8.1 Rekenen met complexe getallen [1]

Maat: px
Weergave met pagina beginnen:

Download "8.1 Rekenen met complexe getallen [1]"

Transcriptie

1 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn alle gehele getallen...., -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de gehele getallen is 1

2 8.1 Rekenen met complexe getallen [1] Rationale getallen: Dit zijn alle gehele getallen en alle breuken. Er zijn twee soorten breuken: 1. Breuken met een eindig aantal decimalen: 0,25 0,125 0, Breuken met een oneindig aantal decimalen, die zich steeds herhalen: 1 0, , , , , ,

3 8.1 Rekenen met complexe getallen [1] Irrationale getallen: Dit zijn alle getallen met oneindig veel decimalen, waarbij de decimalen zich niet herhalen. Een irrationaal getal is dus niet te schrijven als een breuk. Getallen zoals 2 en π zijn irrationale getallen. Reele getallen: Dit zijn alle rationale en irrationale getallen bij elkaar. Dit is de verzameling van alle getallen die bestaan en op de getallenlijn liggen. 3

4 8.1 Rekenen met complexe getallen [2] Voorbeeld 1: De vergelijking x 2 = -1 heeft geen oplossing in IR. Er wordt afgesproken dat vanaf nu geldt: i 2 = -1. x 2 = -1 x 2 = i 2 x = i of x = -i Voorbeeld 2: (2x 4) 2 = - 5 heeft geen oplossing in IR. Met behulp van i 2 = -1 is deze vergelijking wel op te lossen. (2x 4) 2 = - 5 (2x 4) 2 = 5 i2 2x 4 = 5 i of 2x 4 = - 5 i 2x = 4 + i 5 of 2x = 4 i 5 x = 2 + ½i 5 of x = 2 - ½i 5 De twee uitkomsten zijn voorbeelden van complexe getallen. 4

5 8.1 Rekenen met complexe getallen [2] Algemeen: Een getal van de vorm a + bi met a en b reële getallen en met i 2 = -1 heet een complex getal. De twee uitkomsten zijn voorbeelden van complexe getallen. a is het reële deel van het complexe getal. b is het imaginaire deel van het complexe getal. Een complex getal van de vorm bi is een zuiver imaginair getal. Je gebruikt bij het rekenen met complexe getallen dezelfde rekenregels als je tot nu toe gebruikt hebt bij het rekenen met reële getallen. 5

6 8.1 Rekenen met complexe getallen [2] Voorbeeld 3: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 4: Los op in 4x x + 15 = 0 4x x = 0 (2x + 3) = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 = i 6 of 2x + 3 = - i 6 2x = -3 + i 6 of 2x = -3 - i 6 x = -1½ + ½i 6 of x = -1½ - ½i 6 6

7 8.1 Rekenen met complexe getallen [3] Voorbeeld 1: Herleid tot de vorm a + bi (2 + 4i) (1 + i) = 2+ 4i 1 i = 1 3i Voorbeeld 2: Herleid tot de vorm a + bi (2 + 4i) (1 + i) = 2 + 2i + 4i + i 2 = 2 + 6i 4 = i 7

8 8.1 Rekenen met complexe getallen [3] Voorbeeld 3: Herleid tot de vorm a + bi 2 4i 3 4i 2 4i 3 4i 3 4i 3 4i 2 6 8i 12i 16i i 6 4i i 22 4 i

9 8.1 Rekenen met complexe getallen [4] Gegeven is het complexe getal z = a + bi Het reële deel a van dit complexe getal wordt genoteerd met Re(z) Het imaginaire deel b van dit complexe getal wordt genoteerd met Im(z) De geconjungeerde van dit complexe getal is a bi (of z a bi ) Voorbeeld: 2 2 (a bi) a bi (a bi) (a bi) a abi abi b i a b (Re(z)) (Im(z)) 2 2 9

10 8.2 Het complexe vlak [1] Hiernaast is het complexe getal a + bi getekend in een assenstelsel. De horizontale as is de reële as. De verticale as is de imaginaire as. Dit complexe vlak wordt ook wel het vlak van Gauss of een Argand-diagram genoemd. Hiernaast worden vectoren gebruikt om twee complexe getallen bij elkaar op te tellen. z 1 = 2 + i z 2 = 2 + 4i z 1 + z 2 = 2 + i i = 4 + 5i (= z) Er ontstaat nu een parallellogram-constructie 10

