D h = d i. In deze opgave wordt de relatie tussen hoekmaat en afstand uitgerekend in een vlak expanderend heelal.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "D h = d i. In deze opgave wordt de relatie tussen hoekmaat en afstand uitgerekend in een vlak expanderend heelal."

Transcriptie

1 12 De hoekafstand In een vlak, statisch, niet expanderend heelal kan men voor een object met afmeting d op grote afstand D (zodat D d) de hoek i berekenen waaronder men het object aan de hemel ziet. Deze hoek wordt gegeven door de relatie tan i i = d D. (12.1) Voor gegeven afmeting d neemt deze hoek monotoon af met toenemende afstand D. Men kan met behulp van deze relatie de hoekafstand van een object definiëren als: D h = d i. (12.2) In deze opgave wordt de relatie tussen hoekmaat en afstand uitgerekend in een vlak expanderend heelal. a. Bekijk een bron met afmeting d en met meebewegende (wat betekent dat?) afstand a. Deze bron zendt op t = t em een foton uit dat ons op t = t 0 bereikt. Maak een tekening die de situatie weergeeft, zowel op tijdstip van foton-emissie t em als op het tijdstip t 0 van foton-ontvangst. Laat in deze figuur zien: de positie van de bron bij uitzenden en ontvangst, resp. op afstand D em = R(t em )a en D o = R(t 0 )a; de rechtlijnige baan van twee fotonen, afkomstig van de twee uiteinden van de bron, die de waarnemer bereiken; de afmeting van de bron d en de hoek i. 34

2 b. Laat met behulp van die tekening zien dat de hoek waaronder we de bron waarnemen wordt vastgelegd op het tijdstip van uitzenden, en daarom óók bij ontvangst op tijdstip t 0 wordt gegeven door i d D em = d R(t em )a. (12.3) c. Men kan de hoekafstand in een expanderend heelal op dezelfde manier definiëren als in een vlak, statisch heelal (vergelijking 12.2). Bewijs dat de hoekafstand D h dan wordt gegeven door D h = D z, (12.4) met z de roodverschuiving van de bron 5, en D 0 zijn fysische afstand op het moment t 0 van ontvangst. We plaatsen ons nu in de positie van een typische waarnemer, die alleen de hoekmaat i, de roodverschuiving z van de bron en de ouderdom t 0 van het heelal bij fotonontvangst weet. We gebruiken de relatie die voor de afstand D 0 tot de bron heeft in termen van schaalfactor, emissie-tijdstip en ontvangstijdstip: D 0 = R 0 a = R 0 t0 t em c dt R(t). (12.5) Hier gebruik ik de notatie R 0 R(t 0 ). We bekijken het simpelste Friedmann model: een door materie gedomineerd, vlak heelal met expansiewet ( ) 2/3 t R(t) = R 0. (12.6) t 0 5 Wat was ook al weer de relatie tussen schaalfactor en roodverschuiving? 35

3 d. Laat zien dat de volgende relaties gelden: t em = t 0 (1 + z) 3/2, D 0 = 3ct 0 1 ( tem t 0 ) 1/3. (12.7) e. Laat nu behulp met de resultaten van d zien dat de hoek waaronder we een object van afmeting d zien in een vlak heelal dat expandeert als R t 2/3 als functie van de roodverschuiving wordt gegeven door: ( ) d i = d H (1 + z) 3/2 1 + z 1. (12.8) In deze uitdrukking is d H = 3ct 0 de horizonafstand in een heelal dat expandeert als R t 2/3, zoals uitgerekend in opgave 1.9 voor α = 2/3. f. Maak een grafiek van het verloop van i als functie van de roodverschuiving z (gebruik een calculator). Wat valt daarbij op??? Hoe gedraagt i zich voor z 1 en voor z 1? g. Geef een fysische verklaring van het feit dat in een expanderend heelal de hoek waaronder men het object ziet niet monotoon afneemt met toenemende afstand (roodverschuiving), zoals met zou verwachten op grond van onze dagelijkse ervaring. 36

4 13 De Luminosity Distance Sterrekundige afstandsbepaling buiten ons eigen Melkwegstelsel gebruikt altijd de waargenomen helderheid van een object (magnitude) om, gegeven de lichtkracht (absolute magnitude) van dat object, de afstand te bepalen. Door dit voor vele objecten (veranderlijke sterren zoals de Cepheïden, gaswolken, ) te doen kunnen fouten door individuele verschillen worden uitgemiddeld. De flux F van een object met lichtkracht (uitgestraald vermogen) L op een afstand D is F vermogen oppervlak = L 4πD 2. (13.1) Deze formule gaat er van uit dat het object in alle richtingen even sterk straalt, zodat het uitgestraald vermogen (stralingsenergie/tijdseenheid) gelijkmatig is verdeeld over een bol met straal D. Als met L kent volgt de afstand meteen uit de waargenomen flux: D = L 4πF D L. (13.2) Deze relatie definieert de zgn. lichtkracht afstand (Engels: Luminosity Distance). Bovenstaande twee formules zijn geldig voor een object op vaste afstand, dus in een statisch (niet expanderend) heelal. In deze som bekijken wij hoe dit werkt in een expanderend heelal. a. Bekijk een bron met roodverschuiving z. Met wat voor factor verschilt de ontvangen foton-energie voor ieder foton van de foton-energie bij uitzenden? b. De waargenomen flux hangt niet alleen af van de energie per foton, maar ook van de snelheid waarmee opeenvolgende fotonen binnenkomen bij de waarnemer. Stel, gemiddeld gesproken vertrekken opeenvolgende fotonen een tijdspanne t e van elkaar bij de bron. Met welk tijdsinterval komen die fotonen bij de waarnemer binnen, en wat betekent dit voor de waargenomen flux (opgevangen vermogen per oppervlakte-eenheid)? 37

