Netwerk, 4 Havo D, uitwerkingen Hoofdstuk 1, Statistische verwerking 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Netwerk, 4 Havo D, uitwerkingen Hoofdstuk 1, Statistische verwerking 1"

Transcriptie

1 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking Hoofdstuk Statistische verwerking Kern Populatie en steekproef a In Derbroek vonden + 6 ondervraagden de overlast ernstig tot zeer ernstig. Er zijn mensen ondervraagd, dus het gevraagde percentage is 9 % 99% =. Voor de vier omliggende wijken vind je op dezelfde wijze % 6% = b Wanneer de wind in de richting van Derbroek staat, hebben de overige wijken veel minder last, omdat de stank dan juist van hen wegwaait. Verder ligt bijvoorbeeld de wijk Nieuw Malen verder van GDB vandaan. De omstandigheden voor de diverse wijken verschillen behoorlijk. a De populatie bij de eerste steekproef: alle bewoners van de wijk Derbroek. De populatie bij de tweede steekproef: alle bewoners van de overige vier wijken. b De stankoverlast in Derbroek is zeer ernstig. Voor de overige wijken is het moeilijker om de mate van overlast te classificeren, maar meer dan de helft van de ondervraagden ervaart de overlast als ernstig tot zeer ernstig. a Niet aselect. Niet iedere jongere heeft evenveel kans om in de steekproef terecht te komen. Sommige jongeren komen nooit in discotheken! b Wel aselect. Alle patiënten hebben evenveel kans om in de steekproef terecht te komen. c Niet aselect. Er zijn mensen die niet in het telefoonboek vermeld staan en andere mensen die juist met meerdere telefoonnummers vermeld staan. Dit maakt dat de kans om in de steekproef te komen niet voor iedereen gelijk is. 4 a De steekproef is niet aselect, want alleen de hoekwoningen zijn onderzocht. b Het gevonden gemiddelde zal hoger zijn. In een hoekwoning moet meer gestookt worden dan in een tussenwoning omdat er een extra buitenmuur is waar warmteverlies plaatsvindt. c Deze woningen liggen allemaal aan de noordkant van de straat. 5 a In totaal zijn er 9 rijtjes van vijf woningen. Elk rijtje heeft twee hoekwoningen. In totaal zijn er hoekwoningen, dus we verwachten 5 = 6 hoekwoningen in de steekproef. 95 b Er liggen rijtjes aan de noordkant van de weg met de tuin op het noorden. In totaal gaat het om 5 woningen ,9. In de steekproef zullen ongeveer woningen met de tuin op het noorden 95 zitten.

2 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking Kern Variabelen 6 man / vrouw,,,,... 4 CDA/PVDA/VVD/D 66/Overig 7 a Ja. De volgorde is hier zelf gekozen. b = PvdA, = CDA, = VVD, 4 = D 66, 5 = overig a Omdat het hier gaat om een enquête onder kiesgerechtigden. Deze zijn allen jaar of ouder. b Ja, er is een bovengrens. Er zijn slechts weinig mensen die jaar of ouder worden. De bovengrens zal in de buurt van de liggen. 9 a Jonge mensen hebben vaak andere belangen dan ouderen. Dit zal hun kiesgedrag beïnvloeden. Wijzigingen in bijvoorbeeld de pensioenen zullen ouderen meer aan het hart gaan dan jongeren. b Mensen zonder kinderen hebben geen belang bij bijvoorbeeld gratis kinderopvang of verhoging van de kinderbijslag. Mensen met een of meer kinderen zullen zich sneller aangetrokken voelen door een partij die voorstellen in die richting doet. Het kindertal kan de partijkeuze dus ook beïnvloeden. a Het aantal broers:,,,,... kwantitatief, discreet b Lengte: bijv..7 m,.79 m of zelfs iets daar tussen in. Kwantitatief, continu. c Inkomen: kwantitatief, continu d Geboorteplaats: kwalitatief. e Opleiding: kwalitatief. f Gezinsgrootte: kwantitatief, discreet. a Opleiding, bedrag per maand, geslacht. b Kwalitatief: opleiding (VBO, MAVO, HAVO, VWO). geslacht (jongen, meisje) c Kwantitatief: bedrag. Het is een continue variabele die waarden kan aannemen vanaf, tot ongeveer 5,. Hogere waarden zijn in principe wel mogelijk, maar hier is de hoogst gemeten waarde 4,.