11 8.2 Het complexe vlak [1] De lengte van de vector (ook modulus of absolute waarde) die bij het complexe getal z hoort, is te berekenen met de stelling van Pythagoras: z = 4 + 5i = z 1 = 2 + i = z 2 = 2 + 4i = Let op 1: Er geldt nu: z z 1 + z 2 (Dit is over het algemeen zo) 2 Let op 2: Er geldt nu: z z z (Te bewijzen in opgave 20) Let op 3: Er geldt nu: z 1 z 2 = z 1 z 2 (Te bewijzen in opgave 21) 11

12 8.2 Het complexe vlak [1] 4i im De lijn a beschrijft alle getallen z waarvoor geldt: Re(z) = 4 De lijn b beschrijft alle getallen z waarvoor geldt: Re(z) = Im(z) b 3i 2i i 0 -i re -2i a 12

13 8.2 Het complexe vlak [2] In het assenstelsel is het complexe getal z 1 = 1 + i getekend. Hierbij hoort een draaiingshoek (φ) of argument (Arg(z 1 )) van 45. Het argument tussen -180 en 180 is de hoofdwaarde van het argument. Alle waarden voor het argument van het complexe getal z 1 zijn: 45 + k 360 waarbij k een geheel getal is. Op de GR kun het argument berekenen via MATH CMPLX 4: ANGLE De letter i krijg je met 2ND 13

14 8.2 Het complexe vlak [2] Voorbeeld: Teken de getallen z waarvoor geldt: 90 Arg(z) z 1,5 Stap 1: Teken één lijnstuk dat begint in de oorsprong met een hoek van 90 graden t.o.v. de reële as. Teken één lijnstuk dat begint in de oorsprong met een hoek van 135 graden t.o.v. de reële as. 14

15 8.2 Het complexe vlak [2] Voorbeeld: Teken de getallen z waarvoor geldt: 90 Arg(z) z 1,5 Stap 2: Alle punten die voldoen aan z = 1 liggen op een afstand 1 van de oorsprong. Teken een cirkel met middelpunt O en straat 1. Teken een cirkel met middelpunt O en straal 2. Stap 3: Markeer het gezochte gebied. 15

16 8.2 Het complexe vlak [3] 16

17 In het plaatje hiernaast is een rechthoekige driehoek te zien. Hieruit volgen: Im( z) sin( ) Im( z) z cos( ) z Re( z) cos( ) Re( z) z cos( ) z z is de afstand van het punt tot de Oorsprong. We noemen deze afstand nu r. 8.2 Het complexe vlak [3] Het reële en imaginaire deel van het complexe getal z zijn nu te schrijven als: Re(z) = r cos(φ) en Im(z) = r sin(φ). r (= z ) en φ (= arg(z)) zijn de poolcoördinaten van het complexe getal z. 17

18 8.2 Het complexe vlak [3] Het complexe getal z = a + bi kan genoteerd worden m.b.v. poolcoördinaten: z = r cos(φ) + i r sin(φ) = r (cos(φ) + i sin(φ)) Voorbeeld 1: Schrijf z = 3 4i met poolcoördinaten. Rond het argument zo nodig af op 1 decimaal. 2 2 z 3 ( 4) φ = arg(z) = arg(3 4i) = - 53,1 (Gebruik de GR!!!) Hieruit volgt: z = 5(cos(-53,1 ) + i sin(-53,1 )) 18

19 8.2 Het complexe vlak [3] Voorbeeld 2: Schrijf z = (2 + i) 2 met poolcoördinaten. (2+ i) 2 = (2 + i)(2 + i) = 4 + 2i + 2i + i 2 = 4 + 4i 1 = 3 + 4i 2 2 z φ = arg(z) = arg(3 + 4i) = 53,1 (Gebruik de GR!!!) Hieruit volgt: z = 5(cos(53,1 ) + i sin(53,1 )) Voorbeeld 3: Schrijf het volgende getal zonder poolcoördinaten. Geef een exacte uitkomst: z = 20(cos 60 + i sin 60 ) 20(cos 60 + i sin 60 ) = 20 cos i sin 60 = 20 ½ + 20 i ½ 3 = i 19