5 c. Op het moment van ontvangst staat de bron op een afstand D 0. Beredeneer nu op grond van de resultaten a en b dat de Luminosity Distance, als je die nog steeds definieert volgens uitdrukking (13.2), gegeven wordt door: D L = (1 + z) D 0. (13.3) Naschrift: Uit de laatste twee sommen kun je opmaken dat afstandsbepaling in een expanderend heelal wat ingewikkelder is: de hoekafstand D h en de lichtkracht afstand D L hangen samen met de werkelijke afstand D 0 op het moment van foton-ontvangst via de relaties: D h = D z, D L = D 0 (1 + z). (13.4) Daarbij dient te worden gerealizeerd dat astronomische metingen in het algemeen alleen leiden tot een situatie waar de waarnemers de beschikking hebben over de roodverschuiving, helderheid en (soms) hoekafmeting, zodat de afstandsbepaling via D L of D h moet geschieden. Het gebruik van de hoekafmeting, bijvoorbeeld bij uitgebreide radiobronnen (radio-sterrenstelsels) is bovendien zeer problematisch omdat deze klasse objecten een zeer heterogene populatie vormen. 38

6 14 Afstanden uitgedrukt als roodverschuivingsintegralen Waarnemers krijgen in het algemeen direct de roodverschuiving van de bron uit hun gegevens. Die roodverschuiving is gerelateerd aan de schaalfactor R 0 R(t 0 ) bij fotonontvangst en de schaalfactor R em R(t em ) op het moment van emissie via de relatie 1 + z 0 = R 0 R em, (14.1) met z 0 de waargenomen roodverschuiving. Omdat er een één op één correspondentie is tussen roodverschuiving, waarneemmoment t 0 en emissie-moment t em, gegeven een heelalmodel dat je R(t) geeft, kun je ook roodverschuiving gebruiken in plaats van de tijd door te definiëren: 1 + z(t) R 0 R(t), (14.2) dat wil zeggen: z(t) is de roodverschuiving van een denkbeeldig foton dat op tijdstip t vertrok (t t em ) en nu (d.w.z. op het vaste tijdstip t 0 t) aankomt. In deze som bekijken we hoe dit kan worden gebruikt om afstanden te berekenen. a. Laat zien dat de Hubble parameter op tijdstip t t 0 gelijk is aan Waarom is het minteken hier essentiëel? H(t) = z dz dt. (14.3) b. Bekijk vlak een heelal, gevuld met koude materie en een kosmologische constante (vacuüm-energie), zoals het ons eigen heelal. De bijbehorende Omega-parameters (op tijdstip t 0 ) zijn respectivelijk Ω m0 en Ω Λ0, zie ook Som 1.8. Laat zien dat Friedmann s vergelijking leidt tot: dz dt = H 0 (1 + z) Ω m0 (1 + z) 3 + Ω Λ0. (14.4) 39

7 c. Stel, we gebruiken de roodverschuiving z(t) in plaats van tijd zelf om bij te houden over welk tijdstip in de evolutie van het heelal we praten. Gebruik de relatie dz = ( ) dz dt dt (14.5) om te bewijzen dat de volgende relatie geldt voor het omschrijven van tijdsintegralen naar roodverschuivingsintegralen: t0 t e dt = z0 0 H 0 (1 + z) dz Ω (14.6) m0 (1 + z) 3 + Ω Λ0 Waar is het minteken gebleven? d. Laat nu zien met behulp van de op het college afgeleide definities dat de afstand D 0 tot een bron bij foton-ontvangst gelijk is aan D 0 = c H 0 z0 0 dz Ω m0 (1 + z) 3 + Ω Λ0 (14.7) Het voordeel van deze schrijfwijze moet duidelijk zijn: je meet z 0 en andere metingen geven je (hopelijk) goede waarden voor Ω m0 en Ω Λ0. Vergeet niet dat we een vlak heelal hebben aangenomen zodat Ω m0 + Ω Λ0 = 1. e. Bereken D 0 in termen van z 0 in twee grensgevallen: Een heelal zonder vacuümenergie, dus Ω m0 = 1 en Ω Λ0 = 0; Een leeg de Sitter heelal zonder materie, dus Ω m0 = 0 en Ω Λ0 = 1. In het algemene geval moet de integraal numeriek worden berekend: er is géén analytische formule voor! 40