3 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking Kern Frequenties partij PvdA CDA VVD SP rest aantal stemmen 9 7 percentage % 4% % 6% % Berekening percentages: % % 45, % 4% 45, etc. a In totaal waren er 5 ondervraagden jonger dan 45 jaar. De relatieve frequenties zijn dus voor de PvdA 4,6 6% 5 = =, CDA, % 5 = =, VVD 7, % 5 = =, SP 6 =,4 = 4% en de 5 rest 5, % 5 = =. b In totaal kreeg de PvdA % van de stemmen, van de jongeren slechts 6%. Dat betekent dat de PvdA relatief meer ouderen heeft getrokken. Dat geldt ook voor het CDA. De VVD, SP en de overige partijen hebben juist relatief meer jongeren getrokken. 4 a De variabelen zijn: geslacht, soort verzekering, leeftijd en gezondheidstoestand. b Geslacht: kwalitatief, absoluut (laatste kolom) Soort verzekering: kwalitatief, absoluut (laatste kolom) Leeftijd: kwantitatief, continu, absoluut (laatste kolom) Gezondheidstoestand: kwalitatief, relatief (hier is geen totaal gegeven, alleen de relatieve frequenties voor de verschillende groepen) 5 CDA : 6 45 = ; 9 VVD : = ; 7 SP : = ; rest : = 6 a In het pictogram zijn de onderlinge verschillen wel goed zichtbaar, maar de percentages moet je zelf berekenen. Uit het histogram zijn de percentages direct af te lezen. b Je kunt geen cirkeldiagram maken omdat de genoemde percentages geen percentages zijn van hetzelfde totaal. 7 a aantal kinderen frequentie b Gezinnen met of kinderen komen het meest voor. frequentie aantal kinderen

4 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking 4 a Het meest rechter cirkeldiagram geeft een uitsplitsing van een heel klein deel van het meest linker cirkeldiagram. Deze uitsplitsing zou in de linkerfiguur niet leesbaar zijn. b Het water in de oceanen en zeeën is 97,4% van de totale hoeveelheid water. De totale hoeveelheid 6 6 water is dus,9 m,96 m 97,4. Hiervan is,94% opgeslagen in poolkappen en gletsjers, dat is dus,94,96 6 m, 4 m = water. c,% van de totale hoeveelheid water bestaat uit waterdamp, dat is dus,,96 6 m,96 m =

5 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking 5 Kern 4 Indeling in klassen 9 a In het steelbladdiagram staan de tientallen in de steel en de eenheden in het blad. Het eerste blad betekent dus dat er twee jarigen en twee 9jarigen waren. Maak eerst de ongeordende versie en pas daarna de volgorde aan! b De meeste personen zitten in de klasse 9 jaar. klasse abs. frequentie 5 <5 6 5 <5 5 < <55 6 rel. frequentie klasse abs. frequentie rel. frequentie 6 %, % < %, % 45 %, % < %, 9% 45 9 % % 45 = 75 <5 % 6, 67% 45 6 %, % 45 5 <95 %, % 45 a Iemand die morgen 5 wordt, valt vandaag nog in deze klasse! Het midden van deze klasse is. b Het gemiddelde van 5 en 4 is = 9,5. Deze waarde is onjuist, omdat de klasse tot aan 5 jaar loopt. a De mogelijkheden zijn, en. De middelste waarde is, dus het klassenmidden =. 4 b + =,5. De mogelijke waarden binnen deze klasse zijn, en. Het klassenmidden is dus nog steeds. a 4,4 gram wordt afgerond op 4 gram. Deze appel valt in klasse 4. 4,5 gram wordt afgerond op 5. Deze appel valt in klasse 5 9 b 9,5. Klasse 4 4,4 4. Klasse 4. c 99,5 <4,5, 4,5 <9,5, etc.. 4 a De klassenbreedten zijn achtereenvolgens:,,, en 4. b Zowel in de klasse als in de klasse 4 zitten 6 rokers. In totaal zijn dat rokers. c De eerste klasse, de volgende klasse, dan, dan 5 en dan Totaal dus rokers bij het onderzoek betrokken.

6 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking 6 5 a < 4, 4 < 5, 5 < 6, etc... b Je krijgt op deze manier veel te veel klassen. Velen van de klassen zullen leeg zijn. Honderdtallen in de steel is een betere keuze. c d De hoogste frequentie heeft de klasse 6 <7. Het klassenmidden is 65 m. Het normverbruik is dus 65 m. 6 a jaar 77 per jaargang. 4 jaar 7,5 per jaargang. 5 4 jaar 5 = 5, per jaargang. 5 9 jaar 56 =,4 per jaargang. 5 b Het gemiddelde sterftecijfer is het laagst in de klasse 5 4 jaar, maar dat blijkt niet uit het histogram. Het sterftecijfer in de leeftijdsklasse 5 9 jaar lijkt drie keer zo hoog als in de klasse 4 jaar, terwijl dit in werkelijkheid niet zo is. De verkeerde indruk is ontstaan doordat geen gebruik gemaakt is van het gemiddelde per jaargang. Hierdoor lijkt het sterftecijfer in brede klassen veel hoger dan het in werkelijkheid is. c jaar 564 per jaargang. 4 jaar 4 = 6 per jaargang jaar =, per jaargang. 5 9 jaar 64 = 4, per jaargang. 5 aantal leeftijd

