Tentamen - uitwerkingen

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Tentamen - uitwerkingen"

Transcriptie

1 Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke voorwaarden) ze gelden. b) Schets en benoem de vier mogelijke typen gedrag van een harmonische oscillator, waarvan de evenwichtsstand ligt op x = 0 cm en die op t = 0 s wordt losgelaten op x = 0 cm met snelheid nul. c) Geef de grootte en richting van de rotatievector van de aarde mbt de rotatie die leidt tot het dag-nachtritme dus niet de tragere rotatie om de zon). d) Geef de definitie van precessie. e) Beargumenteer in een paar zinnen) waarom de postulaten van Einstein impliceren dat niets sneller kan gaan dan het licht. f) Geef de definitie van de lichtkegel in de context van ruimte-tijd ofwel Minkowski) diagrammen. Antwoorden: a) Behoud van energie; geldt als alle krachten in het systeem conservatief zijn. Behoud van impuls; geldt als er geen externe krachten op het systeem werken. Behoud van impulsmoment of draaimoment ); geldt als er geen externe krachtmomenten op het systeem werken. b) Zie figuur. De vier typen gedrag zijn ongedempt, ondergedempt, kritisch gedempt, en overgedempt. c) De aarde draait om de noord-zuidas. De zon komt op in het oosten, dus van bovenop de noordpool gezien draait de aarde tegen de klok in in te zien doordat de aarde draait en de zon effectief stilstaat). De rotatie-vector van de aarde wijst dus omhoog langs de as van de zuidpool naar de noordpool, en heeft een grootte van omwenteling per dag, ofwel / ) = /86400 = Hz.

2 d) Precessie is de rotatie van de impulsmoment-vector om een vaste referentie-as, als gevolg van een niet-nul krachtmoment dat loodrecht staat op het vlak opgespannen door de impulsmoment-vector en de referentie-as. e) Het lichtpostulaat stelt dat de snelheid van het licht in elk inertiaalstelsel hetzelfde is. Stel dat een reiziger in een raket met de snelheid van het licht zou reizen, en een lichtstraal zou uitzenden. Dan zou gezien vanuit die reiziger het licht zich met een snelheid c van hem/haar verwijderen. Voor een stilstaande waarnemer lijken echter de raket en het uitgezonden licht even snel te gaan, en dus bij elkaar te blijven. Deze twee observaties zijn met elkaar in tegenspraak, waaruit volgt dat reizen met de snelheid van het licht, laat staan sneller, niet mogelijk is. NB: Alternatieve, correcte redeneringen, mits van redelijke lengte, kunnen natuurlijk ook. f) De lichtkegel van een bepaald punt omvat alle punten in de ruimte-tijd die causaal met dat punt verbonden kunnen zijn; de grens van de lichtkegel wordt bepaald door lichtstralen uitgezonden vanuit het punt in kwestie. Alternatief: teken een ruimtetijddiagram met daarin een lichtkegel, waarbij duidelijk aangegeven dat de lichtkegel bestaat uit het tijd- en licht-achtige deel. 0 xt) 5 π π π 4 π t -5-0 Figuur : De vier mogelijke typen gedrag van een harmonische oscillator: ongedempt ζ = 0, blauw), ondergedempt 0 < ζ <, oranje), kritisch gedempt ζ =, groen), en overgedempt ζ >, rood). De dimensieloze constante ζ is gedefiniëerd als ζ = γ/ mk, met γ de dempingsconstante.

3 Energie van een elektron - 7 punten De effectieve potentiële energie van een elektron in een waterstofatoom wordt gegeven door Ur) = a r + b r. ) Hier zijn a en b positieve constanten en r is de afstand tot de oorsprong waar de kern van het atoom zit). a) Geef de dimensies van a en b. b) Leidt deze potentiële energie tot een afstotende of aantrekkende kracht op kleine afstanden? En op grote afstanden? c) Vind de evenwichtspunten) van deze potentiële energie en bepaal hun stabiliteit. d) Een elektron wordt op r = losgelaten met snelheid nul. snelheid die het elektron kan krijgen. Bepaal de maximale e) Voor het elektron in d), vind de minimale afstand tot de kern in de oorsprong) die hij kan bereiken. Antwoorden: a) De dimensie van U is energie, ofwel kracht maal afstand, ofwel ML T. De dimensie van a is energie maal afstand, dus [a] = ML T ; de dimensie van b is energie maal afstand in het kwadraat, dus [b] = ML 4 T. b) Methode : De kracht is min de afgeleide van de potentiële energie, dus F r) = du dr = a r + b r. Voor kleine waarden van r is de tweede term dominant, dus is F r) positief en is de kracht afstotend; voor grote waarden van r is de eerste term dominant, dus is F r) negatief en is de kracht aantrekkend. Methode : We schetsen de potentiële energie, zie figuur. We zien dat voor kleine waardes van r de potentiële energie een negative helling heeft, wat correspondeert met een afstotende kracht, terwijl voor grote waardes van r de potentiële energie een positieve helling heeft, wat correspondeert met een aantrekkende kracht. c) Om de evenwichtspunten te vinden, zoeken we de punten waar de kracht nul is, ofwel waar de afgeleide van de potentiële energie nul is: 0 = du dr = a r b r r = b a. Om de stabiliteit van dit punt te bepalen, kijken we naar de waarde van de tweede afgeleide van de potentiële energie op dit punt: d U dr = a r=b/a r + 6b r 4 = a4 r=b/a 8b > 0.

