Meetkunde en Fysica. Henk Broer. Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen. Meetkunde en Fysica p.1/22

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Meetkunde en Fysica. Henk Broer. Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen. Meetkunde en Fysica p.1/22"

Transcriptie

1 Meetkunde en Fysica Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Meetkunde en Fysica p.1/22

2 Overzicht Meetkundige aspecten van natuurkunde: - Newton en schalingswetten van de ruimte - Kromming in dimensie twee en drie - IDEE: lichtstralen zijn geodeten - Beltrami-Klein meetkunde van het HEDEN in Minkowski-ruimte URL: broer Meetkunde en Fysica p.2/22

3 Kepler & Newton Iohannes Kepler Isaac Newton ( ) ( ) Meetkunde en Fysica p.3/22

4 Cirkel & bol (1) Uitgangspunt: NATUURKUNDE is gebonden aan de MEETKUNDE van vlak en ruimte SCHALINGSWETTEN cirkel en bol: - OMTREK vlakke cirkel straal 2πr Hoek (in radialen) = lengte langs eenheidscirkel - OPPERVLAKTE bol 4πr 2 Ruimtehoek = oppervlakte op eenheidsbol Meetkunde en Fysica p.4/22

5 Hoek & ruimtehoek 1 r r Hoek = lengte boog Lengte r 1 Ruimtehoek Meetkunde en Fysica p.5/22

6 Flux krachtveld: plat en ruimtelijk VLAK zwaartekrachtsveld: F = 1 r e r FLUX door cirkelboog met straal r : HOEK boog, onafhankelijk van r Michael Faraday, James Clerk Maxwell RUIMTELIJK zwaartekrachtsveld: F = 1 r 2 e r FLUX door oppervlakje op bol met straal r : RUIMTEHOEK oppervlakje, onafhankelijk van r Isaac Newton MAN VAN HET MILLENIUM Meetkunde en Fysica p.6/22

7 Faraday & Maxwell Michael Faraday James Clerk Maxwell ( ) ( ) Meetkunde en Fysica p.7/22

8 Scholium I Krachtvelden met alle oplossingen periodiek planeetbeweging periodiek (ellips: Kepler I) Perihelium-draaiïng Mercurius Newton ontdekt in 19e eeuw Philosophiæ Naturalis Principia Mathematica 1687 (Newton I schaling boloppervlak) Kepler I, II, III & observaties Flamsteed: Jupiter + satellieten minizonnestelsel hypothese UNIVERSELE zwaartekracht planeetbewegingen chaotisch? Meetkunde en Fysica p.8/22

9 Kromming (1): Bol versus vlak Locaal ziet bol er uit als vlak Ooit dacht men de Aarde is plat (denk ook aan atlas) Hoe zit dat? - Bol zonder punt = vlak: topologie = rubbermeetkunde Filosofie: is far away - Stereografische projectie hoektrouw voert cirkels in cirkels over bewaart geen afstanden... Noordpool - Vergelijk Mercator kaart-projectie (veelgebruikt in atlassen) Meetkunde en Fysica p.9/22

10 Stereografische projectie Cirkel zonder Noordpool = lijn Bol zonder Noordpool = vlak Meetkunde en Fysica p.10/22

11 Kromming (2): Platlanders Beschouw VLAKKE cirkel met straal r Omtrek: O(r) = 2πr, dus O(r) = 2π, (1) r onafhankelijk van de straal r Hoe zit dat op de BOL? Afstand = booglengte langs grote cirkels (= geodeten) Beschouw cirkel op eenheidsbol met als straal hoek α. Omtrek: O(α) = 2π sin α, m.a.w. O(α) = 2π sinα (1 α α = 2π 16 ) α2 + O(α 4 ) (2) Meetkunde en Fysica p.11/22

12 Cirkel op bol sin Cirkel met straal α... doorsneden met meridiaanvlak Meetkunde en Fysica p.12/22

13 Scholium II Vergelijk (1) en (2): Merk op dat (1) constant is (d.w.z., niet van r afhangt) Echter, zelfs voor kleine α is (2) niet constant: dit heet KROMMING bol niet-euclidisch (elliptisch) - Kromming locale eigenschap - Meetbaar voor PLATLANDER Meetkunde en Fysica p.13/22