7 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking 7 Kern 5 Polygonen 7 De klassenmiddens zijn,, 4, etc leeftijd a Een stok kan,,,,... keer gebogen worden voor hij breekt. Het is dus een discrete variabele. b Hoeveel procent van de stokken breekt na 9 buigingen, na 9 buigingen, etc.. c Het klassenmidden van de eerste klasse is + 9 = 4,5, van de volgende klasse + 9 = 4,5, etc.. relatieve frequentie (%) 55 9 ab lengte frequentie frequentie lengte c De beste indruk geeft de polygoon die hoort bij klassenbreedten van 5 cm. d De polygonen zijn in een figuur nog goed te lezen doordat ze niet door elkaar lopen. Bij histogrammen moet je gebruik maken van figuren, dat is lastiger vergelijken. 5 4,5 4,5 4,5 44,5 aantal buigingen a Er zijn 6 deelnemers jonger dan 5 jaar en 6 + = 6 jonger dan 5 jaar. c De frequenties in deze tabel vind je door in de gegeven tabel de frequenties van alle klassen tot en met de genoemde grens bij elkaar op te tellen. d Een stip in een cumulatief frequentiepolygoon geeft hoeveel waarnemingen er zijn tot aan de grens die op de verticale as wordt aangegeven. Je weet zeker dat alle waarnemingen binnen een klasse kleiner zijn dan de rechtergrens van die klasse, daarom komt het meetpunt boven de rechtergrens. leeftijd <5 <5 <45 <55 <65 <75 <5 <95 cum. freq

8 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking a reistijd frequentie cum.frequentie 9,5 < 4,5 4,5 <9,5 9,5 <4,5 4,5 <9,5 9,5 <4,5 4,5 <9,5 9,5 <44,5 44,5 <49, frequentie 5 4 a aantal dagen na aanbod 4 5 niet bezorgd percentage cum. percentage b In de eerste vier dagen wordt 9 procent van de stukken bezorgd. c Op de vijfde dag of later wordt procent bezorgd. d Het meetpunt bij % is niet te tekenen, omdat niet % van de post bezorgd wordt. 9,5 9,5 9,5 49,5 reistijd cum. frequentie (%) dagen

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. 3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal

Nadere informatie

2.1.4 Oefenen. d. Je ziet hier twee weegschalen. Wat is het verschil tussen beide als het gaat om het aflezen van een gewicht?

2.1.4 Oefenen. d. Je ziet hier twee weegschalen. Wat is het verschil tussen beide als het gaat om het aflezen van een gewicht? 2.1.4 Oefenen Opgave 9 Bekijk de genoemde dataset GEGEVENS154LEERLINGEN. a. Hoe lang is het grootste meisje? En de grootste jongen? b. Welke lengtes komen het meeste voor? c. Is het berekenen van gemiddelden

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1.4 Oefenen Opgave 9 Bekijk de genoemde dataset

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c Hoofdstuk 8, Statistische maten 1 Hoofdstuk 8 Statistische maten Kern 1 Centrum- en spreidingsmaten 1 a Partij is een kwalitatieve variaele, kindertal een kwantitatieve, discrete variaele.,c d kindertal

Nadere informatie

Statistiek: Herhaling en aanvulling

Statistiek: Herhaling en aanvulling Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,

Nadere informatie

G&R vwo A/C deel 2 8 De normale verdeling C. von Schwartzenberg 1/14. 3a 1 2

G&R vwo A/C deel 2 8 De normale verdeling C. von Schwartzenberg 1/14. 3a 1 2 G&R vwo A/C deel 8 De normale verdeling C. von Schwartzenberg 1/14 1a Gemiddelde startgeld x = 1 100000 + 4 4000 + 3000 = 13100 dollar. 10 1b Het gemiddelde wordt sterk bepaald door de uitschieter van

Nadere informatie

8.1 Centrum- en spreidingsmaten [1]

8.1 Centrum- en spreidingsmaten [1] 8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte

Nadere informatie

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen STATISTIEK Een korte samenvatting over: Termen Tabellen Diagrammen Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het

Nadere informatie

Vendorrating: statistische presentatiemiddelen

Vendorrating: statistische presentatiemiddelen pag.: 1 van 6 Vendorrating: statistische presentatiemiddelen Hieronder bespreken we in het kort een aantal verschillende presentatievormen waarmee we vendorratingresultaten op een duidelijke manier kunnen

Nadere informatie

2.2 Verbanden tussen datarepresentaties

2.2 Verbanden tussen datarepresentaties 2.2 Verbanden tussen datarepresentaties 2.2.1 Introductie In paragraaf 1 heb je een hele reeks aan datarepresentaties leren kennen. In deze paragraaf leer je welke verbanden er tussen deze representaties

Nadere informatie

4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6

4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 1: 1 miljoen = 1.000.000 4.1 Cijfermateriaal In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 2: 1 miljard = 1.000.000.000 In dit getal komen negen nullen voor.