4 Omdat de tweede afgeleide positief is, is het evenwichtspunt stabiel. Omdat dat bovendien het enige evenwichtspunt is, is dit punt het globale minimum en dus globaal stabiel. Alternatief : voor de stabiliteit van het evenwichtspunt kunnen we ook kijken naar de grafiek van de potentiële energie, figuur, waar we meteen zien dat het evenwichtspunt overeenkomt met het globale minimum van Ur), en dus een stabiel evenwichtspunt is. d) Op r = is de potentiële energie gelijk aan U ) = 0, dus de totale energie van het deeltje is E = K + U = 0. De totale energie is behouden, dus is de kinetische energie maximaal als de potentiële energie minimaal is, wat gebeurt in het globale minimum op r = b/a: Ub/a) = a /4b. De kinetische energie is dus maximaal a /4b, en de maximale snelheid volgt uit K max = mv max = a /4b, dus v max = a/ mb. e) De minimale afstand tot de kern in de oorsprong) wordt bereikt op het punt waar de kinetische energie weer) nul is, en de potentiële energie gelijk aan die van het beginpunt hier r = en U ) = 0). We zoeken dus de oplossing van Ur) = 0, ofwel 0 = Ur) = a r + b r r = b a Ur) r Figuur : De potentiële energie van opgave hier met a = b = ). NB: De vorm van de grafiek is hetzelfde voor elke keuze van a en b zolang ze beiden positief zijn. 4

5 Roterende objecten - 7 punten Een massieve cilinder met massa M en straal R is in zijn middelpunt via een veer met veerconstante k verbonden aan de muur zie figuur ). De cylinder kan heen en weer rollen zonder te glijden. a) Geef de totale energie van de cilinder plus veer. b) Differentiëer de energie van a) om de bewegingsvergelijking van de cilinder plus veer te vinden. Figuur : Een cylinder aan een veer. c) Vind de oscillatiefrequentie van de cilinder door de bewegingsvergelijking bij b) te vergelijken met die van een simpele harmonische oscillator massa aan een veer). Twee kinderen met massa s m = 0 kg en m = 0 kg zitten op een simpele draaimolen die bestaat uit een massieve schijf van 00 kg en straal van.0 m. De draaimolen kan vrij roteren om zijn middelpunt, en doet dat in eerste instantie met een frequentie ω 0 van 5.0 omwentelingen per minuut. Een derde kind met massa m = 0 kg komt aanrennen met een snelheid v 0 van.0 m/s, onder een hoek van 0 met de raaklijn aan de draaimolen zie figuur 4). Bij de draaimolen aangekomen springt dit kind erop, en draait met de andere twee kinderen mee. d) Vind de rotatiesnelheid van de draaimolen nadat het derde kind erop gesprongen is. Antwoorden: m ω0 v0 θ = 0 m m Figuur 4: Drie kinderen en een draaimolen. a) De totale energie bestaat uit de kinetische energie van de cylinder en de potentiële energie van de veer. Voor de kinetische energie van de cylinder hebben we twee bijdragen: die van zijn massamiddelpunt, K cm = Mv, en die van zijn rotatie, K rot = Iω = 4 MR v/r) = 4 Mv. De potentiële energie van de veer wordt gegeven door Ux) = kx, met x de afstand tot de muur. De totale energie van het systeem is dus: E = K + U = 4 Mv + kx. ) b) De totale energie is behouden, dus zijn tijdsafgeleide is nul. Voor de afgeleide van ) naar de tijd vinden we dus: 0 = d dt 4 Mv + d dt kx = dv Mv dt + kxdx ) dt = Ma + kx v. 5

6 in plaats van a mag natuurlijk ook een afgeleide van v of tweede afgeleide van x gegeven worden. De bewegingsvergelijking van het systeem is dus M d x + kx = 0. dt c) Voor een simpele harmonische oscillator hebben we als bewegingsvergelijking m... x+ kx = 0, en als oscillatiefrequentie ω = k/m. Vergelijken we dit met de bewegingsvergelijking van b), dan zien we dat voor onze cilinder-aan-een-veer de oscillatiefrequentie gegeven is door ω cilinder = k/m. d) Sleutel tot deze opgave is behoud van impulsmoment. Het totale impulsmoment voor en na de sprong van het derde kind zijn gelijk, en gegeven door: L voor = L schijf + L + L + L = I schijf ω 0 + m R ω 0 + m R ω 0 + m v 0 cosθ)r ) = M + m + m R ω 0 + m v 0 R cosθ) L na = L schijf + L + L + L ) = M + m + m + m R ω ω = M + m ) + m ω0 + m v 0 /R) cosθ) M + m + m + m ) 5.0/60) + 0.0/.0) = = 0. s = 7. rpm

7 4 Een paar relativistische berekeningen - 0 punten a) Een raket vliegt van planeet A naar planeet B die precies een lichtjaar van elkaar liggen zoals gemeten in het ruststelsel van de planeten). Hoe snel moet de raket vliegen zodat de tijd die tijdens de reis verlopen is op het horloge van een passagier precies een jaar is? b) Een ruimteschip vliegt weg van de aarde met een snelheid c/. Na enige tijd stuurt het ruimteschip een sonde uit onder een rechte hoek met zijn eigen richting, en met een snelheid c/, gemeten in het inertiaalstelsel van het ruimteschip. Wat zijn de grootte en richting van de snelheid van de sonde zoals gemeten vanaf de aarde? c) In de ct, x) coördinaten van een inertiaalstelsel S vinden drie gebeurtenissen plaats op G =, ), G = 5, 4) en G =, 6). Welke van deze gebeurtenissen kunnen causaal met elkaar verbonden zijn? d) Een foton met energie E f botst elastisch met een stilstaande massa m. Na de botsing bewegen het foton met nu onbekende energie) en de massa allebei in een richting die een hoek θ maakt met de oorspronkelijke richting van het foton zie figuur 5). Geef de energie-impuls viervectoren van het foton en de massa voor en na de botsing. e) Voor dezelfde botsing als in opgave d), vind de hoek θ van de deeltjes na de botsing zoals gegeven in figuur 5) in termen van E f en m. Figuur 5: Een foton die botst met een stiltaand deeltje van massa m boven) en de beweging van het foton en het deeltje na de botsing onder). Antwoorden: a) Methode : We noemen het ruststelsel S en het stelsel van de raket S. De raket mag in zijn eigen stelsel een jaar over de reis doen, dus t = jaar. De tijd die de raket er in S over doet is t = γv) t. De snelheid van de raket in S is 7