14 Elliptische meetkunde & Riemann Alle geodeten hebben twee snijpunten Georg Friedrich Bernhard Riemann ( ) Meetkunde en Fysica p.14/22

15 Eigentijd IDEE: AFSTAND = REISTIJD LICHT (EIGENTIJD) Lorentz - Minkowski - Einstein Lichtstralen zijn geodeten Afbuigen fotonen door massa gekromde ruimte Waarnemingen bij totale Zonsverduistering: sterrenlicht dat vlak langs Zon gaat wordt afgebogen Meetkunde en Fysica p.15/22

16 Lorentz & Minskowski Hendrik Antoon Lorentz Hermann Minkowski ( ) ( ) Meetkunde en Fysica p.16/22

17 Scholium III RUIMTE-TIJD - Minkowski-ruimte voor PLATLANDERS R 2 R = {(x,y),t}; met krom ruimteachtig deel, b.v.: S 2 = {(u,v,w) R 3 u 2 + v 2 + w 2 = 1} - Uitdijend heelal: opgeblazen ballon alle onderlinge afstanden vergroten - 3D Minkowski-ruimte R 3 R = {(x,y,z),t} met krom ruimte-achtig deel, b.v.: S 3 = {(u,v,w,z) R 4 u 2 + v 2 + w 2 + z 2 = 1} DE SITTER HEELAL (Sneek Leiden 1934) Wat is waarheid? Meetkunde en Fysica p.17/22

18 Einstein & de Sitter Albert Einstein Willem de Sitter ( ) ( ) Meetkunde en Fysica p.18/22

19 Minkowski-ruimte en lichtkegel Terug naar Minkowski-ruimte voor PLATLANDERS: R 2 R = {(x,y),t)} Lichtkegel = {((x,y),t) x 2 + y 2 = c 2 t 2 } Ruimte-achtige schijf, het HEDEN D T = {(x,y,t) R 3 x 2 + y 2 c 2 T 2 } heeft Beltrami-Klein meetkunde meetkunde van Poincaré-model (hyperbolisch) Meetkunde en Fysica p.19/22

20 Lichtkegel en Beltrami-Klein t T D T D T x y Het HEDEN D T in de lichtkegel heeft Beltrami-Klein meetkunde Meetkunde en Fysica p.20/22

21 Beltrami-Klein en Poincaré model Beltrami-Klein en Poincaré modellen hyperbolische meetkunde equivalent: D T D T Van B-K naar halve bol... en stereografische projectie Meetkunde en Fysica p.21/22

22 Volgens M.C. Escher ( ) Circle Limit III Meetkunde en Fysica p.22/22

Ruimte en tijd: overzicht

Ruimte en tijd: overzicht Overzicht Contents 1 Inleiding 1 2 De klassieke ruimte 2 3 Klassieke mechanica 5 4 Hyperbolische meetkunde 7 5 Gekromde ruimten 11 6 De vierde dimensie 13 7 Ruimte en tijd in de moderne fysica 16 1 Inleiding

Nadere informatie

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Kepler III p.1 Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen De Principia Philosophiæ Naturalis Principia Mathematica

Nadere informatie

Een Nieuwe Wereld uit het Niets

Een Nieuwe Wereld uit het Niets Een Nieuwe Wereld uit het Niets Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@math.rug.nl www.math.rug.nl/~gert Masterclass, 16 april 2009 GV () Werelden uit het niets Masterclass,

Nadere informatie

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Kepler III p.1 Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen De Principia Philosophiæ Naturalis Principia Mathematica

Nadere informatie

De ruimte in de loop van de tijd

De ruimte in de loop van de tijd De ruimte in de loop van de tijd Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@rug.nl www.math.rug.nl/~gert HOVO, 17 maart 2009 GV () De ruimte in de loop van de tijd HOVO, 17/03/2009

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

Einstein (2) op aardoppervlak. versnelling van 10m/s 2. waar het foton zich bevindt a) t = 0 b) t = 1 s c) t = 2 s op t=0,t=1s en t=2s A B C A B

Einstein (2) op aardoppervlak. versnelling van 10m/s 2. waar het foton zich bevindt a) t = 0 b) t = 1 s c) t = 2 s op t=0,t=1s en t=2s A B C A B Einstein (2) In het vorig artikeltje zijn helaas de tekeningen, behorende bij bijlage 4,"weggevallen".Omdat het de illustratie betrof van de "eenvoudige" bewijsvoering van de kromming der lichtstralen

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 3 en 4: Covariant differentiëren en kromming Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1.