Nadere informatie

Examen HAVO. Wiskunde A1,2

Examen HAVO. Wiskunde A1,2 Wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Donderdag 25 mei 13.30 16.30 uur 20 00 Dit examen bestaat uit 19 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012)

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012) Antwoorden bij - De normale verdeling vwo A/C (aug 0) Opg. a Aflezen bij de 5,3 o C grafiek:,3% en bij de,9 o C grafiek: 33,3% b Het tweede percentage is 33,3 /,3 = 5, maal zo groot. c Bij de 5,3 o C grafiek

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.3 Representaties In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1 Data presenteren 1.1 Introductie In

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 2 Verbanden tussen data representaties 2.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 2 Verbanden tussen data representaties

Nadere informatie

A. Week 1: Introductie in de statistiek.

A. Week 1: Introductie in de statistiek. A. Week 1: Introductie in de statistiek. Populatie en steekproef. In dit vak leren we de basis van de statistiek. In de statistiek probeert men erachter te komen hoe we de populatie het beste kunnen observeren.

Nadere informatie

Grafische voorstellingen

Grafische voorstellingen Grafische voorstellingen Onderzoek omtrent de lonen. Wat is uw huidige loon. Streep het gepaste hokje aan. q 40 000-45 000 q 45 000-50 000 q 50 000-55 000 q 55 000-60 000 q 60 000-80 000 q 80 000-100 000

Nadere informatie

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke

Nadere informatie

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B 1. (a) Bereken het gemiddelde salaris van de werknemers in de tabel hiernaast. (b) Bereken ook het mediale salaris. (c) Hoe groot is het modale salaris hier? salaris in euro s aantal werknemers 15000 1

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

Overzicht statistiek 5N4p

Overzicht statistiek 5N4p Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...

Nadere informatie

Examen HAVO en VHBO. Wiskunde A

Examen HAVO en VHBO. Wiskunde A Wiskunde A Examen HAVO en VHBO Hoger Algemeen Voortgezet Onderwijs Vooropleiding Hoger Beroeps Onderwijs HAVO Tijdvak 1 VHBO Tijdvak 2 Donderdag 25 mei 13.30 16.30 uur 20 00 Dit examen bestaat uit 19 vragen.

Nadere informatie

Hoe verwerk je gegevens met de Grafische Rekenmachine?

Hoe verwerk je gegevens met de Grafische Rekenmachine? Hoe verwerk je gegevens met de Grafische Rekenmachine? Heb je een tabel met alleen gegevens? Kies STAT EDIT Vul L 1 met je gegevens (als de lijst niet leeg is, ga je met de pijltjes helemaal naar boven,

Nadere informatie

4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100.

4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100. 4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100. 26 26% = = 0,26 100 In het rechterplaatje zijn 80 van de 400

Nadere informatie

Aardappelomzet in milj kg.

Aardappelomzet in milj kg. PERIODE STATISTIEK, COMBINATORIEK, Lineaire en Exponentiele functies. Voor al deze opdrachten geldt dat het werken met EXCEL van harte wordt aanbevolen. OPDRACHT 1 Aardappelen Uit onderzoek van de LandbouwUniversiteit

Nadere informatie

Inleiding tot de meettheorie

Inleiding tot de meettheorie Inleiding tot de meettheorie Meten is het toekennen van cijfers aan voorwerpen. Koeien Koeien in een kudde, studenten in een auditorium, mensen met een bepaalde stoornis, leerlingen met meer dan 15 in

Nadere informatie

Hoofdstuk 9 De Normale Verdeling. Kern 1 Normale verdelingen. Netwerk, 4 Havo A, uitwerkingen Hoofdstuk 9, De Normale Verdeling Elleke van der Most

Hoofdstuk 9 De Normale Verdeling. Kern 1 Normale verdelingen. Netwerk, 4 Havo A, uitwerkingen Hoofdstuk 9, De Normale Verdeling Elleke van der Most Hoofdstuk 9 De Normale Verdeling Kern Normale verdelingen a percentage 30 0 0 57 6 67 7 77 8 87 9 97 0 07 De polygoon heeft een klokvorm. b De gemiddelde lengte valt in de klasse 80 84 cm. Omdat 8 precies

Nadere informatie

(Voorlopige omschrijving.) Bedrag dat resteert nadat de exploitatiekosten betaald zijn.