8 v = L/ t = L/[γv) t ] = ly)/[γv) y)] = c/γv) waarbij we gebruiken dat ly = c y). We hebben dus vγv) = c, ofwel v v/c) = c v c = v c v = c/. ) Methode : In het ruststelsel S van de raket komt planeet B met snelheid v naar de raket toe. De afstand die de planeet in dit stelsel moet afleggen is L = L/γv) = ly)/γv). De planeet mag hier in S een jaar over doen, dus y) v = ly)/γv) = c y)/γv) en we vinden weer vγv) = c, waarvan de oplossing vergelijking ) weer v = c/ is. b) We noemen weer het ruststelsel van de aarde S en dat van de raket S ; S beweegt met snelheid u = c/ in de x-richting in S. We noemen de richting waar de sonde in S ) heen vliegt y. In S vinden we de grootte van de snelheid van de sonde in de y-richting door te kijken naar de transversale snelheid: v y = v y/[γu) + uv x/c )] = c/)/γc/) = c/. De totale snelheidsvector van de sonde in S is dus v sonde = c/), /, 0), met grootte v = v = c/. De hoek θ die v met de x-as in S maakt is gegeven door θ = arctanv y /v x ) = arctan/ ) = 0. c) Methode : We berekenen de relativistische afstanden lengtes van de ruimtetijdvector) tussen de drie gebeurtenissen: s = 5) 4) = 6 4 = > 0 tijdachtig. s = ) 6) = 4 6 = < 0 ruimteachtig. s = 5 ) 4 6) = 4 4 = 0 tijdachtig. Gebeurtenissen & ) en & ) kunnen dus causaal met elkaar verbonden zijn, maar & ) niet. Methode : We tekenen een ruimte-tijddiagram met de drie gebeurtenissen en hun lichtkegels, zie figuur 6. We zien dat gebeurtenis ruim binnen de lichtkegel van valt, en net binnen de lichtkegel van, dus & ) en & ) kunnen causaal met elkaar verbonden zijn. Gebeurtenis valt echter ruim buiten de lichtkegel van, dus & ) kunnen niet causaal verbonden zijn. d) De gevraagde vier-vectore zijn = voor, = na): e) Behoud van impuls in de y-richting geeft p f, = E f,, 0, 0) 4) c p m, = mc, 0, 0, 0) 5) ) Ef, p f, = c, p f,, p f, sin θ, 0 6) ) Em, p m, =, p m,, p m, sin θ, 0. 7) c p f, = p m, p. 8

9 Behoud van impuls in de x-richting geeft nu: Behoud van energie geeft tenslotte: E f c = p p = E f c cos θ. E f + mc = E f, + E m, = p c + E m, = E f c cos θ + E m,, waar we gebruikt hebben dat E f, = p f, c voor het foton. We schrijven dit om naar een uitdrukking voor E m, : E m, = mc + E f ). We kunnen deze uitdrukking kwadrateren en gebruiken dat E m, = m c 4 + p c vanwege behoud van massa in de elastische botsing): m c 4 + E f [mc + E f ) + mc E f E f E f cos θ + mc E f )] = m c 4 + p c ) = m c 4 + ) = 0 Ef E f + mc = E f + mc cos θ cos θ = E f + mc E f + mc. ) 6 ct x Figuur 6: Ruimte-tijddiagram bij opgave 5c. Lichtkegel van punt in blauw, lichtkegel van punt in rood. 9

MechRela voor TW. Hertentamen - uitwerkingen. 22 mei 2015, 14:00-17:00h. (b) Formuleer de postulaten van de speciale relativiteitstheorie.

MechRela voor TW. Hertentamen - uitwerkingen. 22 mei 2015, 14:00-17:00h. (b) Formuleer de postulaten van de speciale relativiteitstheorie. MechRela voor TW Hertentamen - uitwerkingen mei 015, 14:00-17:00h 1 Kennisvragen (10 pt) (a) Formuleer de drie wetten van Newton die de basis vormen van de klassieke mechanica. (b) Formuleer de postulaten

Nadere informatie

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

Examen Algemene natuurkunde 1, oplossing

Examen Algemene natuurkunde 1, oplossing Examen Algemene natuurkunde 1, oplossing Vraag 1 (6 ptn) De deeltjes m 1 en m 2 bewegen zich op eenzelfde rechte zoals in de figuur. Ze zitten op ramkoers want v 1 > v 2. v w m n Figuur 1: Twee puntmassa

Nadere informatie

Tentamen. Mechanica en Relativiteitstheorie voor TW. 21 april 2017, 09:00-12:00h

Tentamen. Mechanica en Relativiteitstheorie voor TW. 21 april 2017, 09:00-12:00h Tentamen Mechanica en Relativiteitstheorie voor TW 21 april 2017, 09:00-12:00h 1. Schrijf je naam en studentnummer op elk antwoordenvel. 2. Leg altijd je antwoorden uit. Geef daarbij de structuur van je

Nadere informatie

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen Klassieke Mechanica a (Tentamen mei ) Uitwerkingen Opgave. (Beweging in een conservatief krachtenveld) a. Een kracht is conservatief als r F =. Dit blijkt na invullen: (r F) x = @F z =@y @F y =@z = =,

Nadere informatie

Klassieke en Kwantummechanica (EE1P11)

Klassieke en Kwantummechanica (EE1P11) Maandag 3 oktober 2016, 9.00 11.00 uur; DW-TZ 2 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Opleiding Elektrotechniek Aanwijzingen: Er zijn 2 opgaven in dit tentamen.

