Tentamen - Informatietheorie ( ) 22 augustus u

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Tentamen - Informatietheorie ( ) 22 augustus u"

Transcriptie

1 Tetame - Iformatietheorie (473) augustus u Bij de opgave is het maximaal aatal te behale pute vermeld. Het aatal pute is. Het tetame bestaat uit 6 opgave. Bij de tetame is het gebrui va ee reemachie toegestaa. Het gebrui va dictaat, sheets of aateeige iet. Ogemotiveerde atwoorde worde fout gereed. Opgave ( pute) I oderstaade tabel staa vier biaire codes voor brosymbole i. Code A Code B Code C Code D 3 4 (3) a. Wele codes voldoe aa de ogelijheid va Kraft (4) b. Is ee code die aa deze ogelijheid voldoet uie decodeerbaar (3) c. Wele codes zij prefix-coditie codes l a. Ogelijheid va Kraft: a i b i De gegeve codes zij biaire codes dus a= e er zij 4 brosymbole dus b=4. Code A: l =l =l 3 =l 4 = Kraft: = => vervuld. Code B l =, l =, l 3 =, l 4 =3 Kraft: =.5 => iet vervuld. Code C l =, l =, l 3 =3, l 4 =3 Kraft: = => vervuld. Code D l =, l =3, l 3 =3, l 4 =3 Kraft: =.875 => vervuld. De codes A, C e D voldoe dus aa de ogelijheid va Kraft. b. ee, dat hoeft iet. De stellig va Kraft geeft aa dat er voor ee gegeve codewoordlegte ee direct decodeerbare code bestaat e iet dat de code waarva je de codewoordlegte weet oo direct decodeerbaar is. c. Code A e Code D zij prefix-coditie codes. Bij Code B is () ee prefix va () e zo oo bij Code C. Dit ue we het best zie a het teee va ee codeboom, waari de prefixe zij oderstreept. A B C D Teves ue we bij Code B oo zegge dat het iet aa de ogelijheid va Kraft voldoet. D.w.z. dat er gee prefix-coditie code bestaat voor de gebruite codewoordlegte e dus deze code gee prefix-coditie code a zij.

2 Opgave ( pute) Gegeve ee biaire geheugeloze bro B. De as op ee is p={}. De symbole die deze bro produceert worde aagebode aa ee broecoder voor ee biaire aaal. () a. Wat is de ortst mogelije gemiddelde codewoordlegte per brosymbool die odig is om de brosymbole uit B te represetere Veroderstel dat de broecoder er i slaagt deze ortst mogelije codewoordlegte per brosymbool te realisere: het is ee optimale ecoder. (7) b. Beredeeer wat de ase zij va de aaalsymbole die door de broecoder geproduceerd worde. () c. Zij deze aaalsymbole oderlig oafhaelij a. De gemiddelde codewoordlegte per brosymbool wordt gegeve door: l H( B) / lda Bij ee biaire geheugeloze bro (waarbij a=) is uit de formule af te lijde dat de ortst mogelije gemiddelde codewoordlegte per brosymbool de etropie is e a bereed worde met: b l H ( B) p i ldpi waarbij b= (biaire bro) e gegeve ()=p e dus ()=-()=-p i l pldp ( ld( b. Ee optimale ecoder realiseert de ortst mogelije codewoordlegte per brosymbool e er geld dus: H ( B) l H (B), hiermee wordt de redudatie:. Dat wil dus zegge dat er gee llda redudatie is e dus el aaalsymbool eveveel iformatie bevat, de ase va de aaalsymbole zij dus allemaal gelij. c. De brosymbole worde gecodeerd i codewoorde die bestaa uit ee bepaalde combiatie va codesymbole. Deze codewoorde (aaalsymbole) zij da oderlig oafhaelij.

3 Opgave 3 (3 pute) Gegeve ee geheugeloze biaire bro B met as op ee gelij aa p={}=/. () a. Maa ee biaire vaste-legte code die rijtje va =4 brosymbole codeert met ee codewoordlegte per brosymbool l =3/4. Geef duidelij aa hoe groot de foutas e is e hoe u er i geslaagd bet deze as zo lei mogelij te mae. (5) b. Wat wordt de foutas e idie u l =3/4 houdt terwijl u de legte va de browoorde laat toeeme e stadaardrijtje gaat codere e Voor ee stadaardrijtje X va legte geldt dat p Hieri is het aatal ulle i het rijtje. { X} p ( (5) c. Bepaal ee beedegres mi aa de as op ee stadaardrijtje {X}. Laat i ee formule zie hoe deze beede gres afhagt va de etropie. ( ) a. Met ee rij va =4 brosymbole uit ee biaire bro zij 4 = 6 verschillede browoorde te oderscheide. Deze moete worde weergegeve met behulp va M= l codewoorde, waarbij l=*l =4*3/4=3. Er zij dus i totaal 3 =8 codewoorde. Ee codewoord moet worde gereserveerd (foutwoord) om ee fout aa te geve. Er blijve dus 7 codewoorde om alle 6 browoorde te codere. De foutas e moet zo lei mogelij gehoude worde. Dit a gedaa worde door de browoorde met de grootste as va ee codewoord te voorzie e de codewoord met de leiste as te reservere als foutwoord. I de oderstaade tabel zij de 6 browoorde weergegeve teves is aagegeve wele va ee foutwoord of ee codewoord worde voorzie. Als foutwoord ue we eme. Browoord Kas [/] 4 Codewoord Geproduceerd browoord We ue e vide door de ase va de browoorde waarvoor de foutwoord wordt gebruit op te telle, waarmee de foutas wordt: e = 36/ 4 = 36/ =.36. b. Voor ee codewoordlegte per brosymbool et iets groter da de etropie is de foutas willeeurig lei te mae door te vergrote e stadaardrijtjes te ieze. We hebbe hier te mae met ee biaire geheugeloze

4 bro, de (biaire) etropie is: H(B)=h(=-pldp-(-ld(-=-/ld/-9/ld9/.469. De codewoordlegte per brosymbool l =3/4 e dat is groter da de etropie. Als we aar oeidig late toeeme da zal de foutas e oeidig lei worde e dus aar adere. d. Ee beedegres mi aa de as op ee stadaardrijtje {X} vide we door zowel de expoet va p als die va -p maximaal te ieze (op die maier geeft de bovestaade formule ee miimale waarde voor {X}). Uit p volgt: p p e ( p ) ( p ) ( p ) ( p ) We moete dus eme: ( p ) e - ( p ) (( ) Waarmee we voor mi vide: We ue dit verder schrijve als: ( p ) (( ) mi p ( p ( pldp ( ld ( ldp ld ( ( pldp ( ld ( ( ldp ld ( ) mi p ( p ( met h(=-pld(-(-ld(- de biaire etropie fuctie, ue we dit schrijve als: h( ( ldp ld ( ) mi Waari we zie dat de beedegres afhagt va de etropie h(.