8 15 INLEVEROPGAVE: Gekromde De Sitter-heelallen Als vacuüm-energie overheerst luidt de Friedmann vergelijking: ( 1 R ) 2 dr = H 2 Λ dt k R. (15.1) 2 Hier is k de krommingsparameter en is H Λ gedefiniëerd via de relatie H 2 Λ = 8πG ρ vac 3 = Λ 3, (15.2) met Λ de equivalente kosmologische constante. We gaan er van uit dat H Λ constant is. De simpele De-Sitter oplossing gaat uit van een vlak heelal met k = 0. Hier bekijken we de gevallen met k 0. Dit soort modellen zijn belangrijk voor de theorie van Inflatie, waar het heelal een vroege periode van (exponentieel) snelle expansie kent om zo het horizonprobleem en het vlakheidsprobleem van simpele Friedman modellen op te lossen. a. We bekijken eerste het geval k > 0 (gesloten, positief gekromd heelal). Laat nu het volgende zien: als we de dimensieloze variabelen τ = H Λ t, R = H Λ R k (15.3) definiëren, dan kan Friedmann s vergelijking worden geschreven als: ( ) 2 dr = R 2 1. (15.4) dτ 41

9 b. We kiezen de expanderende oplossingstak, waarvoor geldt R 1 (waarom??) en dr dτ = R 2 1. (15.5) Laat, op welke manier je ook maar wilt, zien dat de oplossing van deze gewone differentiaalvergelijking is 6 : R(τ) = cosh(τ), (15.6) als R = 1 op τ = 0. c. Hoe gedraagt deze oplossing zich voor τ 1? Geef in dat geval ook R(t), d.w.z. de oplossing in fysische variabelen. d. We bekijken vervolgens het geval k < 0: het open, negatief gekromd heelal. We introduceren nu de dimensieloze variabelen τ = H Λ t, R = H Λ R k. (15.7) Volg nu dezelfde (analoge) stappen als voor het geval k > 0, en laat uiteindelijk zien dat de expanderende oplossingen voldoen aan: R(τ) = sinh(τ), (15.8) als R = 0 op τ = 0. De opgave gaat door op de volgende pagina! 6 Voor wie het even vergeten is: de hyperbolische functies cosh(x) en sinh(x) zijn gedefiniëerd als cosh(x) = (e x + e x )/2, sinh(x) = (e x e x )/2 en voldoen aan cosh 2 (x) sinh 2 (x) = 1. 42

10 e. Hoe gedraagt deze oplossing zich voor τ 1? Geef in dat geval ook R(t), d.w.z. de oplossing in fysische variabelen. f. Wat concludeer je op grond van deze berekening over de invloed van kromming (i.h.b. het teken van k) op het tijds-asymptotisch gedrag (gedrag voor voor H Λ t 1) van inflatieoplossingen? Je mag het geval de Sitter geval met k = 0 in deze discussie betrekken. Naschrift: je ziet uit deze berekening dat de bij simpele Friedmann modellen (ρ vac = 0) geldende wet dat k > 0 een heelal geeft dat ooit weer instort, en k 0 een heelal dat altijd blijft expanderen hier niet langer geldt! 43

8 De gravitationele afbuiging van licht

8 De gravitationele afbuiging van licht 8 De gravitationele afbuiging van licht Eén van de voorspellingen van de Algemene Relativiteitstheorie (ART) is dat ook licht, alhoewel fotonen strikt genomen massaloos zijn, wordt afgebogen door de zwaartekracht.

Nadere informatie

16 Hoe groot moet de inflatie-factor Z infl ten minste zijn?

16 Hoe groot moet de inflatie-factor Z infl ten minste zijn? 16 Hoe groot moet de inflatie-factor Z infl ten minste zijn? Inflatiemodellen, waarin het heelal een korte tijd een quasi-de Sitter fase ondergaat met een grote (exponentiële) toenname van de schaalfactor,

Nadere informatie

Prof.dr. A. Achterberg, IMAPP

Prof.dr. A. Achterberg, IMAPP Prof.dr. A. Achterberg, IMAPP Hoorcollege: Woensdag 10:45-12:30 in HG00.308 Data: 13 april t/m 15 juni; niet op 27 april & 4 mei Werkcollege: Vrijdag, 15:45-17:30, in HG 03.053 Data: t/m 17 juni; niet

Nadere informatie

naarmate de afstand groter wordt zijn objecten met of grotere afmeting of grotere helderheid nodig als standard rod of standard candle

naarmate de afstand groter wordt zijn objecten met of grotere afmeting of grotere helderheid nodig als standard rod of standard candle Melkwegstelsels Ruimtelijke verdeling en afstandsbepaling Afstands-ladder: verschillende technieken nodig voor verschillend afstandsbereik naarmate de afstand groter wordt zijn objecten met of grotere

Nadere informatie

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording, Augustus 2013. 1

Nadere informatie

Newtoniaanse kosmologie 4

Newtoniaanse kosmologie 4 Newtoniaanse kosmologie 4 4.2 De leeftijd van het heelal Liddle Ch. 8 4.1 De kosmologische constante Liddle Ch. 7 4.3 De dichtheid en donkere materie Liddle Ch. 9 1.0 Overzicht van het college Geschiedenis

Nadere informatie

HOVO cursus Kosmologie

HOVO cursus Kosmologie HOVO cursus Kosmologie Voorjaar 2011 prof.dr. Paul Groot dr. Gijs Nelemans Afdeling Sterrenkunde, Radboud Universiteit Nijmegen HOVO cursus Kosmologie Overzicht van de cursus: 17/1 Groot Historische inleiding

Nadere informatie

Sterrenkundig Practicum 2 3 maart Proef 3, deel1: De massa van het zwarte gat in M87

Sterrenkundig Practicum 2 3 maart Proef 3, deel1: De massa van het zwarte gat in M87 Proef 3, deel1: De massa van het zwarte gat in M87 Sterrenkundig Practicum 2 3 maart 2005 Vele sterrenstelsels vertonen zogenaamde nucleaire activiteit: grote hoeveelheden straling komen uit het centrum.