Nadere informatie

4. Maak een tekening:

4. Maak een tekening: . De versnelling van elk deel van de trein is hetzelfde, dus wordt de kracht op de koppeling tussen de 3e en 4e wagon bepaald door de fractie van de massa die er achter hangt, en wordt dus gegeven door

Nadere informatie

tijd [n*t1] hoek (rad) tijd [n*t2] hoek (rad) 0 0,52 0 0,52 1 0,40 1 0,46 2 0,30 2 0,40 3 0,23 3 0,34 4 0,17 4 0,30 5 0,13 5 0,26 6 0,1 6 0,23

tijd [n*t1] hoek (rad) tijd [n*t2] hoek (rad) 0 0,52 0 0,52 1 0,40 1 0,46 2 0,30 2 0,40 3 0,23 3 0,34 4 0,17 4 0,30 5 0,13 5 0,26 6 0,1 6 0,23 TENTAMEN DYNAMICA (Vakcode 140302) 1 februari 2008, 09:00 12:30 Alleen leesbaar en verzorgd werk kan worden nagekeken. Begin elke opgave op een nieuwe bladzijde. Tips: Lees eerst het tentamen als geheel.

Nadere informatie

Uitwerkingen Tentamen Natuurkunde-1

Uitwerkingen Tentamen Natuurkunde-1 Uitwerkingen Tentamen Natuurkunde-1 5 november 2015 Patrick Baesjou Vraag 1 [17]: a. Voor de veerconstante moeten we de hoekfrequentie ω weten. Die wordt gegeven door: ω = 2π f ( = 62.8 s 1 ) Vervolgens

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

TECHNISCHE UNIVERSITEIT DELFT Faculteit der Civiele Techniek en Geowetenschappen

TECHNISCHE UNIVERSITEIT DELFT Faculteit der Civiele Techniek en Geowetenschappen TECHNISCHE UNIVERSITEIT DELFT Faculteit der Civiele Techniek en Geowetenschappen TENTAMEN CTB1210 DYNAMICA en MODELVORMING d.d. 28 januari 2015 van 9:00-12:00 uur Let op: Voor de antwoorden op de conceptuele

Nadere informatie

Bewijzen en toegiften

Bewijzen en toegiften Bewijzen en toegiften 1 Het bewijs van Mermin voor het optellen van snelheden W op een perron ziet W in een treinwagon passeren met snelheid v. W schiet een kogel af met snelheid u en stuurt tegelijkertijd

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Docentencursus relativiteitstheorie

Docentencursus relativiteitstheorie Docentencursus relativiteitstheorie Uitwerkingen opgaven bijeenkomst 1, "Waarom relativiteit?" 18 september 2013 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven

Nadere informatie

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30 TENTAMEN DYNAMICA (14030) 9 januari 010, 9:00-1:30 Verzoek: begin de beantwoording van een nieuwe vraag op een nieuwe pagina. En schrijf duidelijk: alleen leesbaar en verzorgd werk kan worden nagekeken.

Nadere informatie

Tentamen Natuurkunde A. 9.00 uur 12.00 uur woensdag 10 januari 2007 Docent Drs.J.B. Vrijdaghs. Vul Uw gegevens op het deelnameformulier in

Tentamen Natuurkunde A. 9.00 uur 12.00 uur woensdag 10 januari 2007 Docent Drs.J.B. Vrijdaghs. Vul Uw gegevens op het deelnameformulier in Tentamen Natuurkunde A 9. uur. uur woensdag januari 7 Docent Drs.J.B. Vrijdaghs Aanwijzingen: Vul Uw gegevens op het deelnameformulier in Dit tentamen omvat 8 opgaven met totaal deelvragen Maak elke opgave

Nadere informatie

Theory Dutch (Netherlands) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave.

Theory Dutch (Netherlands) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave. Q1-1 Twee problemen uit de Mechanica (10 punten) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave. Deel A. De verborgen schijf (3.5 punten) We beschouwen een

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Examen mechanica: oefeningen

Examen mechanica: oefeningen Examen mechanica: oefeningen 22 februari 2013 1 Behoudswetten 1. Een wielrenner met een massa van 80 kg (inclusief de fiets) kan een helling van 4.0 afbollen aan een constante snelheid van 6.0 km/u. Door

Nadere informatie

STUDIERICHTING:... NAAM:... NUMMER:... VOORNAAM:... SCHRIFTELIJKE OVERHORING VAN 23 JANUARI 2006 MECHANICA

STUDIERICHTING:... NAAM:... NUMMER:... VOORNAAM:... SCHRIFTELIJKE OVERHORING VAN 23 JANUARI 2006 MECHANICA FYSICA I J. DANCKAERT SCHRIFTELIJKE OVERHORING VAN 3 JANUARI 006 MECHANICA OPGEPAST - Deze schriftelijke overhoring bevat 3 verschillende soorten vragen : A) Meerkeuzevragen waarbij je de letter overeenstemmend

Nadere informatie

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen 1 VRIJE TRILLINGEN 1.0 INLEIDING Veel fysische systemen, van groot tot klein, mechanisch en elektrisch, kunnen trillingen uitvoeren. Daarom is in de natuurkunde het bestuderen van trillingen van groot

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Mechanica 1 voor N en Wsk (3NA40 en 3AA40) Donderdag 21 januari 2010 van 09.00u tot 12.00u Dit tentamen bestaat uit vier opgaven.