5 Opgave 4 ( pute) (5) a. Bepaal ee uitdruig voor de capaciteit va ee biair symmetrisch aaal als fuctie va de foutas p voor het geval dat beide igagssymbole eve waarschijlij zij. (5) b. Waeer is de capaciteit gelij aa ul Motiveer. (5) c. Hoe veraderd de capaciteit als de igagssymbole met verschillede ase voorome Motiveer uw atwoord. (5) d. Geef de afleidig va de wederzijdse iformatie I(X;Y) va dit aaal. a. Als beide symbole eve waarschijlij zij, geldt: C=I(X,Y)=H(X)-H(X Y), met H(X)=-/ld/-/ld/=/+/= e H(X Y)=-pldp-(-ld(-. E dus C=+pldp+(-ld(- b. De capaciteit wordt ul als p=.5. Da is pldp=(-ld(-=-.5 e C=-.5-.5=. I dit geval wordt er gee iformatie overgedrage, immers da geeft ee otvage output symbool gee idicatie over het symbool dat gezode is. c. De capaciteit va ee biair symmetrisch aaal wordt gegeve door: C max I(X, Y) e wordt dus bereed door te ije bij wele waarde va de igagssymbool ase de wederzijdse iformatie maximaal is, oo als de igagssymbole met verschillede ase voorome. De capaciteit veraderd dus iet: C=+pldp+(-ld(-. d. De wederzijdse iformatie wordt gegeve door: I ( X ; Y ) H( X ) H ( X Y) H ( Y) H ( Y X ) Als we u stelle dat (x )=, (x )= - e we eme aa (y ) = e (y ) = - e de foutas is p da vide we met: H ( Y ) log ( )log( ) e H ( Y X ) plog p ( log( p( x i ) dat: Waarbij: I ( X ; Y) log ( )log( ) plog p ( log( ( p ) ( ) p.

6 Opgave 5 ( pute) Gegeve ee biair symmetrisch aaal met gelije igagsase, de fout p bedraagt -5. Het aatal symbole per secode is 4* 7. Geef aa hoe over dit aaal iformatie te trasportere is waarbij de foutas per boodschap leier is da 5* -8 bij ee trasmissie va * 7 boodschappe per secode. Door het verzode symbool te herhale a de foutas worde vermiderd. Bij twee maal herhale ue we stelle dat ee "" is verzode als ee of twee eer ee "" wordt otvage (, e ). De foutas die hierbij hoort is: 5 e p p( Dit is groter da 5* -8. Bij drie maal herhale ue we b.v. stelle dat ee "" is verzode als twee of drie maal ee "" wordt otvage (,, e ). De foutas wordt da: 3 e p 3p ( 3 dit is leier da 5* -8. We moete hierbij oo ije of trasmissie selheid voldoede is: Het aatal symbole per secode is 4* 7. Er worde drie symbole per boodschap verzode (drie maal herhale), het aatal boodschappe per secode is da: /3*4* 7 =4/3* 7. Dit is mider da de trasmissieselheid (* 7 boodschappe per secode). Dus met drie maal herhale a iet aa de gestelde eis voldaa worde. Met het toepasse va ee Hammig code lut het wel. We voege 3 symbole toe aa groepjes va 4 code symbole, da ue we trasmissie fout corrigere: j e ( j j Hiermee is e leier da 5-8, e de trasmissie va boodschappe is 4 uit de 7 bit e dat is groter da 7, dus deze oplossig voldoet wel. p

7 Opgave 6 ( pute) (5) a. Leidt de capaciteit af va ee cotiu aaal met additief ormaal verdeelde ruis met stadaard deviatie. (5) b. Wat is de capaciteit va ee telefooaaal met badbreedte B Hz e sigaal ruisverhoudig S/ (5) c. Wat is de capaciteit als de badbreedte 3 Hz is e de sigaal-ruisverhoudig 3 db bedraagt (5) d. Als i de badbreedte va het telefooaaal verdubbel, wat gebeurt er da met de capaciteit Motiveer uw atwoord. a. De capaciteit va ee cotiu aaal is: C s I max(x;y) max( H ( y) H ( y x) H max ( y) H ( ) Met additief ormaal verdeelde ruis: H max ( y) ld e y e H ( ) ld e Waarbij:, waarmee we vide voor de capaciteit: C s ld y x e e ld e x x ld ld b. S S C B Cs B ld( ) B ld( ) c. B=3 Hz e S/= 3 db = 3 = => C = 3 ld() 3* 4 symbole/sec. e. Als de badbreedte verdubbeld, verdubbeld iet oodzaelijerwijs oo de capaciteit. Het ruisvermoge is everedig met de badbreedte: = B, waarbij / de "oise power spectral desity" is. eme we de limiet voor B aar oeidig da rijge we: S S B S S lim C lim Blog ( ) lim log ( ),44 bits / s, B B B B S B waarbij gebrui gemaat is va de limiet: lim xlog ( ) log e,44. x x x

Hoeveel getallen van 2 verschillende cijfers kan je vormen met de cijfers 1,4,7,8? tweede cijfer 4 7 8 1 7 8 1 4 8 1 4 7

Hoeveel getallen van 2 verschillende cijfers kan je vormen met de cijfers 1,4,7,8? tweede cijfer 4 7 8 1 7 8 1 4 8 1 4 7 Hoofdstu Combiatorie. Basisregels Combiatorie is de studie va telprobleme. De ust va het telle bestaat vaa uit het codere of aders voorstelle va het telprobleem, zodat het uiteidelij volstaat om de volgede