20 8.3 De formule van De Moivre [1] Er gelden vanaf nu de volgende regels als z 1 en z 2 complexe getallen zijn: 1) z 1 z 2 = z 1 z 2 2) arg(z 1 z 2 ) = φ 1 +φ 2 = arg(z 1 ) + arg(z 2 ) z z 1 1 3) z z 2 2 4) z 1 arg arg( z1) arg( z2) z2 Voorbeeld 1: Bereken de modulus en een argument van: (2 + 2i)(-1 + i) (2 + 2i)(-1 + i) = 2 + 2i -1 + i = ( 1) arg((2 + 2i)(-1 + i) ) = arg(2 + 2i) + arg(-1 + i) = =

21 8.3 De formule van De Moivre [1] Er gelden vanaf nu de volgende regels als z 1 en z 2 complexe getallen zijn: 1) z 1 z 2 = z 1 z 2 2) arg(z 1 z 2 ) = φ 1 +φ 2 = arg(z 1 ) + arg(z 2 ) z z 1 1 3) z z 2 2 4) z 1 arg arg( z1) arg( z2) z2 Voorbeeld 2: Bereken de modulus en een argument van: 6 2(cos40 i sin40 ) (cos15 isin15 ) 3 6 2(cos40 isin40 ) arg (cos15 isin15 ) 6 2(cos40 isin40 ) 3(cos15 isin15 ) 21

22 8.3 De formule van De Moivre [2] Uit z 1 z 2 = z 1 z 2 volgt: z n = z z z z = z z z z = z n Uit arg(z 1 z 2 ) = arg(z 1 ) + arg(z 2 ) volgt: arg(z n ) = arg(z z z z) = arg(z) + arg(z) + + arg(z) = n arg(z) Voor z = r cos(φ) + i r sin(φ) krijg je: z n = r n en arg(z n ) = n φ. Hieruit volgt: z n = r n (cos(nφ) + i sin(nφ) ) Als r een waarde van 1 heeft ontstaat de formule van De Moivre: z n = (cos(φ) + i sin(φ) ) n = cos(nφ) + i sin(nφ) 22

23 8.3 De formule van De Moivre [2] Voorbeeld 1: Herleid tot de vorm a + bi: ( 3 + i) r ( 3) φ = arg(z) = arg( 3 + i) = 30 ( 3 + i) 5 = (2(cos 30 + i sin 30 )) 5 = 2 5 (cos (5 30 ) + i sin (5 30 )) = 2 5 (cos (150 ) + i sin (150 ) = 32 (-½ 3 + ½i) = i Voorbeeld 2: Herleid tot de vorm a + bi: (9(cos 45 + i sin 45 )) -2 (9(cos 45 + i sin 45 )) -2 = 9-2 (cos (-2 45 ) + i sin ((-2 45 )) 1 = 81 (cos (-90 ) + i sin (-90 )) = 1 (0 + i -1) 81 1 = - 81 i 23

24 8.3 De formule van De Moivre [3] De vergelijking z 3 = 1 heeft drie oplossingen: Oplossing 1: (cos 0 + i sin 0 ) 3 = cos(3 0 ) + i sin(3 0 ) = cos 0 + i sin 0 = 1 + i 0 = 1 cos 0 + i sin 0 = 1 + i 0 = 1 Oplossing 2: (cos i sin 120 ) 3 = cos(3 120 ) + i sin(3 120 ) = cos i sin 360 = 1 + i 0 = 1 cos i sin 120 = - ½ + ½i 3 Oplossing 3: (cos (-120 ) + i sin (-120 )) 3 = cos(3-120 ) + i sin(3-120 ) = cos (-360 ) + i sin (-360 ) = 1 + i 0 = 1 cos (-120 ) + i sin (-120 ) = ½ - ½i 3 24

25 8.3 De formule van De Moivre [3] Er is aangetoond dat de vergelijking z 3 = 1 drie oplossingen heeft. Deze wortel is driewaardig. Elke complexe wortel is meerwaardig. De vergelijking z n = c met c 0, heeft n oplossingen in Deze oplossingen zijn de uitkomsten van de n-demachtswortel van c. 25

26 Voorbeeld 1: Los exact op in : z 3 = De formule van De Moivre [3] z 3 = 8(cos i sin 180 ) v z 3 = 8(cos i sin 540 ) v z 3 = 8(cos i sin 900 ) 1) cos i sin 180 = -1 + i 0 = -1; 2) Dit geldt ook voor een argument dat 360 van 180 verschilt; 3) Je noteert nu drie argumenten die steeds 360 verschillen, omdat er drie oplossingen zijn. z = 2(cos 60 + i sin 60 ) v z = 2(cos i sin 180 ) v z = 2(cos i sin 300 ) Hier gebruik je de formule van De Moivre. z = 2(½ + ½i 3) v z = 2(-1 + 0i) v z = 2(½ - ½i 3) z = 1 + i 3) v z = -2 v z = 1 - i 3 26