Nadere informatie

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking Math D Gauss Wiskunde leerlijn TOM Deelnemende Modules: 14-144/FMHT/14161/14144-1A Oefententamen # Uitwerking Vraagstuk 1. tel de doorsnijding van de oppervlakken x + y + z 4 en z 1. Van bovenaf bekijkt

Nadere informatie

Gravitatie en kosmologie maandag 7 oktober 2013 OPGAVEN WEEK 6

Gravitatie en kosmologie maandag 7 oktober 2013 OPGAVEN WEEK 6 1 Gravitatie en kosmologie maandag 7 oktober 013 OPGAVEN WEEK 6 Opgave 1: We bespreken kort Rindler space en de connectie met de Tweelingparadox. We kijken naar een uniform versnelde waarnemer (we beschouwen

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Mechanica 1 voor N en Wsk (3NA40 en 3AA40) Donderdag 8 april 010 van 09.00u tot 1.00u Dit tentamen bestaat uit vier opgaven.

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 30 september 013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Uit: Niks relatief. Vincent Icke Contact, 2005

Uit: Niks relatief. Vincent Icke Contact, 2005 Uit: Niks relatief Vincent Icke Contact, 2005 Dé formule Snappiknie kanniknie Waarschijnlijk is E = mc 2 de beroemdste formule aller tijden, tenminste als je afgaat op de meerderheid van stemmen. De formule

Nadere informatie

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016 Kwantummechanica HOVO cursus Jo van den Brand Lecture 4: 13 oktober 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: jo@nikhef.nl 0620 539 484 / 020

Nadere informatie

Toets Algemene natuurkunde 1

Toets Algemene natuurkunde 1 Beste Student, Toets Algemene natuurkunde 1 Deze toets telt mee voor 10% van je totaalscore, twee punten op twintig dus. Lees eerst aandachtig de vragen zodat je een duidelijk beeld hebt van wat de gegevens

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

Feedback op het examen Algemene natuurkunde 1 Januari 2014

Feedback op het examen Algemene natuurkunde 1 Januari 2014 Beste, Feedback op het examen Algemene natuurkunde 1 Januari 2014 Er waren 112 studenten ingeschreven voor het examen, 93 hebben deelgenomen. Dit wil dus zeggen dat ongeveer 17% van de ingeschreven studenten

Nadere informatie

SCHRIFTELIJK TENTAMEN VAN 22 JANUARI Dit tentamen bevat verschillende soorten vragen of deelvragen:

SCHRIFTELIJK TENTAMEN VAN 22 JANUARI Dit tentamen bevat verschillende soorten vragen of deelvragen: FYSICA I PRACTICUM FYSICA I J. DANCKAERT J. DANCKAERT en L. SLOOTEN SCHRIFTELIJK TENTAMEN VAN JANUARI 007 OPGEPAST Dit tentamen bevat verschillende soorten vragen of deelvragen: o Meerkeuzevragen waarbij

Nadere informatie

BIOFYSICA: Toets I.4. Dynamica: Oplossing

BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Mechanica 2 voor N (3AA42) woensdag 24 juni 2009 van

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Mechanica 2 voor N (3AA42) woensdag 24 juni 2009 van M C 4 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Mechanica voor N (3AA4) woensdag 4 juni 009 van 4.00-7.00 uur Dit examen bestaat uit de opgaven t/m 6. Bij dit examen mag

Nadere informatie

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur Tentamen Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April 2014 Tijd/tijdsduur: 3 uur Docent(en) en/of tweede lezer: Dr. F.C. Grozema Prof. dr. L.D.A. Siebbeles Dit tentamen bestaat uit 5 opgaven:

Nadere informatie

HOVO: Gravitatie en kosmologie OPGAVEN WEEK 1

HOVO: Gravitatie en kosmologie OPGAVEN WEEK 1 HOVO: Gravitatie en kosmologie OPGAVEN WEEK Opgave : Causaliteit In het jaar 300 wordt door de Aardse Federatie een ruimteschip naar een Aardse observatiepost op de planeet P47 gestuurd. Op de maan van

Nadere informatie

Natk4All Leraren opleiding Speciale Relativiteitstheorie (leerjaar )

Natk4All Leraren opleiding Speciale Relativiteitstheorie (leerjaar ) Natk4All Leraren opleiding Speciale Relativiteitstheorie (leerjaar 2016-2017) February 5, 2017 Tijd: 2 uur 30 min Afsluitend Maximum Marks: 78+5(bonusopgave) 1. In wereld van serie Star-Trek kunnen mensen

Nadere informatie

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale

Nadere informatie

Oefeningen. Speciale Relativiteitstheorie

Oefeningen. Speciale Relativiteitstheorie Oefeningen bij het college Speciale Relativiteitstheorie Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr. E. de Wolf NIKHEF /Onderzoeksinstituut HEF /UvA versie 1.3, januari 2003 2 Inhoudsopgave 1 Galileitransformatie

Nadere informatie

Relativiteitstheorie met de computer

Relativiteitstheorie met de computer Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!

