,..., -Var Stats L,L geeft

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 4 Voorkennis V-1 a De oörinaten zijn A( 2, 1), B(2, 3) en C(5, 4 Qw ). V-2 a Per stap van 1 naar rehts gaat e lijn Qw omhoog. Vanuit C ga je 7 stappen naar rehts en us 7 Qw = 3 Qw omhoog. Omat 4 Qw + 3

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

Herhaling vwo 4. Module 1, 2 en 3. Herhaling vwo 4 module 1, 2, 3. Domeinen ruil, schaarste, markt.

Herhaling vwo 4. Module 1, 2 en 3. Herhaling vwo 4 module 1, 2, 3. Domeinen ruil, schaarste, markt. Herhaling vwo 4 Module 1, 2 en 3 1 Problemen 1. Overzicht over de stof 2. Vergelijkingen oplossen 3. Oplosstappen TWmax 4. Tekenen van grafieken 5. Leerwerk verbeteren 6. Lezen van opgaven (m.i. grootste

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

Hoofdstuk 1 Grafieken en vergelijkingen

Hoofdstuk 1 Grafieken en vergelijkingen Hoofstuk 1 Grafieken en vergelijkingen Opstap Formule, grafiek en vergelijking O-1a Om uur staat het water 6 6 mm hoog in e regenmeter. aantal uren h... h 6 hoogte water aantal uren v :... v 6 hoogte water

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Hoofdstuk 4 Machtsverbanden

Hoofdstuk 4 Machtsverbanden Opstap Derdemachten O-1a I r r r 1 De inhoud van een kuus met r is 1 cm 3. Als I 7 geldt r 3 want 3 3 7. Een kuus met I 7 heeft een rie van 3 cm. c r in cm 1 3 d I in cm 3 1 7 6 1 l in cm 3 9 7 6 3 - -1-3

Nadere informatie

Domein Markt. Zie steeds de eenvoud!! uitwerking totale winst. Frans Etman

Domein Markt. Zie steeds de eenvoud!! uitwerking totale winst. Frans Etman Domein Markt Zie steeds de eenvoud!! uitwerking totale winst havo Frans Etman Opgave 1 Opgave 2 1. Lees in de grafiek af hoe hoog de totale omzet (TO) en de totale kosten (TK) is bij een afzet van 3 producten,

Nadere informatie

Wisnet-HBO update nov. 2008

Wisnet-HBO update nov. 2008 Lineair verband Lineair verband Wisnet-HBO update nov. 28 Twee grootheden hebben een lineair verband als je in een grafiek de ene grootheid tegen de ander uitzet en je ziet een rechte lijn. Bijvoorbeeld:

Nadere informatie