Nadere informatie

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Summary i. Stability of solar system ii. Chaos versus

Nadere informatie

Oefeningen Wiskundige Analyse III

Oefeningen Wiskundige Analyse III Oefeningen Wiskundige Analyse III Krommen en oppervlakken 1. Onderzoek (raaklijn, buigpunten, asymptoten, normaal, kromming, evolute, grafiek) de vlakke kromme met parametervergelijking: P (t) = a cosh

Nadere informatie

Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen. Geschiedenis van de niet-euclidische meetkunde

Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen. Geschiedenis van de niet-euclidische meetkunde Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen Geschiedenis van de niet-euclidische meetkunde Aan de hand van inhoud zebra-boekje Ideeën voor onderzoeksopdrachten

Nadere informatie

2 Wiskunde. 2.1 Bolmeetkunde

2 Wiskunde. 2.1 Bolmeetkunde 1 Inleiding Een centraal probleem in de moderne theoretische natuurkunde is het verenigen van quantumtheorie en zwaartekracht. Een mogelijke aanpak is holografie, bedacht door onze Nobelprijswinnaar Gerard

Nadere informatie

Niet-euclidische meetkunde. Les 3 Meetkunde op de bol

Niet-euclidische meetkunde. Les 3 Meetkunde op de bol Niet-euclidische meetkunde Les 3 Meetkunde op de bol (Deze les sluit aan bij de paragrafen 2.1 en 2.2 van de tekst Niet-Euclidische meetkunde van de Wageningse Methode) Kun je het vijfde postulaat afleiden

Nadere informatie

13 Vlaamse Wiskunde Olympiade : Tweede ronde.

13 Vlaamse Wiskunde Olympiade : Tweede ronde. 13 Vlaamse Wiskunde Olympiade 1999-000: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

relativiteitstheorie

relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 3: 19 november 2015 Copyright (C) Vrije Universiteit 2015 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe

Nadere informatie

Begrippen over de algemene relativiteitstheorie

Begrippen over de algemene relativiteitstheorie 19/10/2011 Begrippen over de algemene relativiteitstheorie 1. Inleiding Vele wetten in de natuurkunde druisen in tegen ons aangeboren intuïtief aanvoelen. Dit was in de geschiedenis van de wetenschap reeds

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

Tweede Bijeenkomst: Zoektocht naar het Verborgen Hemelbeeld. Rond de Waterput donderdag 31 oktober 2013 Allan R. de Monchy

Tweede Bijeenkomst: Zoektocht naar het Verborgen Hemelbeeld. Rond de Waterput donderdag 31 oktober 2013 Allan R. de Monchy Tweede Bijeenkomst: Zoektocht naar het Verborgen Hemelbeeld Rond de Waterput donderdag 31 oktober 2013 Allan R. de Monchy Twee bijeenkomsten: Donderdag 17 oktober 2013: Historische ontwikkelingen van Astrologie.

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Een nieuwe wereld uit het niets

Een nieuwe wereld uit het niets Een nieuwe wereld uit het niets Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@math.rug.nl HOVO, 17 april 2007 1 Overzicht ontents 1 Inleiding 1 2 Het parallellenpostulaat en de Elementen

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

12 Bewijzen in de vlakke meetkunde

12 Bewijzen in de vlakke meetkunde ewijzen in de vlakke meetkunde bladzijde 54 a ' b Gegeven: e gelijkzijdige driehoek met zijn omgeschreven cirkel. unt ligt op de kortste boog en ligt op het verlengde van zo, dat =. riehoek is gelijkzijdig.

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 11 collegejaar college build slides Vandaag : : : : 17-18 11 23 oktober 2017 35 De sterrennacht Vincent van Gogh, 1889 1 2 3 4 5 Verband met de stelling van n 1 VA intro ection 16.7 Definitie Equation

Nadere informatie

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Albert Einstein en Euclides Geboren te Ulm op 14 maart 1879 Als kind geinteresseerd in Wiskunde en wetenschappen:magneten,electromotoren, wiskundige

Nadere informatie

Eindexamen vwo wiskunde B pilot 2014-I

Eindexamen vwo wiskunde B pilot 2014-I Eindeamen vwo wiskunde B pilot 04-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos

Nadere informatie

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 1 Voorwoord Satellieten zijn er in vele soorten en maten. Zo heb je bijvoorbeeld

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

Hoofdstuk 8 : De Cirkel

Hoofdstuk 8 : De Cirkel - 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt

Nadere informatie

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010 EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 010 Datum: 13 januari 010 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-II

Eindexamen wiskunde B1-2 vwo 2007-II ier tappen ij het tappen van bier treden verschillen op in de hoeveelheid bier per glas. Uit onderzoek blijkt dat de hoeveelheid bier die per glas getapt wordt bij benadering normaal verdeeld is met een

Nadere informatie

Wiskunde door de Eeuwen Heen

Wiskunde door de Eeuwen Heen Wiskunde door de Eeuwen Heen Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Wiskunde door de Eeuwen Heen p.1 Overzicht Wiskunde door de Eeuwen Heen - Wiskunde in de Oudheid

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-I

Eindexamen wiskunde B1-2 vwo 2007-I Eindexamen wiskunde 1-2 vwo 2007-I Podiumverlichting Een podium is 6 meter diep. Midden boven het podium hangt een balk met tl-buizen. De verlichtingssterkte op het podium is het kleinst aan de rand, bijvoorbeeld

Nadere informatie

Zomercursus Wiskunde. Module 6 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 6 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 6 Goniometrie, vlakke meetkunde en rekenen met vectoren in de (versie augustus 011) Inhoudsopgave 1 Goniometrie 1 1.1 Goniometrische cirkel............................

Nadere informatie

Kosmologie. Oorsprong van het heelal, onstaan van de eerste objecten en structuren, evolutie van de ruimtelijke verdeling van materie.

Kosmologie. Oorsprong van het heelal, onstaan van de eerste objecten en structuren, evolutie van de ruimtelijke verdeling van materie. Kosmologie Oorsprong van het heelal, onstaan van de eerste objecten en structuren, evolutie van de ruimtelijke verdeling van materie. Kosmologie begint in de oudheid (Anaximander, Plato, Pythagoras) Doorbraak

Nadere informatie

RELATIVITEIT EINSTEINRINGEN. Naam: Klas: Datum:

RELATIVITEIT EINSTEINRINGEN. Naam: Klas: Datum: EINSTEINRINGEN RELATIVITEIT EINSTEINRINGEN Naam: Klas: Datum: ZWAARTEKRACHTSLENZEN EINSTEINRINGEN ZWAARTEKRACHTSLENZEN Je hebt de afgelopen weken geleerd over de relativiteitstheorie van Albert Einstein,

Nadere informatie

Een touwtje om de aarde

Een touwtje om de aarde Een touwtje om de aarde Quidquid latine dictum sit, altum videtur K. P. Hart Faculty EEMCS TU Delft Leiden, 22 oktober 2014: 13:00 13:45 Vraag 1 Stel je voor dat er een touw strak om de aarde getrokken

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 1 woensdag 16 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 1 woensdag 16 mei uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2007 tijdvak 1 woensdag 16 mei 13.30-16.30 uur wiskunde 1,2 ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor

Nadere informatie

Newtoniaanse kosmologie 4

Newtoniaanse kosmologie 4 Newtoniaanse kosmologie 4 4.2 De leeftijd van het heelal Liddle Ch. 8 4.1 De kosmologische constante Liddle Ch. 7 4.3 De dichtheid en donkere materie Liddle Ch. 9 1.0 Overzicht van het college Geschiedenis

Nadere informatie

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel Uitwerking Opgave Zonnestelsel 2005/2006: 1 1 Het Zonnestelsel en de Zon 1.1 Het Barycentrum van het Zonnestelsel Door haar grote massa domineert de Zon het Zonnestelsel. Echter, de planeten hebben een

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VW 04 tijdvak dinsdag 0 mei 3.30-6.30 uur wiskunde B (pilot) chter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen bestaat uit 8 vragen. Voor dit eamen

Nadere informatie

Het vermoeden van Poincaré

Het vermoeden van Poincaré Het vermoeden van Poincaré Joseph Steenbrink IMAPP, Radboud University Nijmegen 6 februari 2010 Outline 1 Poincaré 2 Het vermoeden 3 Topologie versus meetkunde Henri Poincaré Nancy 1854 - Parijs 1912 Achtergrond