Nadere informatie

Werkcollege III Het Heelal

Werkcollege III Het Heelal Werkcollege III Het Heelal Opgave 1: De Hubble Expansie Sinds 1929 weten we dat we ons in een expanderend Heelal bevinden. Het was Edwin Hubble die in 1929 de recessie snelheid van sterrenstelsels in ons

Nadere informatie

TENTAMEN INLEIDING ASTROFYSICA WOENSDAG 15 DECEMBER,

TENTAMEN INLEIDING ASTROFYSICA WOENSDAG 15 DECEMBER, Tentamen Inleiding Astrofysica Pagina 1 uit 8 TENTAMEN INLEIDING ASTROFYSICA WOENSDAG 15 DECEMBER, 14.00-17.00 LEES ONDERSTAANDE INFORMATIE GOED DOOR: DIT TENTAMEN OMVAT VIER OPGAVES OPGAVE 1: 2.0 PUNTEN

Nadere informatie

Afstanden en roodverschuiving in een Stabiel Heelal Inleiding.

Afstanden en roodverschuiving in een Stabiel Heelal Inleiding. Afstanden en roodverschuiving in een Stabiel Heelal ---------------------------------------------------------------------- Inleiding. Wanneer men nu aanneemt dat het heelal stabiel is, dus dat alles in

Nadere informatie

HOVO cursus Kosmologie

HOVO cursus Kosmologie HOVO cursus Kosmologie Voorjaar 2011 prof.dr. Paul Groot dr. Gijs Nelemans Afdeling Sterrenkunde, Radboud Universiteit Nijmegen HOVO cursus Kosmologie Overzicht van de cursus: 17/1 24/1 31/1 7/2 14/2 21/2

Nadere informatie

Je weet dat hoe verder je van een lamp verwijderd bent hoe minder licht je ontvangt. Een

Je weet dat hoe verder je van een lamp verwijderd bent hoe minder licht je ontvangt. Een Inhoud Het heelal... 2 Sterren... 3 Herzsprung-Russel-diagram... 4 Het spectrum van sterren... 5 Opgave: Spectraallijnen van een ster... 5 Verschuiving van spectraallijnen... 6 Opgave: dopplerverschuiving...

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

Newtoniaanse kosmologie De kosmische achtergrondstraling Liddle Ch Het vroege heelal Liddle Ch. 11

Newtoniaanse kosmologie De kosmische achtergrondstraling Liddle Ch Het vroege heelal Liddle Ch. 11 Newtoniaanse kosmologie 5 5.1 De kosmische achtergrondstraling Liddle Ch. 10 5.2 Het vroege heelal Liddle Ch. 11 1.0 Overzicht van het college Geschiedenis Het uitdijende Heelal Terug in de tijd: de oerknal

Nadere informatie

Oerknal kosmologie 1

Oerknal kosmologie 1 Inleiding Astrofysica Paul van der Werf Sterrewacht Leiden Evolutie van massa dichtheid vroeger M ρ λ = = = = + M ρ λ ( 1 z) Evolutie van fotonen dichtheid E hν = = 1+ z E hν E c 2 ρ = = + ρ E c 2 4 (

Nadere informatie

Newtoniaanse kosmologie 5

Newtoniaanse kosmologie 5 Newtoniaanse kosmologie 5 5.1 De kosmische achtergrondstraling Liddle Ch. 10 5.2 Het vroege heelal Liddle Ch. 11 1 1.0 Overzicht van het college Geschiedenis Het uitdijende Heelal Terug in de tijd: de

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Kosmologie. Oorsprong van het heelal, onstaan van de eerste objecten en structuren, evolutie van de ruimtelijke verdeling van materie.

Kosmologie. Oorsprong van het heelal, onstaan van de eerste objecten en structuren, evolutie van de ruimtelijke verdeling van materie. Kosmologie Oorsprong van het heelal, onstaan van de eerste objecten en structuren, evolutie van de ruimtelijke verdeling van materie. Kosmologie begint in de oudheid (Anaximander, Plato, Pythagoras) Doorbraak

Nadere informatie

Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 13 november 2014

Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 13 november 2014 Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 13 november 2014 jo@nikhef.nl Kosmologie Algemene relativiteitstheorie Kosmologie en Big Bang Roodverschuiving Thermodynamica Fase-overgangen