(Voorlopige omschrijving.) Bedrag dat resteert nadat de exploitatiekosten betaald zijn. pen analyseren verkoopcijfers UITWERKING begrip nettowinst brutowinstpercentage brutowinst brutowinst (Voorlopige.) Bedrag dat resteert nadat de exploitatiekosten betaald zijn. Percentage waarmee de inkoopprijs

Nadere informatie

Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke

Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke Niet de hoogte, wel de oppervlakte Prof. dr. Herman Callaert Aandachtspunten bij - statistische technieken voor een continue veranderlijke - de interpretatie van een histogram - de normale dichtheidsfunctie

Nadere informatie

S1 STATISTIEK. Tabellen & diagrammen Centrummaten & Spreiding

S1 STATISTIEK. Tabellen & diagrammen Centrummaten & Spreiding S1 STATISTIEK Tabellen & diagrammen Centrummaten & Spreiding TABELLEN & DIAGRAMMEN WELKE AUTO VIND JIJ HET MOOISTE? Kies 1,2,3,4 of 5 NUMMER 1 NUMMER 2 NUMMER 3 NUMMER 4 NUMMER 5 VERWERKING Tabel Cirkeldiagram

Nadere informatie

gewicht in kg jongen/meisje aantal keer sporten per week bloedgroep zakgeld per maand in euro's

gewicht in kg jongen/meisje aantal keer sporten per week bloedgroep zakgeld per maand in euro's a G&R havo A deel Statistiek C. von Schwartzenberg / Kwantitatieve gegevens: (getallen waarmee je kunt rekenen) Kwalitatieve gegevens: gewicht in kg jongen/meisje aantal keer sporten per week bloedgroep

Nadere informatie

Centrummaten en klassen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.

Centrummaten en klassen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74220 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

Onderzoeksmethodiek LE: 2

Onderzoeksmethodiek LE: 2 Onderzoeksmethodiek LE: 2 3 Parameters en grootheden 3.1 Parameters Wat is een parameter? Een karakteristieke grootheid van een populatie Gem. gewicht van een 34-jarige man 3.2 Steekproefgrootheden Wat

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken Inhoud 2.0 Data voor onderzoek 2.1 Data presenteren 2.2 Centrum en spreiding 2.3 Verdelingen typeren 2.4 Relaties 2.5 Overzicht In

Nadere informatie

34% 34% 2,5% 2,5% ,5% 13,5%

34% 34% 2,5% 2,5% ,5% 13,5% C. von Schwartzenberg 1/16 1a Er is uitgegaan van de klassen: 1 < 160; 160 < 16; 16 < 170;... 18 < 190. 1b De onderzochte groep bestaat uit 1000 personen. 1c x = 17,3 (cm) en σ, 7 (cm). 1de 680 is 68%

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Aardgasbaten. (b) Teken bij 1996 een cirkeldiagram (c) Teken bij de tabel een vlakdiagram

Aardgasbaten. (b) Teken bij 1996 een cirkeldiagram (c) Teken bij de tabel een vlakdiagram 1. In figuur 1 zie je gegevens over de aardgasbaten in Nederland gedurende de periode 1985-1994. Je ziet zowel een staafdiagram als een frequentiepolygoon. Aardgasbaten figuur 1 (a) In welk jaar is de

Nadere informatie

22-9-2010. Pieperproef. Praktische opdracht voor wiskunde Klas 2 Havo. 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8

22-9-2010. Pieperproef. Praktische opdracht voor wiskunde Klas 2 Havo. 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8 Pieperproef Praktische opdracht voor wiskunde Klas 2 Havo 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8 Inhoudsopgave Benodigdheden blz. 3 Pieperonderzoek, De proef blz. 4 Uitwerking & Normering

Nadere informatie

voorbeeldexamenopgaven statistiek wiskunde A havo

voorbeeldexamenopgaven statistiek wiskunde A havo voorbeeldexamenopgaven statistiek wiskunde A havo FORMULEBLAD Vuistregels voor de grootte van het verschil van twee groepen 2 2 kruistabel a c b d, met phi = ad bc ( a+ b)( a+ c)( b+ d)( c+ d) als phi

Nadere informatie

STATISTIEK OEFENOPGAVEN

STATISTIEK OEFENOPGAVEN STATISTIEK OEFENOPGAVEN 1. Bereken van elke serie getallen steeds de modus, het gemiddelde, de mediaan en de spreidingsbreedte. A. 3, 3, 4, 4, 4, 5, 5, 7, 8, 10. B. 2, 3, 3, 4, 4, 5, 8, 9, 11. C. 9, 3,

Nadere informatie

Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken

Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken In opdracht van: Commissie Toekomst Wiskunde Onderwijs ctwo Utrecht 2009, SLO Utrecht 2014 Dit lesmateriaal is ontwikkeld in het kader

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

13,5% 13,5% De normaalkromme heeft dezelfde vorm als A (even breed en even hoog), maar ligt meer naar links.