Nadere informatie

Vuilwaterafvoersystemen voor hoogbouw

Vuilwaterafvoersystemen voor hoogbouw Vuilwaterafvoersysteme voor hoogbouw 1.2 Vuilwaterafvoersysteme voor hoogbouw Nu er steeds hogere e extremere gebouwe otworpe worde, biedt ee ekelvoudig stadleidigsysteem de mogelijkheid om gemakkelijker

Nadere informatie

Evaluatie pilot ipad onder docenten

Evaluatie pilot ipad onder docenten Evaluatie pilot ipad oder docete Oderwerp equête Geëquêteerde Istellig Evaluatie pilot ipad Docete OSG Sigellad locatie Drachtster Lyceum Datum aamake equête 19-06-2012 Datum uitzette equête 21-06-2012

Nadere informatie

Eindexamen wiskunde A vwo 2010 - I

Eindexamen wiskunde A vwo 2010 - I Eidexame wiskude A vwo - I Beoordeligsmodel Maratholoopsters maximumscore 3 uur, 43 miute e 3 secode is 98 secode De selheid is 495 98 (m/s) Het atwoord: 4,3 (m/s) maximumscore 3 Uit x = 5 volgt v 4,4

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame HAVO 2013 tijdvak 2 woesdag 19 jui 13.30-16.30 uur wiskude A Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 21 vrage. Voor dit exame zij maximaal 80 pute te behale. Voor elk vraagummer

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHISCHE UIVERSITEIT EIDHOVE Tetame Ileidig Experimetele Fysica (3A10 of 3AA10) Tetame OGO Fysisch Experimetere voor mior AP (3M10) d.d. 0 jauari 010 va 9:00 1:00 uur Vul de presetiekaart i blokletters

Nadere informatie

2. Limiet van een rij : convergentie of divergentie

2. Limiet van een rij : convergentie of divergentie 2. Limiet va ee rij : covergetie of divergetie 2. Eigelijke of eidige limiet 2.. Voorbeeld I ee bos staa 4 bome. De diest bosbeheer zal jaarlijks 2% bome kappe e ieuwe aaplate. Zal het bos verdwije? Zal

Nadere informatie

De standaardafwijking die deze verdeling bepaalt is gegeven door

De standaardafwijking die deze verdeling bepaalt is gegeven door RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE VWO CM T311-VCM-H911 Voor elk oderdeel is aagegeve hoeveel pute kue worde behaald. Atwoorde moete altijd zij voorzie va ee berekeig, toelichtig of argumetatie. MAX:

Nadere informatie

Betrouwbaarheid. Betrouwbaarheidsinterval

Betrouwbaarheid. Betrouwbaarheidsinterval Betrouwbaarheid Ee simulatie beoogt éé of i.h.a. twee of meerdere sceario s te evaluere e te vergelijke, bij Mote Carlo (MC) simulatie voor ee groot aatal istelwaarde, voor éé of meerdere parameters. Hierbij

Nadere informatie

Informatietheorie 1. Informatietheorie. Hans Melissen. j.b.m.melissen@its.tudelft.nl

Informatietheorie 1. Informatietheorie. Hans Melissen. j.b.m.melissen@its.tudelft.nl Iformatietheorie Iformatietheorie Has Melisse j.b.m.melisse@its.tudelft.l Iformatietheorie INHOUDSOPGAVE 0 Wat is iformatietheorie?...3 Wat is iformatie?... 5. Etropie...5 Commuicatiekaale.... Wederzijdse

Nadere informatie

De Poisson-verdeling. Doelen

De Poisson-verdeling. Doelen De Poisso-verdelig = 1,5 4b ( ) P = = Doele Geschiedeis Diagostische toets 4.5 De Poisso-verdelig, ee ileidig 4.5.1 De Poisso-verdelig 4.5.2 De tabel va de Poisso-verdelig 4.5.3 De verwachtigswaarde e

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2008-II

Eindexamen wiskunde A1-2 vwo 2008-II Groepsfoto s Alle mese kippere met hu oge. Daardoor staa op groepsfoto s vaak ekele persoe met geslote oge. Sveso e Bares hebbe oderzocht hoeveel foto s je moet make va ee groep va persoe om 99% kas te

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl) Wiskude B, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T212-HCMEM-H7911 Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald.

RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T212-HCMEM-H7911 Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T1-HCMEM-H7911 Voor elk oderdeel is aagegeve hoeveel pute kue worde behaald. Atwoorde moete altijd zij voorzie va ee berekeig, toelichtig of argumetatie.

Nadere informatie

16.6 Opgaven hoofdstuk 7: Producten en combinatoriek

16.6 Opgaven hoofdstuk 7: Producten en combinatoriek 166 Opgve hoofdstu 7: Producte e combitorie 166 Opgve hoofdstu 7: Producte e combitorie Opgve 71 1 + x) 3 1 + x) 1 + x) 2 1 + x) 1 + 2x + x 2 ) 1 + 2x + x 2 + x + 2x 2 + x 3 1 + 3x + 3x 2 + x 3 Opgve 72

Nadere informatie

Tabellenrapportage CQ-index Kraamzorg

Tabellenrapportage CQ-index Kraamzorg Tabellerapportage CQ-idex Kraamzorg Jauari 2011 Ihoud Pagia Algemee uitleg 1 Deelame e bevalmaad 1 De itake 2 3 Zorg tijdes de bevallig 3 4 Zorg tijdes de kraamperiode 4 10 Samewerkig e afstemmig 11 Algemee

Nadere informatie

Een meetkundige constructie van de som van een meetkundige rij

Een meetkundige constructie van de som van een meetkundige rij Ee meetkudige costructie va de som va ee meetkudige rij [ Dick Kliges ] Iets verder da Euclides deed Er wordt door sommige og wel ees gedacht dat Euclides (hij leefde rod 300 v. Chr.) allee over meetkude