Nadere informatie

Eindexamen wiskunde B 1-2 vwo I

Eindexamen wiskunde B 1-2 vwo I Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 007 tijdvak woensdag 0 juni 13.30-16.30 uur wiskunde 1, ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer

Nadere informatie

DE AFWIKKELING VAN EEN AFGEKNOTTE KEGEL

DE AFWIKKELING VAN EEN AFGEKNOTTE KEGEL DE AFWIKKELIG VA EE AFGEKOTTE KEGEL F. BRACKX VAKGROEP WISKUDIGE AALYSE UIVERSITEIT GET. PROBLEEMSTELLIG Beschouw de afgeknotte kegel die ontstaat door een rechte circulaire kegel te snijden met een vlak

Nadere informatie

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud Higgs-deeltje Peter Renaud Heideheeren Inhoud 1. Onze fysische werkelijkheid 2. Newton Einstein - Bohr 3. Kwantumveldentheorie 4. Higgs-deeltjes en Higgs-veld 3 oktober 2012 Heideheeren 2 1 Plato De dingen

Nadere informatie

Het Belang van de Calculus

Het Belang van de Calculus Het Belang van de Calculus Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Calculus p.1 Overzicht Het belang van de Calculus - Archimedes - Newton - Huygens - Bernoulli en

Nadere informatie

Dimensie en Dispersie het meten van chaos

Dimensie en Dispersie het meten van chaos Chaos p.1 Dimensie en Dispersie het meten van chaos Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Chaos p.2 Dynamische fractals Mandelbrot-verzameling Hénon-achtige attractor

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Tweede Ronde e tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem werkt (opnieuw) als volgt : een deelnemer start met 0 punten Per goed antwoord

Nadere informatie

Escher en de wiskunde van betegelingen

Escher en de wiskunde van betegelingen Escher en de wiskunde van betegelingen Gert Heckman IMAPP, Radboud Universiteit, Nijmegen G.Heckman@math.ru.nl 12 november 2012 1 Euclidische meetkunde De Euclidische meetkunde bestudeert configuraties

Nadere informatie

Overzicht. Vandaag. Frank Verbunt Het heelal Nijmegen 2015

Overzicht. Vandaag. Frank Verbunt Het heelal Nijmegen 2015 Vandaag Frank Verbunt Het heelal Nijmegen 2015 Theorie: de Algemene Relativiteits-Theorie de lichtsnelheid gekromde ruimte tests zwarte gaten Waarnemingen zwarte gaten uit sterren centrum van de Melkweg

Nadere informatie

Keuzeopdracht natuurkunde voor 5/6vwo

Keuzeopdracht natuurkunde voor 5/6vwo Exoplaneten Keuzeopdracht natuurkunde voor 5/6vwo Een verdiepende keuzeopdracht over het waarnemen van exoplaneten Voorkennis: gravitatiekracht, cirkelbanen, spectra (afhankelijk van keuze) Inleiding Al

Nadere informatie

Inleiding Astrofysica

Inleiding Astrofysica Inleiding Astrofysica Hoorcollege II 20 september 2017 Samenva

Nadere informatie

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording, Augustus 2013. 1

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 008-009: tweede ronde ( 7) = (A) 7 (B) 7 (C) 7 of + 7 (D) 7 (E) onbepaald Beschouw de rij opeenvolgende natuurlijke getallen beginnend met en eindigend met Wat is het middelste

Nadere informatie

Inleiding Astrofysica Tentamen 2009/2010: antwoorden

Inleiding Astrofysica Tentamen 2009/2010: antwoorden Inleiding Astrofysica Tentamen 2009/200: antwoorden December 2, 2009. Begrippen, vergelijkingen, astronomische getallen a. Zie Kutner 0.3 b. Zie Kutner 23.5 c. Zie Kutner 4.2.6 d. Zie Kutner 6.5 e. Zie

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

De geest terug in de fles!