Nadere informatie

TENTAMEN DYNAMICA ( )

TENTAMEN DYNAMICA ( ) TENTAMEN DYNAMICA (1914001) 8 januari 011, 08:45 1:15 Verzoek: Begin de beantwoording van een nieuwe opgave op een nieuwe pagina. Alleen leesbaar en verzorgd werk kan worden beoordeeld. Opgave 1 (norm:

Nadere informatie

Naam : F. Outloos Nummer : 1302

Naam : F. Outloos Nummer : 1302 1 ste bach. burg.ir.-arch. EXAMEN FYSICA 1 2011-2012, 1 ste zittijd 13 januari 2012 Naam : F. Outloos Nummer : 1302 Wie wat vindt heeft slecht gezocht. Rutger Kopland 1.1 1.2 1.3 A B C D A B C D A B C

Nadere informatie

Fysica: mechanica, golven en thermodynamica SCHRIFTELIJK TE TAME VA 18 JA UARI 2010

Fysica: mechanica, golven en thermodynamica SCHRIFTELIJK TE TAME VA 18 JA UARI 2010 NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica Practicum fysica Prof. J. Danckaert Prof. J. Danckaert Veel succes! SCHRIFTELIJK TE TAME VA 18 JA UARI 010 Dit tentamen bevat 46 vragen:

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

1 Leerlingproject: Relativiteit 28 februari 2002

1 Leerlingproject: Relativiteit 28 februari 2002 1 Leerlingproject: Relativiteit 28 februari 2002 1 Relativiteit Als je aan relativiteit denkt, dan denk je waarschijnlijk als eerste aan Albert Einstein. En dat is dan ook de bedenker van de relativiteitstheorie.

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Examen Klassieke Mechanica Herbert De Gersem, Eef Temmerman 2de bachelor burgerlijk ingenieur en bio-ingenieur 14 januari 2008, academiejaar 07-08 NAAM: RICHTING: vraag 1 (/3) vraag 2 (/5) vraag 3 (/5)

Nadere informatie

MODULE GLIESE 667 RELATIVITEIT GLIESE 667. Naam: Klas: Datum:

MODULE GLIESE 667 RELATIVITEIT GLIESE 667. Naam: Klas: Datum: GLIESE 667 RELATIVITEIT GLIESE 667 Naam: Klas: Datum: GLIESE 667 GLIESE 667 WE GAAN OP REIS De invloed van de mensheid reikt steeds verder. In de oertijd kon een mens zich maar enkele kilometers van zijn

Nadere informatie

Eindexamen havo natuurkunde pilot I

Eindexamen havo natuurkunde pilot I Eindexamen havo natuurkunde pilot - I Opgave Sprong op de maan maximumscore uitkomst:,43 m (met een marge van,3 m) voorbeeld van een bepaling: Als Young loskomt van de grond is zijn zwaartepunt op een

Nadere informatie

Calculus I, 23/11/2015

Calculus I, 23/11/2015 Calculus I, /11/015 1. Beschouw de functie met a, b R 0. f = a + b + lne a Benoem het domein van de functie f. b Bepaal a en b zodat de rechte y = 1 een schuine asymptoot is voor f. c Voor a = en b = 1,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-II

Eindexamen wiskunde B1-2 vwo 2007-II ier tappen ij het tappen van bier treden verschillen op in de hoeveelheid bier per glas. Uit onderzoek blijkt dat de hoeveelheid bier die per glas getapt wordt bij benadering normaal verdeeld is met een

Nadere informatie

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet.

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet. Opgave 1 René zit op zijn fiets en heeft als hij het begin van een helling bereikt een snelheid van 2,0 m/s. De helling is 15 m lang en heeft een hoek van 10º. Onderaan de helling gekomen, heeft de fiets

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 11 collegejaar college build slides Vandaag : : : : 17-18 11 23 oktober 2017 35 De sterrennacht Vincent van Gogh, 1889 1 2 3 4 5 Verband met de stelling van n 1 VA intro ection 16.7 Definitie Equation

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Maar het leidde ook tot een uitkomst die essentieel is in mijn werkstuk van een Stabiel Heelal.

Maar het leidde ook tot een uitkomst die essentieel is in mijn werkstuk van een Stabiel Heelal. -09-5 Bijlage voor Stabiel Heelal. --------------------------------------- In deze bijlage wordt onderzocht hoe in mijn visie materie, ruimte en energie zich tot elkaar verhouden. Op zichzelf was de fascinatie

Nadere informatie

Speciale Relativiteitstheorie. Oefeningen. Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer

Speciale Relativiteitstheorie. Oefeningen. Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer Speciale Relativiteitstheorie Oefeningen Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer Inhoudsopgave 1 Galileitransformatie 2 1.1 Een paraboolbaan...................................

Nadere informatie

Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet!

Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet! Einstein (6) n de voorafgaande artikelen hebben we het gehad over tijdsdilatatie en Lorenzcontractie (tijd en lengte zijn niet absoluut maar hangen af van de snelheid tussen waarnemer en waargenomene).

Nadere informatie

Uitwerkingen 1. ω = Opgave 1 a.

Uitwerkingen 1. ω = Opgave 1 a. Uitwerkingen Opgave π omtrek diameter Eén radiaal is de hoek, gemeten vanuit het middelpunt van een cirkel, waarbij de lengte van de boog gelijk is aan de straal. c. s ϕ r d. ϕ ω t Opgave π (dus ongeveer

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Tentamen Natuurkunde I Herkansing uur uur donderdag 7 juli 2005 Docent Drs.J.B. Vrijdaghs

Tentamen Natuurkunde I Herkansing uur uur donderdag 7 juli 2005 Docent Drs.J.B. Vrijdaghs Tentamen Natuurkunde I Herkansing 09.00 uur -.00 uur donderdag 7 juli 005 Docent Drs.J.. Vrijdaghs Aanwijzingen: Dit tentamen omvat 5 opgaven met totaal 0 deelvragen Maak elke opgave op een apart vel voorzien