Nadere informatie

****** Deel theorie. Opgave 1

****** Deel theorie. Opgave 1 HIR - Theor **** IN DRUKLETTERS: NAAM.... VOORNAAM... Opleidingsfase en OPLEIDING... ****** EXAMEN CONCEPTUELE NATUURKUNDE MET TECHNISCHE TOEPASSINGEN Deel theorie Algemene instructies: Naam vooraf rechtsbovenaan

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording,

Nadere informatie

Donkere Materie. Bram Achterberg Sterrenkundig Instituut Universiteit Utrecht

Donkere Materie. Bram Achterberg Sterrenkundig Instituut Universiteit Utrecht Donkere Materie Bram Achterberg Sterrenkundig Instituut Universiteit Utrecht Een paar feiten over ons heelal Het heelal zet uit (Hubble, 1924); Ons heelal is zo n 14 miljard jaar oud; Ons heelal was vroeger

Nadere informatie

Uitdijing van het heelal

Uitdijing van het heelal Uitdijing van het heelal Zijn we centrum van de expansie? Nee Alles beweegt weg van al de rest: Alle afstanden worden groter met zelfde factor a(t) a 4 2 4a 2a H Uitdijing van het heelal (da/dt) 2 0 a(t)

Nadere informatie

Inleiding Astrofysica Tentamen 2009/2010: antwoorden

Inleiding Astrofysica Tentamen 2009/2010: antwoorden Inleiding Astrofysica Tentamen 2009/200: antwoorden December 2, 2009. Begrippen, vergelijkingen, astronomische getallen a. Zie Kutner 0.3 b. Zie Kutner 23.5 c. Zie Kutner 4.2.6 d. Zie Kutner 6.5 e. Zie

Nadere informatie

HOVO cursus Kosmologie

HOVO cursus Kosmologie HOVO cursus Kosmologie Voorjaar 2011 prof.dr. Paul Groot dr. Gijs Nelemans Afdeling Sterrenkunde, Radboud Universiteit Nijmegen HOVO cursus Kosmologie Overzicht van de cursus: 17/1 Groot Historische inleiding

Nadere informatie

TE TAME I LEIDI G ASTROFYSICA WOE SDAG 6 FEBRUARI 2013,

TE TAME I LEIDI G ASTROFYSICA WOE SDAG 6 FEBRUARI 2013, TE TAME I LEIDI G ASTROFYSICA WOE SDAG 6 FEBRUARI 2013, 14.00-17.00 LEES O DERSTAA DE GOED DOOR: DIT TE TAME OMVAT VIER OPGAVES OPGAVE 1: 2.5 PU TE OPGAVE 2: 2.5 PU TE OPGAVE 3: 2.5 PU TE OPGAVE 4: 2.5

Nadere informatie

STERREN EN MELKWEGSTELSELS

STERREN EN MELKWEGSTELSELS STERREN EN MELKWEGSTELSELS 7. Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Voorjaar 2007 Outline Kosmologisch principe Newtonse Olbers Paradox Oplossingen van

Nadere informatie

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan.

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan. Tentamen Inleiding Meten en Modelleren Vakcode 8C1 7 april 1, 9. - 1. uur Dit tentamen bestaat uit 4 opgaven. Indien u een opgave niet kunt maken, geeft u dan aan hoe u de opgave zou maken. Dat kan een

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur Wiskunde B Profi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Donderdag 25 mei 3.30 6.30 uur 20 00 Dit eamen bestaat uit 7 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

De evolutie van het heelal

De evolutie van het heelal De evolutie van het heelal Hoe waar te nemen? FERMI (gamma array space telescope) op zoek naar de specifieke gamma straling van botsende WIMP s: Nog niets waargenomen. Met ondergrondse detectoren in de

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Het drie-reservoirs probleem

Het drie-reservoirs probleem Modelleren A WH01 Het drie-reservoirs probleem Michiel Schipperen (0751733) Stephan van den Berkmortel (077098) Begeleider: Arris Tijsseling juni 01 Inhoudsopgave 1 Samenvatting Inleiding.1 De probleemstelling.................................

Nadere informatie

Newtoniaanse kosmologie De singulariteit in het begin Liddle Ch De toekomst 7.3 Het standaardmodel Liddle Ch. 15

Newtoniaanse kosmologie De singulariteit in het begin Liddle Ch De toekomst 7.3 Het standaardmodel Liddle Ch. 15 Newtoniaanse kosmologie 7 7.1 De singulariteit in het begin Liddle Ch. 14 7.2 De toekomst 7.3 Het standaardmodel Liddle Ch. 15 1.0 Overzicht van het college Geschiedenis Het uitdijende Heelal Terug in

Nadere informatie

TENTAMEN INLEIDING ASTROFYSICA WOENSDAG 14 DECEMBER,

TENTAMEN INLEIDING ASTROFYSICA WOENSDAG 14 DECEMBER, TENTAMEN INLEIDING ASTROFYSICA WOENSDAG 14 DECEMBER, 14.00-17.00 LEES ONDERSTAANDE IN DETAIL: DIT TENTAMEN OMVAT VIER OPGAVES OPGAVE 1: 2.5 PUNTEN OPGAVE 2: 2.5 PUNTEN OPGAVE 3: 2.5 PUNTEN OPGAVE 4: 2.5