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

Inzicht in voortgang. Versnellingsvraag 9 Inzichten periode maart t/m juni

Inzicht in voortgang. Versnellingsvraag 9 Inzichten periode maart t/m juni Izicht i voortgag Verselligsvraag 9 Izichte periode maart t/m jui Terugblik Ee idicatie hoe ee leerlig zich otwikkeld per vakgebied Ee referetieiveau waarmee elke leerlig vergeleke ka worde 2 Terugblik

Nadere informatie

Rijen. 6N5p

Rijen. 6N5p Rije 6N5p 0-03 Rije Ileidig I de wiskude werke we vaak met formules e/of fucties die elke mogelijke waarde aa kue eme. Als bijvoorbeeld f( x) = 5x + 5x 3, da ku je voor x (bija) elke waarde ivulle e ka

Nadere informatie

Deel D. Breuken en algebra n

Deel D. Breuken en algebra n Deel D Breue e lgebr 9 9 7 7 7 9 0 Reee et stroe (). stt voor ee obeed tuurlij getl 7 9 0 Met wordt bedoeld e dus oo 0 0 Vul i: et wordt bedoeld... e dus oo... Vul oo de vjes v de stroo i: Tel de getlle

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Periodiciteit bij breuken

Periodiciteit bij breuken Periodiciteit bij breuke Keuzeodracht voor wiskude Ee verdieede odracht over eriodieke decimale getalle, riemgetalle Voorkeis: omrekee va ee breuk i ee decimale vorm Ileidig I deze odracht leer je dat

Nadere informatie

Het andere binomium van Newton Edward Omey

Het andere binomium van Newton Edward Omey Ileidig Het adere biomium va Newto Edward Omey Bija iederee heeft tijdes ij studies eis gemaat met de biomiale coëf- ciëte of getalle Dee worde diwijls voorgesteld oder de vorm die door Blaise Pascal (6-66)

Nadere informatie

Waar moet je aan denken? Verhuizen. Stap 1: Hoe zeg ik de huur op?

Waar moet je aan denken? Verhuizen. Stap 1: Hoe zeg ik de huur op? Verhuize Waar moet je aa deke? Verhuize Bij verhuize komt heel wat kijke. Naast het ipakke va spulle e doorgeve va adreswijzigige, is het ook belagrijk dat u same met Thuisvester ee aatal zake regelt.

Nadere informatie

Kansrekenen [B-KUL-G0W66A]

Kansrekenen [B-KUL-G0W66A] KU Leuve Kasrekee [B-KUL-G0W66A] Notities Tom Sydey Kerckhove Gestart 8 februari 2015 Gecompileerd 9 februari 2015 Docet: Prof. Tim Verdock Ihoudsopgave 1 Combiatoriek 2 1.1 Variaties..........................................

Nadere informatie

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100...

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100... Opgave OPGAVE 1 a. Itereer met F( ) = e als startwaarde 1 e 1. 16 1............... 16 1............... b. Stel de bae grafisch voor i ee tijdgrafiek. c. Formuleer het gedrag va deze bae. (belagrijk is

Nadere informatie

B C D E Welke rij is noch een Rekenkundige. noch een Meetkundige Rij? A B C D E

B C D E Welke rij is noch een Rekenkundige. noch een Meetkundige Rij? A B C D E Naam : Klas:.Datum: Ma 0 sept. 00 Rechterkat als kladblad gebruike A. 5067 De rij x, x+, x+,... is rekekudig als x gelijk is aa ) ) ) 4) 4 5) 0 6) 4 7) 8) ee getal tusse e 0 B. 57 80 De legtes a, b e c

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eideame wiskude B vwo 200 - II Sijde met ee hoogtelij Op ee cirkel kieze we drie vaste pute, B e C, waarbij lijstuk B gee middellij is e put C op de kortste cirkelboog B ligt. Ee put doorloopt dat deel

Nadere informatie

Combinatoriek-mix groep 2

Combinatoriek-mix groep 2 Combatore-mx groep Tragsweeed, ovember 0 Theore De opgave deze hadout hebbe allemaal wat te mae met éé of meer va oderstaade oderwerpe Belagrj bj het mae va opgave s om et allee de theore de je et goed

Nadere informatie

1. Symmetrische Functies

1. Symmetrische Functies Algebra III 1 1. Symmetrische Fucties permutatios sot la metaphysique des équatios Lagrage*, 1771 I dit hoofdstuk bestudere we de ivariate va de werkig va de symmetrische groep S op polyoomrige i variabele.

Nadere informatie

Buren en overlast. waar je thuis bent...

Buren en overlast. waar je thuis bent... Bure e overlast waar je thuis bet... Goed wooklimaat HEEMwoe vidt het belagrijk dat bewoers prettig woe i ee fije buurt. De meeste buurtbewoers kue het goed met elkaar vide. Soms gaat het sameleve i ee

Nadere informatie

Appendix A: De rij van Fibonacci

Appendix A: De rij van Fibonacci ppedix : De rij va Fiboacci Het expliciete voorschrift va de rij va Fiboacci We otere het het e Fiboaccigetal met F De rij va Fiboacci wordt gegeve door: F F F F 4 F F 6 F 7 F De volgede afleidig is gebaseerd

Nadere informatie

Deel A. Breuken vergelijken 4 ----- 12

Deel A. Breuken vergelijken 4 ----- 12 Deel A Breuke vergelijke - - 0 Breuke e brokke (). Kleur va elke figuur deel. Doe het zo auwkeurig mogelijk.. Kleur va elke figuur deel. Doe het telkes aders.. Kleur steeds het deel dat is aagegeve. -

Nadere informatie

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken.