27 8.3 De formule van De Moivre [3] Voorbeeld 2: Los exact op in : (z 2i) 2 = -i (z 2i) 2 = cos (-90 ) + i sin (-90 ) v (z 2i) 2 = cos i sin 270 ) 1) cos (-90) + i sin (-90) = 0 + i -1 = -i; 2) Dit geldt ook voor een argument dat 360 van 180 verschilt; 3) Je noteert nu twee argumenten die steeds 360 verschillen, omdat er twee oplossingen zijn. z 2i = cos (-45 ) + i sin (-45 ) v z 2i = cos i sin 135 ) Hier gebruik je de formule van De Moivre. z 2i = ½ 2 - ½i 2 z = ½ 2 + 2i - ½i 2 z = ½ 2 + (2 - ½ 2)i v z 2i = -½ 2 + ½i 2 z = -½ 2 + 2i + ½i 2 z = -½ 2 + (2 + ½ 2)i 27

28 8.4 Complexe functies [1] Voorbeeld 1: Gegeven zijn de functies f(z) = 3 + 2i en g(z) = 5 + 5i (= 3 + 2i i) De functie g(z) ontstaat uit de functie van f(z) door het toepassen van de translatie (2, 3) Algemeen: Bij de functie f(z) = z + a + bi hoort de translatie (a, b). Voorbeeld 2: Gegeven is het rode vierkant. Pas hierop de functie f(z) = 2z toe. Linksonder: z = 1 + i => f(1 + i) = 2 (1 + i) = 2 + 2i Rechtsonder: z = 3 + i => f(3 + i) = 2 (3 + i) = 6 + 2i Linksboven: z = 1 + 4i => f(1 + 4i) = 2 (1 + 4i) = 2 + 8i Rechtsboven: z = 3+ 4i => f(3 + 4i) = 2 (3 + 4i) = 6 + 8i Algemeen: Bij de functie f(z) = az met a een reëel getal hoort de Vermenigvuldiging t.o.v. 0 met factor a. 28

29 8.4 Complexe functies [1] Voorbeeld 3: Gegeven is de driehoek met de hoekpunten 1 + 2i, 3 + i en 1 + 3i. Teken het beeld bij de functie f(z) = -2z i. Stap 1: Een vermenigvuldiging t.o.v. 0 met factor -2 van de rode driehoek geeft de groene driehoek. Stap 2: De translatie (4, 3) van de groene driehoek geeft de blauwe driehoek. 29

30 8.4 Complexe functies [1] Voorbeeld 4: Het getal 0 ligt op de blauwe driehoek (het beeld). Een getal dat door een functie f op 0 wordt afgebeeld, heet een nulpunt van f. Het oplossen van f(z) = 0 geeft het nulpunt. -2z i = 0-2z = -4 3i 2z = 4 + 3i z = 2 + 1½i Voorbeeld 5: Een dekpunt van de complexe functie f is een getal dat op zichzelf wordt afgebeeld. Het oplossen van f(z) = z geeft het dekpunt. -2z i = z -3z = -4 3i 3z = 4 + 3i 1 z = 1 + i 3 30

31 8.4 Complexe functies [2] Bij de functie f(z) = a + bi hoort de draaivermenigvuldiging die bestaat uit de rotatie over arg(a + bi) en de vermenigvuldiging t.o.v. 0 met factor a + bi Voorbeeld 1: Gegeven is de functie f(z) = (1 i)z. Teken het beeld bij de functie f van het rode vierkant met hoekpunten -2 + i, 3 + i, 3 + 6i, i i = 1 ( 1) 2 arg(1 i) = -45 Er is sprake van een rotatie over -45 en een vermenigvuldiging t.o.v. 0 met 2. Zo ontstaat het groene vierkant. 31

32 8.4 Complexe functies [2] Bij de functie f(z) = a + bi hoort de draaivermenigvuldiging die bestaat uit de rotatie over arg(a + bi) en de vermenigvuldiging t.o.v. 0 met factor a + bi Voorbeeld 1: Het lijnstuk van O tot het punt -2 + i op het rode vierkant wordt -45 graden geroteerd. De lengte die 5 was, wordt 2 5 = 10. Zo ontstaat het punt i op het groene vierkant. Het lijnstuk van O tot het punt i op het rode vierkant wordt -45 graden geroteerd. De lengte die 40 was, wordt 2 40 = 80. Zo ontstaat het punt 4 + 8i op het groene vierkant. 32