Nadere informatie

Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem

Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem PLANETENSTELSELS - WERKCOLLEGE 3 EN 4 Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem In de vorige werkcolleges heb je je pythonkennis opgefrist. Je hebt een aantal fysische constanten ingelezen,

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische inflatie: 3 december 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren

Nadere informatie

TE TAME I LEIDI G ASTROFYSICA WOE SDAG 12 DECEMBER 2012,

TE TAME I LEIDI G ASTROFYSICA WOE SDAG 12 DECEMBER 2012, TE TAME I LEIDI G ASTROFYSICA WOE SDAG 12 DECEMBER 2012, 14.00-17.00 LEES O DERSTAA DE GOED DOOR: DIT TE TAME OMVAT VIER OPGAVES OPGAVE 1: 3.0 PU TE OPGAVE 2: 2.5 PU TE OPGAVE 3: 2.0 PU TE OPGAVE 4: 2.5

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

7. Hamiltoniaanse systemen

7. Hamiltoniaanse systemen 7. Hamiltoniaanse systemen In de moleculaire dynamica, maar ook in andere gebieden zoals de hemelmechanica of klassieke mechanica, worden oplossingen gezocht van het Hamiltoniaanse systeem van differentiaalvergelijkingen

Nadere informatie

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden. 1 Formules gebruiken Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules gebruiken Inleiding Verkennen Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Eindpunt van een ster Project voor: middelbare scholieren (profielwerkstuk) Moeilijkheidsgraad: Categorie: Het verre heelal Tijdsinvestering: 80 uur

Eindpunt van een ster Project voor: middelbare scholieren (profielwerkstuk) Moeilijkheidsgraad: Categorie: Het verre heelal Tijdsinvestering: 80 uur Eindpunt van een ster Project voor: middelbare scholieren (profielwerkstuk) Moeilijkheidsgraad: Categorie: Het verre heelal Tijdsinvestering: 80 uur Inleiding Dit is een korte inleiding. Als je meer wilt

Nadere informatie

De Energie van het Vacuüm

De Energie van het Vacuüm De Energie van het Vacuüm M.A.H. Cloos, M.J.F. Klarenbeek, L. Meijer, R.E. Pool onder begeleiding van J. de Boer, R. Dijkgraaf en E. Verlinde 08-06-004 Samenvatting Uit kosmologische modellen blijkt dat

Nadere informatie

Tentamen: Gravitatie en kosmologie

Tentamen: Gravitatie en kosmologie 1 Tentamen: Gravitatie en kosmologie Docent: Jo van den Brand Datum uitreiken: 1 december 2011 Datum inleveren: 15 december 2011 (bij Marja of voor 17:00 in mijn postvak) Datum mondeling: 19-23 december

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische kosmologie: 24 november 2014 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren

Nadere informatie

(voor radiële bewegingen) v > 0: van ons af v < 0: naar ons toe. Inleiding astrofysica 2. De Hubble wet

(voor radiële bewegingen) v > 0: van ons af v < 0: naar ons toe. Inleiding astrofysica 2. De Hubble wet Inleiding astrofysia 003 Inleiding Astrofysia Paul van der Werf Doppler effet v λ 1+ relativistish: = λ v 1 (voor radiële bewegingen) v > 0: van ons af v < 0: naar ons toe oodvershuiving roodvershuiving

Nadere informatie

Overzicht. Vandaag: Frank Verbunt Het heelal Nijmegen 2014. uitdijing heelal theorie: ART afstands-ladder nucleo-synthese 3 K achtergrond.

Overzicht. Vandaag: Frank Verbunt Het heelal Nijmegen 2014. uitdijing heelal theorie: ART afstands-ladder nucleo-synthese 3 K achtergrond. Vandaag: Frank Verbunt Het heelal Nijmegen 2014 Kosmologie Overzicht uitdijing heelal theorie: ART afstands-ladder nucleo-synthese 3 K achtergrond Boek: n.v.t. Frank Verbunt (Sterrenkunde Nijmegen) Het

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

Aanwijzingen bij vraagstukken distributies

Aanwijzingen bij vraagstukken distributies Aanwijzingen bij vraagstukken distributies Vraagstuk 9.7 Voor het eerste deel, test x x + iε 1 met een testfunctie. Voor het laatste deel: vind eerst bijzondere oplosssingen door de gesuggereerde procedure

Nadere informatie

Schoolexamen Moderne Natuurkunde

Schoolexamen Moderne Natuurkunde Schoolexamen Moderne Natuurkunde Natuurkunde 1,2 VWO 6 24 maart 2003 Tijdsduur: 90 minuten Deze toets bestaat uit 3 opgaven met 16 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Hoe meten we STERAFSTANDEN?