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken. HET BELANG VAN KP HART Vrage Tijdes de voordracht op augustus 007 hebbe we de volgede vrage besproke. Hoe ku je izie dat ee vierkat, bij gegeve omtrek, de rechthoek met de maximale oppervlakte is? Hoe

Nadere informatie

is de verzameling van de natuurlijke getallen, bevat de gehele getallen en { x x m / n voor zekere gehele getallen m en n met n 0} bevat de rationale

is de verzameling van de natuurlijke getallen, bevat de gehele getallen en { x x m / n voor zekere gehele getallen m en n met n 0} bevat de rationale 1 Basisbegrippe 11 Verzamelige De getalle waarmee we op school hebbe lere were, zij de reële getalle De verzamelig va alle reële getalle wordt aageduid met Belagrije deelverzamelige va zij, e {0,1,,3,

Nadere informatie

HANDLEIDING CONDITIONELE ORDERS

HANDLEIDING CONDITIONELE ORDERS hadleidig coditioele orders HANDLEIDING CONDITIONELE ORDERS Ee coditioele order kut u vergelijke met ee istructie die u geeft aa uw wekkerradio: als het 7.30 uur is, wil ik dat de radio aagaat e ik gewekt

Nadere informatie

imtech Arbodienst (versie 2.0) imtech arbodienst

imtech Arbodienst (versie 2.0) imtech arbodienst imtech Arbodiest (versie 2.0) veilig e gezod werke imtech arbodiest Wat is legioella? Legioella is ee bacteriefamilie die voorkomt i alle mogelijke waters: riviere, mere e ook i leidigwater. Waeer waterdruppeltjes

Nadere informatie

imtech Arbodienst (versie 2.0)

imtech Arbodienst (versie 2.0) imtech Arbodiest (versie 2.0) veilig e gezod werke (Gezodheids)risico s bij autorijde Buite de verkeersveiligheid e de oderhoudsstaat va de auto ka ook het lagdurig zitte i de auto tot (gezodheids)klachte

Nadere informatie

Opgave 5 Onderzoek aan β -straling

Opgave 5 Onderzoek aan β -straling Eidexame vwo atuurkude 214-I - havovwo.l Opgave 5 Oderzoek aa β -stralig Zoals beked bestaat β -stralig uit elektroe. Om ee oderzoek aa β -stralig te doe heeft Harald ee radioactieve bro met P-32 late

Nadere informatie

2.6 De Fourierintegraal

2.6 De Fourierintegraal 2.6 De Fourieritegraal We vertrekke va de Fourierreeks i complexe vorm: voor g : [ π,π] C kue we schrijve met g(t) α e it, α 1 Z π g(t)e it dt. 2π π We herschrijve deze formules eerst voor ee fuctie f

Nadere informatie

Mexicaanse griep: A/H1N1 griep

Mexicaanse griep: A/H1N1 griep Mexicaase griep: A/H1N1 griep Wat is de Mexicaase griep? De zogeaamde Mexicaase of varkesgriep is ee ieuwe variat va het griepvirus, met ame A/H1N1. Weiig mese hebbe immuiteit voor dit virus. Hierdoor

Nadere informatie

Convergentie, divergentie en limieten van rijen

Convergentie, divergentie en limieten van rijen Covergetie, divergetie e limiete va rije TI-spire e rije 7N5p GGHM 22-23 Eigeschappe rekekudige rij b = begiwaarde v = verschil tusse twee opeevolgede terme recursieve formule: u = u + v met u = b directe

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 009 tijdvak wiskude B, Het correctievoorschrift bestaat uit: Regels voor de beoordelig Algemee regels Vakspecifieke regels Beoordeligsmodel 5 Izede scores Regels voor de beoordelig

Nadere informatie

FO Bedrijven. register. 7 December 2012. Concept Release 12.12. Created with Axure RP Pro

FO Bedrijven. register. 7 December 2012. Concept Release 12.12. Created with Axure RP Pro FO Bedrijve 7 December 2012 register Cocept Release 12.12 Created with Axure RP Pro FO Bedrijve register 12/7/12 Ihoudsopgave 1. Scherme... 4 1.1. Bedrijveregister - Zoekscherm +... 4 1.1.1. Getood scherm...

Nadere informatie

Lesbrief Poisson-verdeling

Lesbrief Poisson-verdeling Lesbrief Poisso-verdelig 200 Life is good for oly two thigs, discoverig mathematics ad teachig mathematics. Simeo Poisso Willem va Ravestei Ihoudsopgave Vooreis... 2 Hoofdstu - wisudige afleidig va de

Nadere informatie

imtech Arbodienst (versie 2.1)

imtech Arbodienst (versie 2.1) imtech Arbodiest Vervoer va gevaarlijke stoffe (versie 2.1) veilig e gezod werke imtech arbodiest Wat verstaa we oder het vervoer va gevaarlijke stoffe? Gevaarlijke stoffe zij stoffe die op éé of adere

Nadere informatie

Eindexamen natuurkunde 1-2 compex havo 2007-I

Eindexamen natuurkunde 1-2 compex havo 2007-I Ogave 1 Kerfusie I de zo fusere waterstofkere tot heliumkere. Bij fusie komt eergie vrij. O deze maier roduceert de zo er secode 3,9 10 26 J. Alle eergiecetrales o aarde roducere same i éé jaar ogeveer

Nadere informatie

Statistiek Voor studenten Bouwkunde College 4

Statistiek Voor studenten Bouwkunde College 4 Statistie Voor studete Bouwude College reee met ase Programma voor vadaag Terugbli Kase Optelle va ase Vermeigvuldige va ase Oafhaelijheid De biomiale verdelig Prof. dr. ir. G. Jogbloed Istituut Vermeldig

Nadere informatie

BovenIJ ziekenhuis Postadres : Postbus 37610, 1030 BD Amsterdam Bezoekadres: Statenjachtstraat 1, Amsterdam Telefoon : (020) 634 6346

BovenIJ ziekenhuis Postadres : Postbus 37610, 1030 BD Amsterdam Bezoekadres: Statenjachtstraat 1, Amsterdam Telefoon : (020) 634 6346 118552 107229 BoveIJ ziekehuis Postadres : Postbus 37610, 1030 BD Amsterdam Bezoekadres: Statejachtstraat 1, Amsterdam Telefoo : (020) 634 6346 Vragelijst Hoofdpij Hoofdpijpoli BoveIJ Ziekehuis Naam: M/V

Nadere informatie

Proeftentamen IBK1LOG01

Proeftentamen IBK1LOG01 Proeftetame IBK1LOG01 Opgave 1 ( 20 pute) Beatwoord de oderstaade vrage met waar of iet waar: 1.De bereikbaarheid va iformatie over ee product bij ee iteretwikel is ee voorbeeld va pre-trasactie elemet