Nadere informatie

Schoolexamen Moderne Natuurkunde

Schoolexamen Moderne Natuurkunde Schoolexamen Moderne Natuurkunde Natuurkunde 1,2 VWO 6 24 maart 2003 Tijdsduur: 90 minuten Deze toets bestaat uit 3 opgaven met 16 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

Advanced Creative Enigneering Skills

Advanced Creative Enigneering Skills Enigneering Skills Kinetica November 2015 Theaterschool OTT-2 1 Kinematica Kijkt naar de geometrische aspecten en niet naar de feitelijke krachten op het systeem Kinetica Beschouwt de krachten Bewegingsvergelijkingen

Nadere informatie

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde André van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s speciale relativiteitstheorie, maarr dan begrijpelijk

Nadere informatie

m C Trillingen Harmonische trilling Wiskundig intermezzo

m C Trillingen Harmonische trilling Wiskundig intermezzo rillingen http://nl.wikipedia.org/wiki/bestand:simple_harmonic_oscillator.gif http://upload.wikimedia.org/wikipedia/commons/7/74/simple_harmonic_motion_animation.gif Samenvatting bladzijde 110: rilling

Nadere informatie

Uitwerking Oefeningen Speciale Relativiteitstheorie. Galileitransformaties. versie 1.3, januari 2003

Uitwerking Oefeningen Speciale Relativiteitstheorie. Galileitransformaties. versie 1.3, januari 2003 Uitwerking Oefeningen Speciale Relativiteitstheorie Galileitransformaties versie 1.3, januari 003 Inhoudsopgave 0.1Galileitransformatie 0.1.1 Twee inertiaalsystemen...................... 0.1. Een paraboolbaan.........................

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 007 tijdvak woensdag 0 juni 13.30-16.30 uur wiskunde 1, ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer

Nadere informatie

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen.

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. Bereken de spankracht in het koord. ATWOOD Over een katrol hangt

Nadere informatie

Eindexamen wiskunde B1 vwo 2007-II

Eindexamen wiskunde B1 vwo 2007-II Bier tappen Rob neemt elke vrijdagmiddag, voor hij naar huis gaat, één glas bier in zijn stamcafé. Dan kiest hij óf een glas witbier óf een glas pils. Omdat hij moeilijk kan kiezen, gooit hij met twee

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Eindexamen vwo natuurkunde 2013-I

Eindexamen vwo natuurkunde 2013-I Eindexamen vwo natuurkunde 03-I Beoordelingsmodel Opgave Sprint maximumscore De snelheid is constant omdat het (s,t)-diagram (vanaf 4 seconde) een rechte lijn is. De snelheid is gelijk aan de helling van

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur Eamen VW 016 tijdvak 1 woensdag 18 mei 13.30-16.30 uur wiskunde (pilot) it eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Calculus I, 19/10/2015

Calculus I, 19/10/2015 Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,

Nadere informatie

BIOFYSICA: WERKZITTING 4 (Oplossingen) DYNAMICA VAN SYSTEMEN. dt L = M L. Aangezien M loodrecht staat op L, is het scalair product M L =0: dt L =0

BIOFYSICA: WERKZITTING 4 (Oplossingen) DYNAMICA VAN SYSTEMEN. dt L = M L. Aangezien M loodrecht staat op L, is het scalair product M L =0: dt L =0 1ste Kandidatuur ARTS of TANDARTS Academiejaar 00-003 Oefening 3 BIOFYSICA: WERKZITTING 4 (Oplossingen) DYNAMICA VAN SYSTEMEN Gegeven M = d L dt. Als M loodrecht staat op L, wat kunnen we dan zeggen over

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica Tentamen Fysica in de Fysiologie (8N7) deel A1, blad 1/4 maandag 1 oktober 27, 9.-1.3 uur Het tentamen

Nadere informatie

Eindexamen natuurkunde 1-2 vwo I

Eindexamen natuurkunde 1-2 vwo I Eindexamen natuurkunde - vwo 009 - I Beoordelingsmodel Opgave Mondharmonica maximumscore 3 In figuur 3 zijn minder trillingen te zien dan in figuur De frequentie in figuur 3 is dus lager Het lipje bij

Nadere informatie

Opgave 1 Koolstof-14-methode

Opgave 1 Koolstof-14-methode Eindexamen havo natuurkunde pilot 04-II Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Opgave Koolstof-4-methode maximumscore 3 antwoord: aantal aantal aantal massa halveringstijd

Nadere informatie

Tentamen Moleculaire Simulaties - 8C November uur

Tentamen Moleculaire Simulaties - 8C November uur Tentamen Moleculaire Simulaties - 8C030 11 November 2008-14.00-17.00 uur Vier algemene opmerkingen: Het tentamen bestaat uit 6 opgaven verdeeld over 3 pagina's. Op pagina 3 staat voor iedere opgave het

Nadere informatie

Gegeven de starre balk in figuur 1. Op het gedeelte A D werkt een verdeelde belasting waarvoor geldt: Figuur 1: Opgave 1.

Gegeven de starre balk in figuur 1. Op het gedeelte A D werkt een verdeelde belasting waarvoor geldt: Figuur 1: Opgave 1. Universiteit Twente Faculteit Construerende Technische Wetenschappen Opleidingen Werktuigbouwkunde & Industrieel Ontwerpen Kenmerk: CTW.3/TM-573 ONDERDEEL : Statica DATUM : 5 november 03 TIJD : 3:45 5:30

Nadere informatie

Herhalingsopgaven 6e jaar

Herhalingsopgaven 6e jaar Herhalingsopgaven 6e jaar 1. Schijf A is door middel van een onuitrekbare rubber band verbonden met schijf B. Op schijf B is een grotere schijf C gemonteerd, zo dat ze draaien rond dezelfde as (zie figuur).