Hoe meten we STERAFSTANDEN? Hoe meten we STERAFSTANDEN? (soorten sterren en afstanden) Frits de Mul Jan. 2017 www.demul.net/frits 1 Hoe meten we STERAFSTANDEN? (soorten sterren en afstanden) 1. Afstandsmaten in het heelal 2. Soorten

Nadere informatie

Airyfunctie. b + π 3 + xt dt. (2) cos

Airyfunctie. b + π 3 + xt dt. (2) cos LaTeX opdracht Bewijzen en Redeneren 1ste fase bachelor in Fysica, Wiskunde Werk de volgende opdracht individueel uit. U moet hier alleen aan werken. Geef ook geen files door aan anderen. Ingediende opdrachten

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

STERREN EN MELKWEGSTELSELS

STERREN EN MELKWEGSTELSELS STERREN EN MELKWEGSTELSELS 2. Insterstellair medium en stervorming Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Voorjaar 2007 Outline HII-gebieden Stof en interstellaire

Nadere informatie

6 Geaggregeerde vraag en geaggregeerd aanbod

6 Geaggregeerde vraag en geaggregeerd aanbod 6 Geaggregeerde vraag en geaggregeerd aanbod Opgave 1 a Noem vier factoren die bij een gegeven prijsniveau tot een verandering van de Effectieve Vraag kunnen leiden. b Met welke (macro-economische) instrumenten

Nadere informatie

Toets 1 IEEE, Modules 1 en 2, Versie 1

Toets 1 IEEE, Modules 1 en 2, Versie 1 Toets 1 IEEE, Modules 1 en 2, Versie 1 Datum: 16 september 2009 Tijd: 10:45 12:45 (120 minuten) Het gebruik van een rekenmachine is niet toegestaan. Deze toets telt 8 opgaven en een bonusopgave Werk systematisch

Nadere informatie

Hoe meten we STERAFSTANDEN?

Hoe meten we STERAFSTANDEN? Hoe meten we STERAFSTANDEN? Frits de Mul voor Cosmos Sterrenwacht nov 2013 Na start loopt presentatie automatisch door 1 Hoe meten we STERAFSTANDEN? 1. Afstandsmaten in het heelal 2. Soorten sterren 3.

Nadere informatie

Prof.dr. A. Achterberg, IMAPP

Prof.dr. A. Achterberg, IMAPP Prof.dr. A. Achterberg, IMAPP www.astro.ru.nl/~achterb/ Populaire ideeën: - Scalair quantumveld met de juiste eigenschappen; (zoiets als Higgs Veld) - Willekeurig scalair quantum veld direct na de Oerknal

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

EXAMEN VOORBEREIDEND WETENSCHAPPELUK ONDERWIJS IN 1979 , I. Dit examen bestaat uit 4 opgaven. " '"of) r.. I r. ',' t, J I i I.

EXAMEN VOORBEREIDEND WETENSCHAPPELUK ONDERWIJS IN 1979 , I. Dit examen bestaat uit 4 opgaven.  'of) r.. I r. ',' t, J I i I. .o. EXAMEN VOORBEREDEND WETENSCHAPPELUK ONDERWJS N 1979 ' Vrijdag 8 juni, 9.00-12.00 uur NATUURKUNDE.,, Dit examen bestaat uit 4 opgaven ',", "t, ', ' " '"of) r.. r ',' t, J i.'" 'f 1 '.., o. 1 i Deze

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

De uitdijing van het heelal en inflatie

De uitdijing van het heelal en inflatie De uitdijing van het heelal en inflatie Verslag van bachelorproject Natuur- en Sterrenkunde 27 augustus 2009 Ellen van der Woerd 5611806 Bron: NASA en WMAP Science Team omvang 12 EC uitgevoerd tussen 11

Nadere informatie

Samenvatting Newtoniaanse Kosmologie

Samenvatting Newtoniaanse Kosmologie Samenvatting Newtoniaanse Kosmologie 1 Prof. dr. Abraham Achterberg Afdeling Sterrenkunde, IMAPP Radboud Universiteit Nijmegen April 2015 3 4 Inhoudsopgave 1 Inleiding en historie 11 1.1 Wat is het Oerknalmodel,

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 6 juli 2012, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 6 juli 2012, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 6 juli 2012, 14.00-17.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die bij

Nadere informatie

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012 - Biologie Schriftelijk examen 2e Ba Biologie 2011-2012 Naam en studierichting: Aantal afgegeven bladen, deze opgaven niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de

Nadere informatie

Het meten van gravitatie golven door middel van pulsars

Het meten van gravitatie golven door middel van pulsars Het meten van gravitatie golven door middel van pulsars 6 november 2009 Inleiding In deze presentatie: Ruimtetijd Gravitatie golven Pulsars Indirect gravitatie golven waarnemen Direct gravitatie golven

Nadere informatie

De kosmische afstandsladder

De kosmische afstandsladder De kosmische afstandsladder De kosmische afstandsladder Oorsprong Sterrenkunde Maan B Zon A Aarde C Aristarchos: Bij halve maan is de hoek zon-maanaarde, B, 90 graden. Als exact op hetzelfde moment de

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. VERNIEUWINGSPROCESSEN In hoofdstuk 3 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t),

Nadere informatie

Vroege beschavingen hebben zich al afgevraagd waar alles vandaan kwam en hoe alles is begonnen.