13,5% 13,5% De normaalkromme heeft dezelfde vorm als A (even breed en even hoog), maar ligt meer naar links. G&R havo A deel C. von Schwartzenberg /8 a Er is uitgegaan van de klassen: < 60; 60 < 6; 6 < 70;... 8 < 90. b c De onderzochte groep bestaat uit 000 personen. (neem nog eens GRpracticum uit hoofdstuk 4

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A

DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A Docentenhandleiding 1. Voorwoord Doel van de praktische opdracht bij het hoofdstuk over statistiek 1 : Het doel van de praktische opdracht (PO)

Nadere informatie

DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO

DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO Leerlingmateriaal 1. Doel van de praktische opdracht Het doel van deze praktische opdracht is om de theorie uit je boek te verbinden met de data

Nadere informatie

Antwoorden Hoofdstuk 1 Verschillen

Antwoorden Hoofdstuk 1 Verschillen Antwoorden Hoofdstuk 1 Verschillen 1a. Niet sterk, want het is gebaseerd op slechts één zomer. b. Vriendinnen volgen is een vorm van groepsgedrag. Waar heeft Anneke het bericht gelezen? In een kwaliteitskrant

Nadere informatie

WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 2 : Grafische beschrijving van data Marnix Van Daele Marnix.VanDaele@UGent.be Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Grafische beschrijving van data p. 1/35 Soorten meetwaarden

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door

Nadere informatie

Hoofdstuk 8 - De normale verdeling

Hoofdstuk 8 - De normale verdeling ladzijde 216 1a Staafdiagram 3 want te verwachten is dat er elke maand ongeveer evenveel mensen jarig zijn. Dat is meteen ook de reden waarom de andere drie niet voldoen. Feruari estaat uit vier weken

Nadere informatie

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1:

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1: Hoofdstuk 8: De normale verdeling 8. Centrum- en spreidingsmaten Opgave : 00000 4 4000 5 3000 a. 300 dollar 0 b. 9 van de atleten verdienen minder dan de helft van het gemiddelde. Het gemiddelde is zo

Nadere informatie

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE A HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

OEFENPROEFWERK HAVO A DEEL 2

OEFENPROEFWERK HAVO A DEEL 2 OEFENPROEFWERK HAVO A DEEL 2 HOOFDSTUK 6 STATISTIEK EN BESLISSINGEN OPGAVE 1 Hieronder zijn vier boxplots getekend. a Welke boxplot hoort bij een links-scheve verdeling? Licht toe. b Hoe ligt bij boxplot

Nadere informatie

Inhoud. Inleiding 15. Deel I Beschrijvende statistiek 17

Inhoud. Inleiding 15. Deel I Beschrijvende statistiek 17 Inhoud Inleiding 15 Deel I Beschrijvende statistiek 17 1 Tabellen, grafieken en kengetallen 19 1.1 Case Game 16 20 1.2 Populatie en steekproef 22 1.3 Meetniveaus 23 1.4 De frequentieverdeling 25 1.5 Grafieken

Nadere informatie

Samenvatting Tentamenstof. Statistiek 1 - Vakgedeelte

Samenvatting Tentamenstof. Statistiek 1 - Vakgedeelte Samenvatting Tentamenstof Statistiek 1 - Vakgedeelte Naam: Thomas Sluyter Nummer: 1018808 Jaar / Klas: 1e jaar Docent Wiskunde, deeltijd Datum: 14 oktober, 2007 Voorwoord Het eerstejaars vak Statistiek

Nadere informatie

Resultaten 3e peiling Provinciale Statenverkiezingen februari 2011

Resultaten 3e peiling Provinciale Statenverkiezingen februari 2011 Resultaten 3e Provinciale Statenverkiezingen 2011 28 februari 2011 Opdrachtgever: RTV Oost maart 2011 Derde Provinciale Statenverkiezingen 2011 28 februari 2011 Bent u ervan op de hoogte dat er begin maart

Nadere informatie

Onderzoek verkiezingsthema zorg

Onderzoek verkiezingsthema zorg Onderzoek verkiezingsthema zorg Over het onderzoek Aan het onderzoek deden 27.798 leden van het EenVandaag Opiniepanel mee. Het onderzoek vond plaats van 15 tot en met 21 augustus 2012. Over het EenVandaag

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Woensdag 7 Oktober 1 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie 2 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie

Nadere informatie

Wat betekent het twee examens aan elkaar te equivaleren?

Wat betekent het twee examens aan elkaar te equivaleren? Wat betekent het twee examens aan elkaar te equivaleren? Op grond van de principes van eerlijkheid en transparantie van toetsing mogen kandidaten verwachten dat het examen waarvoor ze opgaan gelijkwaardig

Nadere informatie

G&R vwo A/C deel 1 3 Beschrijvende statistiek C. von Schwartzenberg 1/ % 177,8% een toename van (ongeveer) 77,8% 80%.