33 8.4 Complexe functies [2] Bij de functie f(z) = a + bi hoort de draaivermenigvuldiging die bestaat uit de rotatie over arg(a + bi) en de vermenigvuldiging t.o.v. 0 met factor a + bi Voorbeeld 1: Het lijnstuk van O tot het punt 3 + i op het rode vierkant wordt -45 graden geroteerd. De lengte die 10 was, wordt 2 10 = 20. Zo ontstaat het punt 4-2i op het groene vierkant. Het lijnstuk van O tot het punt 3 + 6i op het rode vierkant wordt -45 graden geroteerd. De lengte die 45 was, wordt 2 45 = 90. Zo ontstaat het punt 9 + 3i op het groene vierkant. 33

34 8.4 Complexe functies [2] Bij de functie f(z) = a + bi hoort de draaivermenigvuldiging die bestaat uit de rotatie over arg(a + bi) en de vermenigvuldiging t.o.v. 0 met factor a + bi Voorbeeld 2: Geef het bereik van f bij het domein z 2-45 Arg(z) 45 Er is een vermenigvuldiging met 2. Hieruit volgt bij het bereik: z 2 2 Er is een rotatie van -45. Hieruit volgt bij het bereik: -90 Arg(z) 0 34

35 8.4 Complexe functies [3] Bij de functie f(z) = (a + bi)z + c + di met a, b, c en de reëel hoort de vermenigvuldiging t.o.v. 0 met de factor a + bi en de rotatie over arg(a + bi) gevolgd door de translatie (c, d) Voorbeeld 1: Gegeven is de functie f(z) = (1 + i)z 2 + 3i. Teken het beeld bij f van het vierkant met de hoekpunten 1 + i, 3 + i, 3 + 3i en 1 + 3i i = arg(1 + i) = 45 Het roteren van het rode vierkant over 45 en het vermenigvuldigen t.o.v. 0 met 2 geeft het groene vierkant. De translatie (-2, 3) van het groen vierkant geeft het blauwe vierkant. 35

36 8.4 Complexe functies [3] Bij de functie f(z) = (a + bi)z + c + di met a, b, c en de reëel hoort de vermenigvuldiging t.o.v. 0 met de factor a + bi en de rotatie over arg(a + bi) gevolgd door de translatie (c, d) Voorbeeld 2: Gegeven is de functie f(z) = (1 + i)z 2 + 3i. Wat is het origineel van f bij 10 + i? f(z) = 10 + i (1 + i)z 2 + 3i = 10 + i (1 + i)z = 12 2i z 12 2i 12 2i 1 i 12 12i 2i i 1 i 1 i 1 i 2 36

37 8.4 Complexe functies [4] Voorbeeld: Gegeven is de functie f(z) = z 3. Teken in twee aparte figuren de cirkelsector z 1,5-30 Arg(z) 30 en het beeld bij f. f(z) = z 3 = z 3 =1,5 3 = 3,375. arg(z 3 ) = 3 arg(z) dus -90 Arg(z)

38 8.5 Krachten en snelheden [1] Voorbeeld: Op een voorwerp werken drie krachten. Bereken de grootte en de richting van de resultante van deze krachten. Noteer de complexe getallen die bij de krachten horen. z 1 = 20 z 2 = 15(cos 40 + i sin 40 ) z 3 = 25(cos i sin 160 ) De grootte van de resultante is de absolute waarde van de som van de drie complexe getallen: z 1 + z 2 + z 3 19,9. De richting van de resultante is het argument van de som van de drie complexe getallen: arg(z 1 + z 2 + z 3 ) 66,3. 38

39 8.5 Krachten en snelheden [2] In de luchtvaart en scheepvaart wordt vaak met een kompas gewerkt; Als je naar het zuiden vaart, vaar je met een koers van 180 ; Als je naar het noordwesten vaart, vaar je met een koers van