De geest terug in de fles! De geest terug in de fles! Henk Broer NWD is ontmoetingsplaats voor wiskundigen en wiskundeleraren uit het voortgezet onderwijs om de laatste wiskundige ontwikkelingen te proeven en om te horen wat er

Nadere informatie

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2. Bal in de sloot Een bal met een straal van cm komt in een figuur sloot terecht en blijft drijven. Het laagste punt van de bal bevindt zich h cm onder het wateroppervlak. In figuur zie je een doorsnede

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

Wiskunde als cultuur van de wetenschap

Wiskunde als cultuur van de wetenschap Wiskunde als cultuur van de wetenschap Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Significante artefacten Dodecaëder uit Hartwerd en Newton s Principia

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

Tentamen - uitwerkingen

Tentamen - uitwerkingen Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke

Nadere informatie

Eindexamen vwo wiskunde B pilot 2013-I

Eindexamen vwo wiskunde B pilot 2013-I Eindeamen vwo wiskunde pilot 03-I Formules Goniometrie sin( t u) sintcosu costsinu sin( t u) sintcosu costsinu cos( t u) costcosu sintsinu cos( t u) costcosu sintsinu sin( t) sintcost cos( t) cos t sin

Nadere informatie

D h = d i. In deze opgave wordt de relatie tussen hoekmaat en afstand uitgerekend in een vlak expanderend heelal.

D h = d i. In deze opgave wordt de relatie tussen hoekmaat en afstand uitgerekend in een vlak expanderend heelal. 12 De hoekafstand In een vlak, statisch, niet expanderend heelal kan men voor een object met afmeting d op grote afstand D (zodat D d) de hoek i berekenen waaronder men het object aan de hemel ziet. Deze

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Eindexamen wiskunde B 1-2 vwo I

Eindexamen wiskunde B 1-2 vwo I Oppervlakte en inhoud bij f() = e De functie f is gegeven door f( ) = e figuur Op de grafiek van deze functie liggen de punten (0,) en (, e ) De grafiek van f en het lijnstuk sluiten een vlakdeel in Zie

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur

Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur Eamen VWO 008 tijdvak woensdag 18 juni 13.30-16.30 uur wiskunde B1 Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 84 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed

Nadere informatie

BOLMEETKUNDE en CARTOGRAFIE WISKUNDETOERNOOI 2016

BOLMEETKUNDE en CARTOGRAFIE WISKUNDETOERNOOI 2016 BOLMEETKUNDE en CARTOGRAFIE voorbereidend materiaal Sum of Us WISKUNDETOERNOOI 2016 september 2016 Het Wiskundetoernooi bestaat de laatste jaren uit twee onderdelen: de estafette in de ochtend en Sum of

Nadere informatie

Werkcollege III Het Heelal

Werkcollege III Het Heelal Werkcollege III Het Heelal Opgave 1: De Hubble Expansie Sinds 1929 weten we dat we ons in een expanderend Heelal bevinden. Het was Edwin Hubble die in 1929 de recessie snelheid van sterrenstelsels in ons

Nadere informatie

Relativiteitstheorie van Einstein: Differentiaal Meetkunde

Relativiteitstheorie van Einstein: Differentiaal Meetkunde Relativiteitstheorie van Einstein: Differentiaal Meetkunde Relativiteitstheorie van Einstein: Differentiaal Meetkunde... 1 1. Inleiding.... Meetkunde en gekromde oppervlakken....1 Gekromde oppervlakken

Nadere informatie

Het Quantum Universum. Cygnus Gymnasium

Het Quantum Universum. Cygnus Gymnasium Het Quantum Universum Cygnus Gymnasium 2014-2015 Wat gaan we doen? Fundamentele natuurkunde op de allerkleinste en de allergrootste schaal. Groepsproject als eindopdracht: 1) Bedenk een fundamentele wetenschappelijk

Nadere informatie

27 Macro s voor de schijf van Poincaré

27 Macro s voor de schijf van Poincaré 27 Macro s voor de schijf van Poincaré 27.1 Inleiding In het secundair onderwijs zijn leerlingen vertrouwd met de Euclidische meetkunde. In het Euclidisch vlak geldt het beroemde 5 de parallellen postulaat:

Nadere informatie

Hoofdstuk 4 - Periodieke functies

Hoofdstuk 4 - Periodieke functies Hoofdstuk - Periodieke functies ladzijde 98 V-a Na seconden. Het hart klopt c, millivolt = slagen per minuut. V-a Ja, met periode ; nee; misschien met periode. Evenwichtsstand y = ; -; y =. Amplitude is

Nadere informatie

wiskunde B vwo 2017-II

wiskunde B vwo 2017-II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1997-1998: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2002-I

Eindexamen wiskunde B1-2 vwo 2002-I Eindexamen wiskunde B- vwo -I 4 Antwoordmodel Uit de kust De isoafstandslijn bestaat uit drie lijnstukken en een cirkelboog De lijnstukken hebben lengte 4 x, 4 x en 4 De lengte van de cirkelboog is 4 πx

Nadere informatie

De vele bewijzen van Kepler s wet over ellipsbanen: een nieuwe voor het Boek?