Nadere informatie

1. Recursievergelijkingen van de 1 e orde

1. Recursievergelijkingen van de 1 e orde Recursievergelijkige va de e orde Rekekudige rije Het voorschrift va ee rekekudige rij ka gegeve wordt met de volgede recursievergelijkig: u = u + b Idie we deze vergelijkig i de vorm u = u u = b otere

Nadere informatie

Ongelijkheden. IMO trainingsweekend 2013

Ongelijkheden. IMO trainingsweekend 2013 Ogelijkhede IMO traiigsweeked 0 Deze tekst probeert de basis aa te brege voor het bewijze va ogelijkhede op de IMO. Het is de bedoelig om te bewijze dat ee bepaalde grootheid (ee uitdrukkig met ee aatal

Nadere informatie

Ja, ik wil. Trouwen in Vlaardingen

Ja, ik wil. Trouwen in Vlaardingen Ja, ik wil Trouwe i Vlaardige Ihoud Pagia 4 Locatie kieze Pagia 5 Tijdstip kieze Pagia 6 De plechtigheid Pagia 8 I odertrouw Pagia 9 Tot slot Pagia 11 Bijlage Gefeliciteerd met uw voorgeome huwelijk of

Nadere informatie

Toelichting bij Opbrengstgegevens VAVO 2011-2013

Toelichting bij Opbrengstgegevens VAVO 2011-2013 Toelichtig bij Opbregstgegeves VAVO 2011-2013 Ihoud Ileidig Aatal deelemers exame Kegetalle toezicht exames CE-cijfer alle vakke CE-cijfer alle vakke - tred SE-cijfer mius CE cijfer alle vakke Percetage

Nadere informatie

imtech Arbodienst (versie 2.0)

imtech Arbodienst (versie 2.0) imtech Arbodiest (versie 2.0) veilig e gezod werke Wat is werke op hoogte? Bij werkzaamhede op ee hoogte vaaf 2,5 meter moete voorzieige worde aagebracht, zodat veilig gewerkt ka worde. De voorkeur gaat

Nadere informatie

Steekproeftrekking Onderzoekspopulatie Steekproef

Steekproeftrekking Onderzoekspopulatie Steekproef Steekproeftrekkig I dit artikel worde twee begrippe beschreve die va belag zij voor het uitvoere va ee oderzoek. Het gaat om de populatie va het oderzoek e de steekproef. Voor wat betreft steekproeve lichte

Nadere informatie

Statistiek = leuk + zinvol

Statistiek = leuk + zinvol Statistiek = leuk + zivol Doel 1: Doel : Doel 3: zie titel ee statistisch oderzoek kue beoordele ee statistisch oderzoek kue opzette ee probleem vertale i stadaardmethode gegeves verzamele, verwerke via

Nadere informatie

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten Hoofdstuk 4 Compressore Doelstellige 1. Wete dat i het geval va compressore rekeig moet gehoude worde met thermische effecte 2. Wete dat er ee gres is aa het verhoge va de druk va ee gas 3. Wete welke

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combatore groep Mx: ducte, ladeprcpe, bomaalcoëffcëte, paaseereprcpe Tragsweeed ovember 015 Theore De opgave deze hadout hebbe allemaal wat te mae met éé of meer va oderstaade oderwerpe Belagrj bj het

Nadere informatie

EXAMEN INFORMATIETHEORIE I (5JJ40 / 5K020) 25 maart 2004, 9u00 12u00-1 -

EXAMEN INFORMATIETHEORIE I (5JJ40 / 5K020) 25 maart 2004, 9u00 12u00-1 - EXAMEN INFORMATIETHEORIE I (5JJ40 / 5K020) 25 maart 2004, 9u00 12u00-1 - Zet de antwoorden in de daarvoor bestemde vakjes en lever alleen deze bladen in! LET OP: Dit werk bevat zowel de opgaven voor het

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodelle e ormaal verdeelde steekproefgroothede 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1.

Nadere informatie

Eindexamen wiskunde B1 vwo 2007-I

Eindexamen wiskunde B1 vwo 2007-I Eidexame wiskude B vwo 007-I havovwo.l Podiumverlichtig Ee podium is 6 meter diep. Midde bove het podium hagt ee balk met tl-buize. De verlichtigssterkte op het podium is het kleist aa de rad, bijvoorbeeld

Nadere informatie

www. POspiegel.nl Online Instrument voor CB Het Talent schooljaar februari DigiDoc

www. POspiegel.nl Online Instrument voor CB Het Talent schooljaar februari DigiDoc POspiegel.l Olie Istrumet voor CB Het Talet schooljaar 2009-2010 februari 2010 2010 DigiDoc www. Algemee Algemee. pagia 1 Eigeschappe Equête Nummer ENQ60536 Naam schooljaar 2009-2010 Istellig CB Het Talet

Nadere informatie

Enquête social media gebruik ROC West-Brabant

Enquête social media gebruik ROC West-Brabant Equête social media gebruik ROC West-Brabat Jauari / februari 2012 I jauari 2012 is ee studeteequête geoped, met als thema social media i het oderwijs. De equête is door 514 mbo-studete igevuld. Afhakelijk

Nadere informatie

imtech Arbodienst (versie 2.0)

imtech Arbodienst (versie 2.0) imtech Arbodiest (versie.0) veilig e gezod werke Wat is lichamelijke belastig? Oder lichamelijke of fysieke belastig verstaa we het aaeme va houdige, het make va bewegige e het zette va kracht. Alle medewerkers,

Nadere informatie

Schoenen voor diabetes en reuma

Schoenen voor diabetes en reuma Schoee voor diabetes e reuma Comfortschoee gemaakt voor de extra kwetsbare voet Officieel gee vergoedig via zorgverzekeraar. Echter bij ekele zorgverzekeraars is door middel va idividuele aavraag vergoedig

Nadere informatie

Functies, Rijen, Continuïteit en Limieten

Functies, Rijen, Continuïteit en Limieten Fucties, Rije, Cotiuïteit e Limiete Fucties, Rije, 2-0 Cotiuïteit e Limiete Fucties, Rije, Cotiuïteit e Limiete Ihoud 1. Fucties Defiitie e kemerke / bewerkige op fucties Reële fucties va éé reële veraderlijke

Nadere informatie

Lees elke opgave in zijn geheel door voordat je met de uitwerking begint. Werk netjes en beknopt, en wees vooral duidelijk.