G&R vwo A/C deel 1 3 Beschrijvende statistiek C. von Schwartzenberg 1/ % 177,8% een toename van (ongeveer) 77,8% 80%. C. von Schwartzenberg / a, %,% een toename van (ongeveer),% %.,9 (of de toename is %,% %),,9,9 b %,% een toename van (ongeveer),%. Het aantal fitnesscentra is dus procentueel minder toegenomen dan het

Nadere informatie

Resultaten 2e peiling Provinciale Statenverkiezingen februari 2011

Resultaten 2e peiling Provinciale Statenverkiezingen februari 2011 Resultaten 2e peiling Provinciale Statenverkiezingen 2011 14 februari 2011 Resultaten 2e peiling Provinciale Statenverkiezingen 2011 14 februari 2011 Soort onderzoek : Opiniepeiling Uitgevoerd door : Right

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW]

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW] bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst statistiek/gegevensverwerking los materiaal, niet uit boek [PW] procenten percentage: bv: van de 0 kinderen hadden er 7: hoeveel procent

Nadere informatie

Onderzoek verkiezingsthema Woningmarkt

Onderzoek verkiezingsthema Woningmarkt Onderzoek verkiezingsthema Woningmarkt Over het onderzoek Aan het onderzoek deden 27.953 leden van het EenVandaag Opiniepanel mee. Het onderzoek vond plaats van 22 tot en met 28 augustus 2012. Over het

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 4 Twee groepen vergelijken 4.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 4.4 Oefenen Voorbeeld Bekijk de dataset

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 2007 tijdvak wiskunde A Compex Het correctievoorschrift bestaat uit: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels

Nadere informatie

Examen VWO. wiskunde A1

Examen VWO. wiskunde A1 wiskunde A1 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 81 punten te behalen; het examen bestaat uit 19 vragen. Voor

Nadere informatie

uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo

uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo - 5-6-205 lees verder Kijkcijfers maximumscore 4 Het toepassen van de formule

Nadere informatie

geen keuze 30% huur woning 21%

geen keuze 30% huur woning 21% Woonspoor Tot eind 2011 hebben 591 mensen de digitale enquête op woonspoor.nl ingevuld. Doel van de enquête is inzicht te krijgen in de huidige woonwensen en te kijken of deze woonwensen te vertalen zijn

Nadere informatie

4 HAVO wiskunde A HOOFDSTUK voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken

4 HAVO wiskunde A HOOFDSTUK voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken 4 HAVO wiskunde A HOOFDSTUK 6 0. voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken 0. voorkennis Centrum- en spreidingsmaten Centrummaten:

Nadere informatie

Statistiek: Stam-bladdiagram en boxplot 6/12/2013. dr. Brenda Casteleyn

Statistiek: Stam-bladdiagram en boxplot 6/12/2013. dr. Brenda Casteleyn Statistiek: Stam-bladdiagram en boxplot 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Stam-bladdiagram en boxplot zijn methoden om visueel een verdeling voor te stellen.

Nadere informatie

2. Data en datasets verwerken. Boekje 2 havo wiskunde A, domein E: Statistiek

2. Data en datasets verwerken. Boekje 2 havo wiskunde A, domein E: Statistiek 2. Data en datasets verwerken Boekje 2 havo wiskunde A, domein E: Statistiek 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld in het

Nadere informatie

Resultaten 1e peiling Provinciale Statenverkiezingen jan

Resultaten 1e peiling Provinciale Statenverkiezingen jan Resultaten 1e peiling Provinciale Statenverkiezingen 2011-31 jan. 2011- Resultaten 1e peiling Provinciale Statenverkiezingen 2011 31 januari 2011 Soort onderzoek : Opiniepeiling Uitgevoerd door : Right

Nadere informatie

Les 1 Kwaliteitsbeheersing. Les 2 Kwaliteitsgegevens. Les 3 Introductie Statistiek. Les 4 Normale verdeling. Kwaliteit

Les 1 Kwaliteitsbeheersing. Les 2 Kwaliteitsgegevens. Les 3 Introductie Statistiek. Les 4 Normale verdeling. Kwaliteit Kwaliteit Les 1 Kwaliteitsbeheersing Introductie & Begrippen Monstername Les 2 Kwaliteitsgegevens Gegevens Verzamelen Gegevens Weergeven Les 3 Introductie Statistiek Statistische begrippen Statistische

Nadere informatie

Statistiek. Beschrijvend statistiek

Statistiek. Beschrijvend statistiek Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van

Nadere informatie

Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen.

Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen. Statistiek Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het meeste (driemaal) voor, dus de modus is 5. (Kijk maar:

Nadere informatie

Eindexamen wiskunde A1 compex vwo 2007-I

Eindexamen wiskunde A1 compex vwo 2007-I Eindexamen wiskunde A compex vwo 2007-I Beoordelingsmodel IQ maximumscore 4 De gevraagde kans is P(X > 40) Beschrijven hoe met de GR deze cumulatieve normale kans berekend kan worden De gevraagde kans

Nadere informatie

Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram

Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram Probeer zeker de opdrachten 1, 4 en 6 te maken. 1. In de tabel hieronder vind je gegevens over de borstomtrek van 5732

Nadere informatie

3 Kansen vermenigvuldigen

3 Kansen vermenigvuldigen 3 Kansen vermenigvuldigen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Vermenigvuldigen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl

Nadere informatie

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen SPSS Introductiecursus Sanne Hoeks Mattie Lenzen Statistiek, waarom? Doel van het onderzoek om nieuwe feiten van de werkelijkheid vast te stellen door middel van systematisch onderzoek en empirische verzamelen

Nadere informatie

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 5

Uitwerkingen oefeningen hoofdstuk 5 Uitwerkingen oefeningen hoofdstuk 5 5.4.1 Basis 1 a Dit is een voorbeeld van interpoleren. Er zijn namelijk gegevens van voor 1995 en van na 1995 bekend. Binnen de bekende gegevens en dus binnen de tabel

Nadere informatie

1 E NKELE STATISTISCHE BEGRIPPEN

1 E NKELE STATISTISCHE BEGRIPPEN 1 E NKELE STATISTISCHE BEGRIPPEN 1 1.1 Een statistisch onderzoek Als we goed willen uitleggen wat statistiek precies inhoudt, is het nodig eerst enkele begrippen te verduidelijken. We doen dit aan de hand

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor

Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor 4 juni 2012 Het voorkomen van ziekte kan op drie manieren worden weergegeven: - Prevalentie - Cumulatieve incidentie - Incidentiedichtheid In de

Nadere informatie

Marktwerking in de energiesector

Marktwerking in de energiesector Grote Bickersstraat 74 1013 KS Amsterdam Postbus 247 1000 AE Amsterdam t 020 522 54 44 f 020 522 53 33 e info@tns-nipo.com www.tns-nipo.com Rapport Marktwerking in de energiesector Remy Bleijendaal F3175

Nadere informatie

UITWERKINGEN VOOR HET VWO NETWERK B13

UITWERKINGEN VOOR HET VWO NETWERK B13 12 UITWERKINGEN VOOR HET VWO NETWERK B13 HOOFDSTUK 6 KERN 1 1a) Zie plaatje De polygoon heeft een klokvorm 1b) Ongeveer 50% 1c) 0,1 + 0,9 + 3,3 + 11,0 = 15,3% 2a) klokvorm 2b) geen klokvorm 2c) klokvorm

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je op welke manier centrum- en spreidingsmaten je helpen bij de interpretatie van statistische gegevens. Je leert ook dat grafische voorstellingen

Nadere informatie

Eindexamen wiskunde A 1-2 havo 2005-II

Eindexamen wiskunde A 1-2 havo 2005-II Eindexamen wiskunde A - havo 005-II Het weer in september De frequenties zijn achtereenvolgens, 0, 3,, 7,, 6, 8, 6, 0, 8, 3,, en 0,5 3,5 7,0 7,5 de berekening 00 Het antwoord is 4 ( C) ( 4,05 4,03 4,0)

Nadere informatie

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang:

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang: wiskunde A, Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel Regels

Nadere informatie

Eindexamen wiskunde A 1-2 havo 2003-II

Eindexamen wiskunde A 1-2 havo 2003-II Eindexamen wiskunde A - havo 003-II 4 Antwoordmodel Wachtlijsten De mensen in de klassen C, D en E wachten tussen de 4 en 0 weken het aflezen van de cumulatieve percentages als (ongeveer) 38 en 58 het

Nadere informatie

TIP 10: ANALYSE VAN DE CIJFERS

TIP 10: ANALYSE VAN DE CIJFERS TOETSTIP 10 oktober 2011 Bepaling wat en waarom je wilt meten Toetsopzet Materiaal Betrouw- baarheid Beoordeling Interpretatie resultaten TIP 10: ANALYSE VAN DE CIJFERS Wie les geeft, botst automatisch

Nadere informatie

Boek 1 hoofdstuk 4 Havo 4 Statistiek.

Boek 1 hoofdstuk 4 Havo 4 Statistiek. Samenvatting statistiek havo4 boek 1 H4 Centrummaten: Modus (modaal) = wat het vaakst voorkomt, zowel kwalitatief als kwantitatief Mediaan = het middelste getal, in een rij getallen die op volgorde staat

Nadere informatie

2. Data en datasets verwerken

2. Data en datasets verwerken 2. Data en datasets verwerken Boekje 2 havo wiskunde A, domein E: Statistiek Uitwerkingen 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld

Nadere informatie

Beschrijvende sta/s/ek met Geogebra 5

Beschrijvende sta/s/ek met Geogebra 5 Beschrijvende sta/s/ek met Geogebra 5 Brecht Dekeyser Dag van de wiskunde 14 november 2015 KU Leuven Kulak Kortrijk Beschrijvende sta/s/ek met Geogebra 5 Brecht Dekeyser Dag van de wiskunde 14 november

Nadere informatie

Examen Rekenen en Wiskunde

Examen Rekenen en Wiskunde Examen Rekenen en Wiskunde Niveau Opgavenummer Examenduur : KSE 3 / F : RW3(09) : 90 minuten Instructies Dit examen bevat 9 opdrachten. Vul in het onderstaande vak uw gegevens in. Beantwoord de vragen

Nadere informatie