Vroege beschavingen hebben zich al afgevraagd waar alles vandaan kwam en hoe alles is begonnen. Nederlandse Samenvatting Vroege beschavingen hebben zich al afgevraagd waar alles vandaan kwam en hoe alles is begonnen. Eeuwenlang heeft de mensheid zich afgevraagd wat zijn positie is in dit onmetelijke

Nadere informatie

Voorbeeldopgaven Meetkunde voor B

Voorbeeldopgaven Meetkunde voor B Voorbeeldopgaven Meetkunde voor B Hoofdstuk 2: Opgave 2 1 Gegeven zijn de vlakken U : x + y + z = 0 en V : x y + az = 0 waarbij a een parameter is. a) Bereken de cosinus van de hoek tussen de twee vlakken

Nadere informatie

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden:

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden: Wiskunde voor kunstmatige intelligentie, 24 Les 5 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin een aantal knopen acties aangeeft en opdrachten langs verbindingen tussen de

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N460) op donderdag 23 juni 2011, 1400-1700 uur Deel 1: Van 1400 uur tot uiterlijk

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

4 Vergelijkingen. Verkennen. Theorie en Voorbeelden

4 Vergelijkingen. Verkennen. Theorie en Voorbeelden 4 Vergelijkingen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Vergelijkingen Inleiding Verkennen Theorie en Voorbeelden www.math4all.nl MAThADORE-basic HAVO/VWO

Nadere informatie

Faculteit Wiskunde en Informatica VECTORANALYSE

Faculteit Wiskunde en Informatica VECTORANALYSE 12 Faculteit Wiskunde en Informatica Aanvulling 4 VECTOANALYE 2WA15 2006/2007 Hoofdstuk 4 De stelling van Gauss (divergentie-stelling) 4.1 Inleiding Dit hoofdstuk is gewijd aan slechts één stelling. De

Nadere informatie

Klassieke en Kwantummechanica (EE1P11)

Klassieke en Kwantummechanica (EE1P11) Maandag 3 oktober 2016, 9.00 11.00 uur; DW-TZ 2 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Opleiding Elektrotechniek Aanwijzingen: Er zijn 2 opgaven in dit tentamen.

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-II

Eindexamen wiskunde B1-2 vwo 2007-II ier tappen ij het tappen van bier treden verschillen op in de hoeveelheid bier per glas. Uit onderzoek blijkt dat de hoeveelheid bier die per glas getapt wordt bij benadering normaal verdeeld is met een

Nadere informatie

Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 4 december 2014

Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 4 december 2014 Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 4 december 2014 jo@nikhef.nl Kosmologie Algemene relativiteitstheorie Kosmologie en Big Bang Roodverschuiving Thermodynamica Fase-overgangen

Nadere informatie

Geleid herontdekken van de golffunctie

Geleid herontdekken van de golffunctie Geleid herontdekken van de golffunctie Nascholingscursus Quantumwereld Lodewijk Koopman lkoopman@dds.nl januari-maart 2013 1 Dubbel-spleet experiment Er wordt wel eens gezegd dat elektronen interfereren.

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VW 04 tijdvak dinsdag 0 mei 3.30-6.30 uur wiskunde B (pilot) chter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen bestaat uit 8 vragen. Voor dit eamen

Nadere informatie

Fysische modellen De Aarde zonder en met atmosfeer

Fysische modellen De Aarde zonder en met atmosfeer Fysische modellen De Aarde zonder en met atmosfeer J. Kortland Cdb, Universiteit Utrecht Inleiding Bij het ontwerpen van een computermodel van de broeikas Aarde maak je gebruik van fysische modellen. Deze

Nadere informatie

NATIONALE NATUURKUNDE OLYMPIADE. Eindronde practicumtoets A. 5 juni beschikbare tijd: 2 uur (per toets A of B)

NATIONALE NATUURKUNDE OLYMPIADE. Eindronde practicumtoets A. 5 juni beschikbare tijd: 2 uur (per toets A of B) NATONALE NATUURKUNDE OLYMPADE Eindronde practicumtoets A 5 juni 00 beschikbare tijd: uur (per toets A of B) Bepaling van de grootte van het gat tussen de geleidingsband en de valentieband in een halfgeleider

Nadere informatie

Examen HAVO en VHBO. Wiskunde B

Examen HAVO en VHBO. Wiskunde B Wiskunde B Examen HAVO en VHBO Hoger Algemeen Voortgezet Onderwijs Vooropleiding Hoger Beroeps Onderwijs HAVO Tijdvak 1 VHBO Tijdvak 2 Dinsdag 23 mei 13.30 16.30 uur 00 Dit examen bestaat uit 19 vragen.

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Einsteinvergelijkingen: 7 oktober 009 Traagheid van gasdruk SRT: hoe hoger de gasdruk, des te moeilijker is het om het gas te versnellen

Nadere informatie

Elektromagnetische veldtheorie (121007) Proeftentamen

Elektromagnetische veldtheorie (121007) Proeftentamen Elektromagnetische veldtheorie (121007) Proeftentamen Tijdens dit tentamen is het gebruik van het studieboek van Feynman toegestaan, en zelfs noodzakelijk. Een formuleblad is bijgevoegd. Ander studiemateriaal

Nadere informatie

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2. Bal in de sloot Een bal met een straal van cm komt in een figuur sloot terecht en blijft drijven. Het laagste punt van de bal bevindt zich h cm onder het wateroppervlak. In figuur zie je een doorsnede

Nadere informatie