Lees elke opgave in zijn geheel door voordat je met de uitwerking begint. Werk netjes en beknopt, en wees vooral duidelijk. UNIVERSITEIT TWENTE CT-ST GESLOTEN-BOEK TOETS VAK: PROJECT PROCESTECHNOLOGIE DOCENT Prof. Dr. G. Mul e Dr. L. va der Ham DATUM: Vrijdag 22 November 2013 TIJD: 15:45 17:30 uur LAAT DUIDELIJK ZIEN HOE JE

Nadere informatie

Wijzigingsformulier Ziektekostenverzekering

Wijzigingsformulier Ziektekostenverzekering De Amersfoortse Verzekerige Stadsrig 15, postbus 42 3800 AA Amersfoort Tel. (033) 464 29 11 Fax (033) 464 29 30 Gegevesverwerkig Wijzigigsformulier Ziektekosteverzekerig Bij deze wijzigig worde persoosgegeves

Nadere informatie

www. HBOspiegel.nl Online Evaluatie Instrument

www. HBOspiegel.nl Online Evaluatie Instrument Schoolsca ROC MN VAVO Lyceum: Weergave Items Pagia 1 va 7 www. HBOspiegel.l Olie Evaluatie Istrumet Hogeschool Utrecht Faculteit Istituut Archimedes Schoolsca ROC MN VAVO Lyceum ovember 2013 Alle rechte

Nadere informatie

Huisstijl en logogebruik Associatie KU Leuven

Huisstijl en logogebruik Associatie KU Leuven Huisstijl e logogebruik Associatie KU Leuve Associatie huisstijlhadboek > Ihoudstafel 1 Ihoudstafel 1. Gebruik va de huisstijl of opame va het associatielogo 3 2. Huisstijl Associatie KU Leuve 4 2.1 Opame

Nadere informatie

Praktische opdracht: Complexe getallen en de Julia-verzameling

Praktische opdracht: Complexe getallen en de Julia-verzameling Praktische opdracht: Complexe getalle e de Julia-verzamelig Auteur: Wiebe K. Goodijk, Zerike College Hare Beodigde Voorkeis: 1 = i Het complexe vlak. Notatie: z = a + bi of z = r(cosϕ + i si ϕ) Regel va

Nadere informatie

Wijzigingsformulier Ziektekostenverzekering

Wijzigingsformulier Ziektekostenverzekering De Amersfoortse Verzekerige Stadsrig 15, postbus 42 3800 AA Amersfoort Tel. (033) 464 29 11 Fax (033) 464 29 30 Wijzigigsformulier Ziektekosteverzekerig Gegevesverwerkig Bij deze wijzigig worde persoosgegeves

Nadere informatie

Waterdichte argumenten voor Ubiflex loodvervanger! Ik stel me niet bloot aan lood

Waterdichte argumenten voor Ubiflex loodvervanger! Ik stel me niet bloot aan lood Waterdichte argumete voor Ubiflex loodvervager! Ik stel me iet bloot aa lood Met de Ubiflex loodvervager valt veel wist te behale! Ubiflex va Ubbik is dé loodvervager die wordt toegepast i alle bouwdetails

Nadere informatie

Stochastische loadflow. Beschrijving model belasting.

Stochastische loadflow. Beschrijving model belasting. Stochastische loadflow. eschrijvig model belastig. 95 pmo 5-- Phase to Phase V Utrechtseweg 3 Postbus 68 AC Arhem T: 6 356 38 F: 6 356 36 36 www.phasetophase.l 95 pmo INHOUD Ileidig...3 eschrijvig belastig...

Nadere informatie

Videoles Discrete dynamische modellen

Videoles Discrete dynamische modellen Videoles Discrete dyamische modelle Discrete dyamische modelle Orietatie Algebraisch Algebraisch/ umeriek Numeriek Maak de volgede rijtjes af: Puzzele met rijtjes a. 2 4 6 8 10 - b. 1 2 4 8 16 - c. 1 2

Nadere informatie

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl) wiskude A, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 04 Tijdvak izede scores Verwerk de scores va de alfabetisch eerste vijf kadidate per school i het programma Wolf

Nadere informatie

2de bach TEW. Statistiek 2. Van Driessen. uickprinter Koningstraat Antwerpen ,00

2de bach TEW. Statistiek 2. Van Driessen. uickprinter Koningstraat Antwerpen ,00 de bach TEW Statistiek Va Driesse Q www.quickpriter.be uickpriter Koigstraat 3 000 Atwerpe 46 5,00 Nieuw!!! Olie samevattige kope via www.quickpritershop.be Hoofdstuk : Het schatte va populatieparameters.

Nadere informatie

Artikel. Regenboog. Uitgave Auteur.

Artikel. Regenboog. Uitgave Auteur. Artikel Regeboog Uitgave 206- Auteur HC jy886@teleet.be De eerste overtuigede verklarig va de regeboog werd i 704 door Isaac Newto beschreve i zij boek Optics. Newto toode aa dat wit licht ee megelig is

Nadere informatie

Schoenen voor diabetes en reuma

Schoenen voor diabetes en reuma Schoee voor diabetes e reuma Comfortschoee gemaakt voor de extra kwetsbare voet Officieel gee vergoedig via zorgverzekeraar. Echter bij ekele zorgverzekeraars is door middel va idividuele aavraag vergoedig

Nadere informatie

Oefeningen op Rijen. Leon Lenders, Bree

Oefeningen op Rijen. Leon Lenders, Bree Oefeige op Rije Leo Leders, Bree I de tekst staa ee aatal oefeige i verbad met rije. De moeilijkere oefeige zij volledig uitgewerkt. Volgede oderwerpe kome aa bod : Plooie va ee blad papier Salaris Het

Nadere informatie

Evaluatierapport. Tevredenheidsonderzoek NMV Nederlandse Montessori Vereniging 2005. Eindrapportage. BvPO