De vele bewijzen van Kepler s wet over ellipsbanen: een nieuwe voor het Boek? De vele bewijzen van Kepler s wet over ellipsbanen: een nieuwe voor het Boek? Maris van Haandel RSG Pantarijn, Wageningen marisvanhaandel@wanadoo.nl Gert Heckman IMAPP, Radboud Universiteit, Nijmegen G.Heckman@math.ru.nl

Nadere informatie

héöéäëåéçéå=~äë=ãééíâìåçáöé=éä~~íëéå=ãéí=`~äêá= = hçéå=píìäéåë= = = = = = = =

héöéäëåéçéå=~äë=ãééíâìåçáöé=éä~~íëéå=ãéí=`~äêá= = hçéå=píìäéåë= = = = = = = = héöéäëåéçéå~äëãééíâìåçáöééä~~íëéåãéí`~äêá hçéåpíìäéåë De algemene vergelijking van een kegelsnede is van de vorm : 2 2 ax by 2cxy 2dx 2ey f 0 met a, b, c, d, e, f + + + + +. Indien je vijf punten van een

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1993-1994 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 8-II Een zwaartepunt Van een cirkelschijf met middelpunt (, ) en straal is het kwart getekend dat in het eerste kwadrant ligt. De cirkelboog is de grafiek van de functie f die

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Over zonnen en zwarte gaten. Vincent Icke Sterrewacht Leiden & Alien Art

Over zonnen en zwarte gaten. Vincent Icke Sterrewacht Leiden & Alien Art Verduisteringen Over zonnen en zwarte gaten Vincent Icke Sterrewacht Leiden & Alien Art De bouw van een ster Zwaartekracht tegen de rest van de wereld Van banaan tot bol Bij kleine brokken speelt de sterkte

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 15 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

T.A. Horsmeier. Hoeken en kromming. In genormeerde ruimten zonder inprodukt. Bachelorscriptie, 25 augustus 2009

T.A. Horsmeier. Hoeken en kromming. In genormeerde ruimten zonder inprodukt. Bachelorscriptie, 25 augustus 2009 T.A. Horsmeier Hoeken en kromming In genormeerde ruimten zonder inprodukt Bachelorscriptie, 25 augustus 2009 Scriptiebegeleider: Dr. O.W. van Gaans Mathematisch Instituut, Universiteit Leiden Inhoudsopgave

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Eindexamen wiskunde B1 vwo 2008-II

Eindexamen wiskunde B1 vwo 2008-II Een eponentiële functie De functie f is gegeven door f( ) = e. is het snijpunt van de grafiek van f met de y-as. B is het snijpunt van de raaklijn aan de grafiek van f in met de -as. Zie figuur 1. figuur

Nadere informatie

CIRKELBEWEGING & GRAVITATIE VWO

CIRKELBEWEGING & GRAVITATIE VWO CIRKELBEWEGING & GRAVITATIE VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven

Nadere informatie

Eindexamen wiskunde B havo II

Eindexamen wiskunde B havo II Tonregel van Kepler In het verleden gebruikte men vaak een ton voor het opslaan en vervoeren van goederen. Tonnen worden ook nu nog gebruikt voor bijvoorbeeld de opslag van wijn. Zie de foto. foto Voor

Nadere informatie

Waarom bij de Grieken?

Waarom bij de Grieken? Waarom bij de Grieken? Geografische, staatkundige omstandigheden Handel, contact met volkeren Rijkdom en slavernij, tijd om na te denken 1 Drie perioden 600 voj 400 Oud-Griekse periode (600 323 voj): (Thales,

Nadere informatie

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale

Nadere informatie

Relativiteit. N.G. Schultheiss

Relativiteit. N.G. Schultheiss 1 Relativiteit N.G. Shultheiss 1 Inleiding In deze module wordt er uitgelegd hoe een natuurkundige gebeurtenis door vershillende waarnemers wordt waargenomen. Iedere waarnemer heeft een eigen assenstelsel

Nadere informatie