40 8.5 Krachten en snelheden [2] Een ijsschots drijft met een snelheid van 3 km/uur naar het zuidoosten. Op de ijsschots loopt een persoon op zijn kompas pal naar het zuiden met een snelheid van 4 km/uur. Bereken in één decimaal nauwkeurig de resulterende snelheid van deze persoon en in graden nauwkeurig zijn koers. Bij de snelheden horen de complexe getallen: z 1 = 3(cos(-45 ) + i sin(-45 )) z 2 = 4(cos(-90 ) + i sin(-90 )) z 1 + z 2 6,48 arg(z 1 + z 2 ) - 70,9 De resulterende snelheid van de persoon is 6,5 km/uur. De koers van de persoon is = 161. (Gebruik hiervoor het plaatje op de vorige pagina) 40

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

Lineaire algebra 1 najaar Complexe getallen

Lineaire algebra 1 najaar Complexe getallen Lineaire algebra 1 najaar 2008 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 + 1 steeds

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top IWI-RuG & DIAMANT j.top@rug.nl 20 maart 2007 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

Complexe getallen. 5.1 Constructie van de complexe getallen

Complexe getallen. 5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

5 Eenvoudige complexe functies

5 Eenvoudige complexe functies 5 Eenvoudige complexe functies Bij complexe functies is zowel het domein als het beeld een deelverzameling van. Toch kan men in eenvoudige gevallen het domein en het beeld in één vlak weergeven. 5.1 Functies

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

Nieuwe invoercellen voeg je toe door de cursor tussen twee cellen in te zetten, en invoer in te tikken.

Nieuwe invoercellen voeg je toe door de cursor tussen twee cellen in te zetten, en invoer in te tikken. Technische Universiteit Eindhoven, 2007 Complexe getallen Mathematica In een invoercel kun je Mathematica commando's invullen. Door op Shift + Enter te drukken laat je Mathematica de berekening uitvoeren.

Nadere informatie

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 19 april 2011 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Complexe getallen in context

Complexe getallen in context Complexe getallen in context voor wiskunde D ( 5 VWO) R.A.C. Dames H. van Gendt Versie 4, juni 0 In deze vierde versie zijn alleen een aantal zetfouten verbeterd. Inhoudelijk is deze versie geheel gelijk

Nadere informatie

Complexe getallen in context

Complexe getallen in context Complexe getallen in context voor wiskunde D ( 5 VWO) R.A.C. Dames H. van Gendt Versie, november 006 Deze module is ontwikkeld in opdracht van ctwo. Copyright 006 R.Dames en H. van Gendt Inhoud Inhoud...3

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 8 Complexe getallen (versie 22 augustus 2011) Inhoudsopgave 1 De getallenverzameling C 1 2 Het complex vlak of het vlak van Gauss 7 3 Vierkantsvergelijkingen

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b Deel Complexe getallen 1 Tweedimensionale Euclidische ruimte 11 Optelling, verschil en scalaire vermenigvuldiging = ( ab, ) ab, is de verzameling van alle koppels reële getallen { } Zoals we ons de reële

Nadere informatie

Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek

Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek Onderstaande verbeteringen zijn gebaseerd op de eerste druk van deze titel. In bijdrukken worden fouten hersteld. Het is dus goed mogelijk, dat hier verbeteringen staan, die bij een nieuwe druk al zijn

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

Complexe getallen. Jaap Top

Complexe getallen. Jaap Top Complexe getallen Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 16 december 2014 (studiedag voor leraren wiskunde) 1 ( er verwijst naar Leopold Kronecker), uit een tekst (1893) na diens overlijden geschreven

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

Appendix Inversie bekeken vanuit een complex standpunt

Appendix Inversie bekeken vanuit een complex standpunt Bijlage bij Inversie Appendix Inversie bekeken vanuit een complex standpunt In dee paragraaf gaan we op een andere manier kijken naar inversie. We doen dat met behulp van de complexe getallen. We veronderstellen

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur Wiskunde B Profi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Donderdag 25 mei 3.30 6.30 uur 20 00 Dit eamen bestaat uit 7 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

10 20 30 leeftijd kwelder (in jaren)

10 20 30 leeftijd kwelder (in jaren) Kwelders De vorm van eilanden, bijvoorbeeld in de Waddenzee, verandert voortdurend. De zee spoelt stukken strand weg en op andere plekken ontstaat juist nieuw land. Deze nieuwe stukken land worden kwelders

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

1. INLEIDING: DE KOERS VAN EEN BOOT

1. INLEIDING: DE KOERS VAN EEN BOOT KLAS 4N VECTOREN . INLEIDING: DE KOERS VAN EEN BOOT. Boot vaart van Roe naar Tui via Rul. De koersgegevens zijn: van Roe naar Rul: 0, 5 km van Rul naar Tui: 40, 5 km a. Wat zijn de koersgegevens als de

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

A. B. C. D. Opgave 3. In een groot vierkant is een kleiner vierkant getekend. Wat is de oppervlakte van het kleine vierkant? A. B. C. D.