Evaluatierapport. Tevredenheidsonderzoek NMV Nederlandse Montessori Vereniging 2005. Eindrapportage. BvPO Evaluatierapport Tevredeheidsoderzoek NMV Nederladse Motessori Vereigig 2005 Eidrapportage BvPO Bureau voor praktijkgericht oderzoek, Groige BvPO BUREAU VOOR PRAKTIJKGERICHT ONDERZOEK POSTBUS 9505, 9703

Nadere informatie

7.1 Recursieve formules [1]

7.1 Recursieve formules [1] 7.1 Recursieve formules [1] Voorbeeld: 8, 12, 16, 20, 24, is ee getallerij. De getalle i de rij zij de terme. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is de vijfde term (u

Nadere informatie

Waarstaatjegemeente.nl Beleidsthema s

Waarstaatjegemeente.nl Beleidsthema s Waarstaatjegemeete.l Beleidsthema s Gemeete Emme 2016 C. Beye MSc M. Tuider MSc B. va Dale MSc het PON, keis i uitvoerig Tilburg, maart 2017 Colofo Het PON heeft dit oderzoek verricht i opdracht va Gemeete

Nadere informatie

Thermodynamica HWTK PROEFTOETS- AT02 - UITWERKING.doc 1/9

Thermodynamica HWTK PROEFTOETS- AT02 - UITWERKING.doc 1/9 VAK: hermodyamica HWK Set Proeftoets A0 hermodyamica HWK PROEFOES- A0 - UIWERKING.doc /9 DI EERS LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 00 miute Uw aam:... Klas:... Leerligummer:

Nadere informatie

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25.

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25. Hoofdstuk WORTELS. ZIJDE EN OPPERVLAKTE VAN EEN VIERKANT a z a 9 + + + + 9 Lagzamer a Nee Hij doet alsof de oppervlakte gelijkmatig toeeemt. Je moet als zijde eme. z 0, 0, z a a 0,09 0,9 z a 0 / 00 0,

Nadere informatie

Scootmobiel rijden. Vertrouwd, veilig en zelfverzekerd deelnemen aan het verkeer. rijbewijs rijbewijs. www. scootmobielrijden.nl

Scootmobiel rijden. Vertrouwd, veilig en zelfverzekerd deelnemen aan het verkeer. rijbewijs rijbewijs. www. scootmobielrijden.nl Scootmobiel rijde S S rijbewijs rijbewijs Vertrouwd, veilig e zelfverzekerd deeleme aa het verkeer. www. scootmobielrijde.l Overal ka het gedrag va weggebruikers verschille. Let daarop bij voetgagerspromeades.

Nadere informatie

Rekenen met levensduurkosten

Rekenen met levensduurkosten Colibri Advies www.colibri-advies.l Rekee met levesduurkoste ir. Martie va de Boome MBA Colibri Advies -4-25 Pagia va 5 Rekee met levesduurkoste Auteur: Martie va de Boome - Colibri Advies BV. Materiaal

Nadere informatie

Hoe werkt het? Zelf uw woning aanpassen

Hoe werkt het? Zelf uw woning aanpassen Woig aapasse Hoe werkt het? Zelf uw woig aapasse Prettig woe beteket woe i ee huis aar uw smaak. Om og fijer te kue woe, wille veel huurders kleie of grote veraderige aabrege i hu huis. Thuisvester begrijpt

Nadere informatie

Set 3 Inleveropgaven Kansrekening (2WS20)

Set 3 Inleveropgaven Kansrekening (2WS20) 1 Techische Uiversiteit Eihove Faculteit Wiskue e Iformatica Set 3 Ileveropgave Kasrekeig (2WS20) 2014-2015 1. (Flesjes ie uit e ba sprige) Aa ee lopee ba wore bierflesjes gevul. Helaas gaat er zo u e

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1. Ee ieuwe aam voor ee gekede grootheid...2

Nadere informatie

Dollard College leerlingen 3 MAVO Dollard College Bellingwedde Online Evaluatie Instrument april 2015

Dollard College leerlingen 3 MAVO Dollard College Bellingwedde Online Evaluatie Instrument april 2015 leerlige 3 MAVO Pagia 1 va 7 www.vospiegel.l Olie Evaluatie Istrumet Dollard College Dollard College Belligwedde leerlige 3 MAVO april 2015 Alle rechte voorbehoude. CopyRight 2015 DigiDoc VOspiegel.l Pagia

Nadere informatie

wiskunde A pilot vwo 2016-I

wiskunde A pilot vwo 2016-I wiskude A pilot vwo 06-I Aalscholvers e vis maximumscore 3 De viscosumptie per dag is 30 0 0,36 + 696 0, 85 ( 788 (kg)) I de maad jui is dit 30 788 (kg) Het atwoord: 38 000 ( 38 duized) (kg) Als ee kadidaat

Nadere informatie

Reeksen. Convergente reeksen

Reeksen. Convergente reeksen Reekse Reekse Defiitie, otatie e voorbeelde Defiitie: Eereeks is ee koppel ( ) {u } l, {s } l met s = u k = u l + u l+ + u l+2 +...+ u + u k=l u l = s l, u = s s, = l +, l +2,... {u } l oemt me de termerij,

Nadere informatie

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak Lesbrief 5 Recurreties e ogelijkhede Recursief gedefiieerde rije Er zij getallerije {a } die voldoe aa ee recurrete betrekkig va de vorm a +k = f(a +k ;a +k ;:::;a ) voor = ; ;:::, waardoor de + k-de term

Nadere informatie

We kennen in de wiskunde de volgende getallenverzamelingen:

We kennen in de wiskunde de volgende getallenverzamelingen: Masteropleidig Fiacial Plaig Kwatitatieve Methode Relevate wiskude We kee i de wiskude de volgede getalleverzamelige: De atuurlijke getalle: N = {0,,,,4, } De gehele getalle: Z = {, -,-,-,0,,,, } (egels:

Nadere informatie

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl Kastheorie 2de bachelor wiskude Vrije Uiversiteit Brussel U. Eimahl Academiejaar 2011/2012 Ihoudsopgave 1 Kasruimte 1 1.1 Toevallige experimete................................. 1 1.2 De axioma s va Kolmogorov.............................

Nadere informatie