Nadere informatie

Elektro-magnetisme Q B Q A

Elektro-magnetisme Q B Q A Elektro-magnetisme 1. Een lading QA =4Q bevindt zich in de buurt van een tweede lading QB = Q. In welk punt zal de resulterende kracht op een kleine positieve lading QC gelijk zijn aan nul? X O P Y

Nadere informatie

Toegestane informatiebronnen en hulpmiddelen: rekenmachine, pen, geodriehoek / liniaal.

Toegestane informatiebronnen en hulpmiddelen: rekenmachine, pen, geodriehoek / liniaal. Tentamen: Mehania en elativiteittheorie TN53 TW Datum: 7 April Tijd/tijdduur: 9:-: / 3 uur Doenten: K.W.A. van Dongen, A.A. van Well,.F. Mudde Dit tentamen betaat uit 5 opgaven. Indien je het gehele tentamen

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

NATUURKUNDE. Bepaal de frequentie van deze toon. (En laat heel duidelijk in je berekening zien hoe je dat gedaan hebt, uiteraard!)

NATUURKUNDE. Bepaal de frequentie van deze toon. (En laat heel duidelijk in je berekening zien hoe je dat gedaan hebt, uiteraard!) NATUURKUNDE KLAS 5 PROEFWERK HOOFDSTUK 15: TRILLINGEN OOFDSTUK 15: TRILLINGEN 22/01/2010 Deze toets bestaat uit 4 opgaven (29 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Denk er

Nadere informatie

Uitwerkingen goniometrische functies Hst. 11 deel B3

Uitwerkingen goniometrische functies Hst. 11 deel B3 Uitwerkingen goniometrische functies Hst. deel B. f() = sin(-) = -sin() g() = cos(-) = cos () h() = sin( + ) = cos() j() = cos( + ) = -sin() k() = sin ( + ) = -sin () l() = cos ( + ) = -cos (). Zie ook

Nadere informatie

Opgave Zonnestelsel 2005/2006: 6

Opgave Zonnestelsel 2005/2006: 6 Opgave Zonnestelsel 2005/2006: 6 6.1 De Leeftijd van het Zonnestelsel van Frank Verbunt De ouderdom van het Zonnestelsel kan bepaald worden uit de radio-actieve elementen die gevonden worden in meteorieten.

Nadere informatie

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË PRACTICUM-TOETS

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË PRACTICUM-TOETS XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË PRACTICUM-TOETS 20 juli 1999 13.1 practicum toets ---63 De Torsieslinger In dit experiment bestuderen we een relatief complex mechanisch systeem een

Nadere informatie

Vraag Antwoord Scores. Aan het juiste antwoord op een meerkeuzevraag wordt 1 scorepunt toegekend.

Vraag Antwoord Scores. Aan het juiste antwoord op een meerkeuzevraag wordt 1 scorepunt toegekend. Beoordelingsmodel Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Opgave SPECT-CT-scan B maximumscore 3 antwoord: 99 99 Mo Tc + 0 e + ( γ) of 99 99 Mo Tc + e + ( γ ) 4 43 het elektron

Nadere informatie

Eindexamen natuurkunde vwo I

Eindexamen natuurkunde vwo I Eindexamen natuurkunde vwo 0 - I Beoordelingsmodel Opgave Zonnelamp maximumscore antwoord: doorzichtige koepel buis lamp toepassen van de spiegelwet (met een marge van ) tekenen van de tweemaal teruggekaatste

Nadere informatie

Theory DutchBE (Belgium) De grote hadronen botsingsmachine (LHC) (10 punten)

Theory DutchBE (Belgium) De grote hadronen botsingsmachine (LHC) (10 punten) Q3-1 De grote hadronen botsingsmachine (LHC) (10 punten) Lees eerst de algemene instructies in de aparte envelop alvorens te starten met deze vraag. In deze opdracht wordt de fysica van de deeltjesversneller

Nadere informatie

Stevin vwo Uitwerkingen Speciale relativiteitstheorie ( ) Pagina 1 van 8

Stevin vwo Uitwerkingen Speciale relativiteitstheorie ( ) Pagina 1 van 8 Stevin vwo Uitwerkingen Speiale relativiteitstheorie (14-09-015) Pagina 1 van 8 Opgaven 1 Het is maar hoe je het ekijkt 1 a Een inertiaalsysteem is een omgeving waarin de eerste wet van Newton geldt. a

Nadere informatie

Botsingen. N.G. Schultheiss

Botsingen. N.G. Schultheiss 1 Botsingen N.G. Schultheiss 1 Inleiding In de natuur oefenen voorwerpen krachten op elkaar uit. Dit kan bijvoorbeeld doordat twee voorwerpen met elkaar botsen. We kunnen hier denken aan grote samengestelde

Nadere informatie

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts Introductieweek Faculteit Bewegings- en Revalidatiewetenschappen 25 29 Augustus 2014 Topic: Fysica Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik Lambrechts

Nadere informatie

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde Masterclass VWO-leerlingen juni 2008 Snelle glijbanen Emiel van Elderen en Joost de Groot NWD 2009 1 Technische Universiteit Delft Probleemstelling Gegeven: een punt A(0,a) en een punt B(b, 0) met a 0.

Nadere informatie

Paragraaf 10.1 : Vectoren en lijnen

Paragraaf 10.1 : Vectoren en lijnen Hoofdstuk 10 Meetkunde met Vectoren (V5 Wis B) Pagina 1 van 13 Paragraaf 10.1 : Vectoren en lijnen Les 1 : Vectoren tekenen Definities Vector x = ( a ) wil zeggen a naar rechts en b omhoog. b Je kunt vectoren

Nadere informatie