A. B. C. D. Opgave 3. In een groot vierkant is een kleiner vierkant getekend. Wat is de oppervlakte van het kleine vierkant? A. B. C. D. FAJALOBI 2015 Opgave 1 Het getal heet een palindroom. Dat is een getal dat als je het van achter naar voren leest het hetzelfde is als van voor naar achter. Een palindroom begint niet met een nul. Wat

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch staan. Die

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Hoofdstuk 10 Meetkundige berekeningen

Hoofdstuk 10 Meetkundige berekeningen Hoofdstuk 10 Meetkundige berekeningen Les 0 (Extra) Aant. Voorkennis: Hoeken en afstanden Theorie A: Sinus, Cosinus en tangens O RHZ tan A = A RHZ O RHZ sin A = SZ A RHZ cos A = SZ Afspraak: Graden afronden

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies voor beginners Jan van de Craats Universiteit van Amsterdam Open Universiteit craats@science.uva.nl Complexe getallen worden

Nadere informatie

Cabri werkblad Lineaire transformaties met Cabri

Cabri werkblad Lineaire transformaties met Cabri Cabri werkblad Lineaire transformaties met Cabri Doel Introductie tot lineaire transformaties in het platte vlak op basis van matrices, met gebruikmaking van het programma Cabri Geometry II (of Plus).

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur Examen HAVO 204 tijdvak woensdag 4 mei.0-6.0 uur wiskunde B (pilot) Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

COMPLEXE GETALLEN. voor Wiskunde D. Jan van de Craats

COMPLEXE GETALLEN. voor Wiskunde D. Jan van de Craats COMPLEXE GETALLEN voor Wiskunde D Jan van de Craats Herziene versie, 3 augustus 007 Illustraties en LATEX-opmaak: Jan van de Craats Prof. dr. J. van de Craats is hoogleraar in de wiskunde aan de Universiteit

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

11.1 De parabool [1]

11.1 De parabool [1] 11.1 De parabool [1] Algemeen: Het punt F heet het brandpunt van de parabool. De lijn l heet de richtlijn van de parabool. De afstand van F tot l heet de parameter van de parabool. Defintie van een parabool:

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 1 juli 2015 Oplossingen

IJkingstoets Wiskunde-Informatica-Fysica 1 juli 2015 Oplossingen IJkingstoets Wiskunde-Informatica-Fysica 1 juli 15 Oplossingen IJkingstoets wiskunde-informatica-fysica 1 juli 15 - p. 1/1 Oefening 1 Welke studierichting wil je graag volgen? (vraag zonder score, wel

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van

Nadere informatie

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Indien van toepassing: schrijf je berekening op. Tekening altijd met geodriehoek en potlood. Omtrek rechthoek

Nadere informatie

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast

Nadere informatie

Lineaire Algebra 1. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven

Lineaire Algebra 1. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Lineaire Algebra 1 Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven 2012-2013 ii Syllabus bij Lineaire Algebra 1 (2WF20) Inhoudsopgave 1 Complexe getallen 1 1.1 Rekenen met complexe

Nadere informatie

Examen havo wiskunde B 2016-I (oefenexamen)

Examen havo wiskunde B 2016-I (oefenexamen) Examen havo wiskunde B 06-I (oefenexamen) De rechte van Euler Gegeven is cirkel c met middelpunt (, ) p Stel een vergelijking op van c. De punten B(, 0) en ( 4, 0) M die door het punt A( 0, 4) C liggen

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 78 punten te behalen. Voor elk

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/29 Elektrotechniek, Wiskunde en Informatica EWI Complexe getallen z D a C bi We definiëren de complex

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

Opgave 3 - Uitwerking

Opgave 3 - Uitwerking Mathrace 2014 Opgave 3 - Uitwerking Teken de rode hulplijntjes, en noem de lengte van dit lijntje y. Noem verder de lengte van een zijde van de gelijkzijdige driehoek x. Door de hoek van 45 graden in de

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2014 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie