Vendorrating: statistische presentatiemiddelen

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Vendorrating: statistische presentatiemiddelen"

Transcriptie

1 pag.: 1 van 6 Vendorrating: statistische presentatiemiddelen Hieronder bespreken we in het kort een aantal verschillende presentatievormen waarmee we vendorratingresultaten op een duidelijke manier kunnen weergeven en presenteren. De tabel Als we met prestatiemeting aan de slag gaan, moeten we een enorme hoeveelheid aan gegevens verwerken en samenvatten in een overzichtelijk geheel. In een tabel weergeven hoe vaak bepaalde uitslagen of scores voorkomen, is een goed hulpmiddel binnen de statistiek. We zullen dit toelichten met een voorbeeld. De keten van tien bejaardentehuizen Avondrood heeft een raamcontract gesloten voor de decentrale levering van de voeding voor keuken en kantine. Gemiddeld worden er twee bestellingen per week gedaan voor elk van de tien bejaardentehuizen. Contractueel is bepaald dat de reactietermijn tussen bestellen en leveren maximaal 2 uur mag bedragen. De eerste maand heeft men bij elke bestelling deze reactietermijn (in uren) bijgehouden. Dit levert de volgende gegevens op. afbeelding 1: levertijden (in uren) Een dergelijk lijstje is niet erg overzichtelijk. Vragen als: hoeveel bestellingen zijn er in deze maand geplaatst, wat is de kortste en wat was de langste levertijd, hoe vaak is er binnen 2 uur geleverd, bij welk percentage van de bestellingen is de levertijd overschreden, zijn hieruit niet eenvoudig te beantwoorden. Om het overzichtelijker te maken, helpt het al als we de gegevens in op- of aflopende volgorde zetten. Geordend van laag naar hoog zien bovenstaande gegevens er als volgt uit. afbeelding 2: levertijden (in uren) in oplopende volgorde In dit overzicht zien we in één oogopslag dat de kortste levertijd 1 uur was (een spoedbestelling?), en de langste 3 uur, een (eenmalige) levertijdoverschrijding van 10 uur. Ook is nu gemakkelijker na te gaan dat 19 keer binnen de 12 uur is geleverd en dat de maximale reactietermijn van 2 uur 7 keer is overschreden.

2 pag.: 2 van 6 In deze tabel is iedere waarneming apart weergegeven: de waarneming levertijd van 1 uur komt zes maal voor, een levertijd van 15 uur twee maal. Dat is handig als we verder willen rekenen met de gegevens, bijvoorbeeld om een gemiddelde levertijd berekenen. Frequentieverdeling Het is gebruikelijker om de gegevens weer te geven in de vorm van een verdeling: een weergave van hoe vaak (= hoe frequent) elke waarde of uitslag voorkomt. Onze levertijdgegevens leveren de volgende verdeling. afbeelding 3: levertijden (in uren) in maart van leverancier X Levertijd f Levertijd f Levertijd f Totaal: 8 De f in bovenstaande tabel staat voor : het aantal keer dat bepaalde levertijden zijn voorgekomen. In de tabel dient het totaal aantal waarnemingen te worden vermeld: in bovenstaande tabel zijn de levertijden weergegeven van 8 bestellingen. Het meest voorkomend zijn levertijden van 19 en 21 uur (elk zeven maal); ook 17 en 18 uur komen frequent voor; een levertijd van bijvoorbeeld uur is echter niet voorgekomen. Bij het weergeven van s in tabellen worden vaak de volgende typen s gebruikt: De absolute is het aantal keren dat een bepaalde waarde of klasse van waarden voorkomt. Er waren 21 levertijden tussen de 17 en 20 uur: de absolute van de klasse 17 tot 20 is 21. De relatieve is de absolute, gedeeld door het totale aantal waarnemingen. Vaak wordt dit met 100 vermenigvuldigd om tot een percentage te komen. Bijvoorbeeld: 21 van de 8 bestellingen = een kwart = 25% had een levertijd tussen de 17 en 20 uur. De absolute cumulatieve bepalen we als we zijn geïnteresseerd in het aantal waarnemingen dat gelijk is aan of kleiner is dan een bepaalde waarde: De levertijd was 2 keer 12 uur of korter (namelijk ). 77 leveringen vonden binnen de afgesproken 2 uur plaats (namelijk ). Een cumulatief percentage geeft de cumulatieve weer als een percentage van het totale aantal waarnemingen: 77 van de 8, ofwel 91,7% van alle bestellingen is binnen 2 uur geleverd. De rest is geleverd: ,7 = 8,3%.

3 pag.: 3 van 6 Het is gebruikelijk om ook niet-voorkomende tussenliggende waarden te noteren. In dit voorbeeld zijn dat de levertijden 2, 3,, 27, 28, 31, 32 en 33 uur. Zeker bij grote aantallen verzamelde cijfers wordt zo n tabel al snel onoverzienbaar lang. De oplossing hiervoor is om niet elke waarde apart te noteren. We gaan ze samenvoegen tot klassen. We nemen bijvoorbeeld steeds waarden bij elkaar, beginnend vanaf de laagste waarde. Dat levert de volgende gegroepeerde verdeling op. Klasse (levertijden) afbeelding : gegroepeerde levertijden (in uren) in maart van leverancier X Absolute Relatieve (%) Cumulatieve Cumulatief percentage 1 1 1,2 1 1, ,1 12 1, ,3 2 28, ,0 0 7, , , , , , , , 83 98, , ,0 Totaal: 8 100,0 We zien in de tabel dat het merendeel van de levertijden tussen de 13 en 2 uur ligt, hoewel ook kortere levertijden nog relatief veel voorkomen. Zeven maal is de maximale termijn van 2 uur overschreden; 91,7% van de leveringen is op tijd. Grafieken Gegevens uit tabellen geven we vaak weer in de vorm van grafieken. Is een verdeling al beter te overzien dan een ongeordende lijst van (in ons voorbeeld) 8 levertijden, nog overzichtelijker wordt het geheel wanneer de verdeling door middel van een grafiek wordt weergegeven. De meest gebruikte grafische afbeeldingen zijn het histogram, de polygoon of lijndiagram, het staafdiagram en het cirkeldiagram. Met de huidige computerprogramma s is een groot aantal andere grafische afbeeldingen mogelijk. Er zijn bijvoorbeeld driedimensionale balken in staafdiagrammen mogelijk, mannetjes en vrouwtjes om de sekseverdeling in een bepaalde groep weer te geven, geldbuideltjes om omzetontwikkelingen in beeld te brengen, enzovoort. Dat staat vaak wel aardig, maar meestal komt het de overzichtelijkheid niet ten goede. Histogram In een histogram zetten we langs de horizontale as van het assenstelsel de klassen van de gemeten variabele af. Boven elk van de klassen tekenen we een staaf, waarvan de hoogte overeenkomt met de of het aantal van die klasse. Op de verticale as worden de s of aantallen uitgezet. De staven worden tegen elkaar aan getekend. Alle staven zijn even breed. Het is gebruikelijk om voor de lengte van de verticale as tweederde tot driekwart van de horizontale as te nemen. In de volgende afbeelding is het histogram getekend van de levertijdgegevens uit ons voorbeeld. De gearceerde staven geven de levertijdoverschrijdingen aan.

4 pag.: van 6 afbeelding 5: histogram van de levertijden in maart van leverancier X levertijd in uren Op de verticale as kunnen ook relatieve s of percentages staan. De vorm van de figuur blijft dan precies hetzelfde. Alleen de getallen op de verticale as veranderen. De horizontale as is in deze afbeelding wat vol, omdat we bij iedere klasse zowel de onderals de bovengrens hebben vermeld. Vaak wordt in plaats daarvan iedere klasse aangeduid met het klassenmidden: de waarde precies halverwege de klasse. Het midden van de klasse 1 - is (1 + ) / 2 = 2,5, het midden van de klasse 5-8 is 13 / 2 = 6,5 enzovoort. Merk op dat dit waarden kunnen zijn die in werkelijkheid niet zijn gemeten. In de volgende grafieken zijn de klassen op deze manier aangeduid. Frequentiepolygoon of lijndiagram We kunnen de toppen van de staven van een histogram verbinden met lijntjes. afbeelding 6: een polygoon verbindt de middelpunten van de toppen in het histogram ,5 6,5 10,5 1,5 18,5 22,5 26,5 30,5 3,5 levertijd in uren

5 pag.: 5 van 6 Dat resulteert in een hoekige grafiek. Een dergelijke grafiek heet een polygoon (polygoon is Grieks voor veelhoek ) of lijndiagram. afbeelding 7: lijndiagram van de levertijden in maart van fabrikant X ,5 6,5 10,5 1,5 18,5 22,5 26,5 30,5 3,5 levertijd in uren Een lijndiagram is gemakkelijk te tekenen en eenvoudig af te lezen. Zeker wanneer we veel meetwaarden of veel klassen hebben, is een lijndiagram overzichtelijker dan een histogram. Dat gaat met name op wanneer we te maken hebben met een tijdreeks: gegevens die op opeenvolgende tijdstippen verzameld zijn, bijvoorbeeld per week, per maand, per kwartaal of per jaar. Als we bijvoorbeeld twee jaar lang hebben bijgehouden hoeveel producten er per maand zijn besteld bij een bepaalde leverancier, dan zou dat een histogram van 2 staven opleveren. Een lijndiagram is dan wat overzichtelijker. In een lijndiagram is bovendien de samenhang tussen twee grootheden en de vorm van deze samenhang goed weer te geven. Staafdiagram Het staafdiagram is vergelijkbaar met het histogram. Ook hier worden staven getekend waarvan de hoogte overeenkomt met de waargenomen of een percentage. Bij een staafdiagram worden de staven echter niet tegen elkaar aan, maar los van elkaar getekend. Een staafdiagram is in principe voor een ander type gegevens bestemd dan een histogram. Bij een histogram staat op de horizontale as meestal een getalsmatige grootheid, die in feite een continuüm vormt. Bijvoorbeeld de levertijd. Zo n grootheid wordt gewoonlijk afgerond in uren, dagen of weken genoteerd, maar we zouden hem ook op de minuut of seconde nauwkeurig kunnen meten. Er zitten geen gaten tussen de mogelijke waarden. Dat is de reden waarom de balken in een histogram tegen elkaar aan worden gezet. Soms hebben we echter onafhankelijke categorieën van gegevens: bijvoorbeeld verschillende leveranciers of verschillende typen ingekochte producten. Wanneer we die op de horizontale as van een grafiek uitzetten, worden ze meestal een eindje van elkaar gezet. In de onderstaande afbeelding zijn de afkeurpercentages van de producten A, B, C en D weergegeven.

6 pag.: 6 van 6 afbeelding 8: staafdiagram van afkeurpercentages van vier verschillende producten percentage afgekeurd A B C D In de praktijk wordt het onderscheid tussen een staafdiagram en een histogram niet zo strikt gehanteerd. De grafiektypen worden vaak door elkaar heen gebruikt. Cirkeldiagram Een andere veelgebruikte figuur is het cirkel- of taartdiagram, waarbij een bepaalde onderverdeling van het totaal wordt weergegeven door partjes van een cirkel. De totale cirkel is 100%; de grootte van iedere taartpunt correspondeert met een gegeven percentage. In de onderstaande afbeelding zijn van twee leveranciers de levertijdoverschrijdingen in beeld gebracht. afbeelding 9: cirkeldiagrammen van levertijdoverschrijdingen van leveranciers A en B leverancier A leverancier B 60% op afgesproken datum 70% op afgesproken datum 10% te vroeg 7% 3% te vroeg 20% 10% te vroeg 2% te vroeg 5% 13% Het is lastig om in een cirkel nuanceverschillen te onderscheiden. In een staafdiagram kunnen de staven voor beide leveranciers in een verschillende kleur naast elkaar worden gezet. Die manier van weergeven is duidelijker en verdient vaak de voorkeur.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. 3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

REKENEN TABELLEN LEZEN

REKENEN TABELLEN LEZEN REKENEN TABELLEN LEZEN TABELLEN LEZEN DOEL: Je weet hoe je uit tabellen en verschillende soorten grafieken de juiste informatie kan halen. CELLEN, KOLOMMEN EN RIJEN Rij Cel of veld Kolom Deze tabel heeft

Nadere informatie

(Voorlopige omschrijving.) Bedrag dat resteert nadat de exploitatiekosten betaald zijn.

(Voorlopige omschrijving.) Bedrag dat resteert nadat de exploitatiekosten betaald zijn. pen analyseren verkoopcijfers UITWERKING begrip nettowinst brutowinstpercentage brutowinst brutowinst (Voorlopige.) Bedrag dat resteert nadat de exploitatiekosten betaald zijn. Percentage waarmee de inkoopprijs

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1.4 Oefenen Opgave 9 Bekijk de genoemde dataset

Nadere informatie

S1 STATISTIEK. Tabellen & diagrammen Centrummaten & Spreiding

S1 STATISTIEK. Tabellen & diagrammen Centrummaten & Spreiding S1 STATISTIEK Tabellen & diagrammen Centrummaten & Spreiding TABELLEN & DIAGRAMMEN WELKE AUTO VIND JIJ HET MOOISTE? Kies 1,2,3,4 of 5 NUMMER 1 NUMMER 2 NUMMER 3 NUMMER 4 NUMMER 5 VERWERKING Tabel Cirkeldiagram

Nadere informatie

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen STATISTIEK Een korte samenvatting over: Termen Tabellen Diagrammen Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het

Nadere informatie

Overzicht statistiek 5N4p

Overzicht statistiek 5N4p Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...

Nadere informatie

2.1.4 Oefenen. d. Je ziet hier twee weegschalen. Wat is het verschil tussen beide als het gaat om het aflezen van een gewicht?

2.1.4 Oefenen. d. Je ziet hier twee weegschalen. Wat is het verschil tussen beide als het gaat om het aflezen van een gewicht? 2.1.4 Oefenen Opgave 9 Bekijk de genoemde dataset GEGEVENS154LEERLINGEN. a. Hoe lang is het grootste meisje? En de grootste jongen? b. Welke lengtes komen het meeste voor? c. Is het berekenen van gemiddelden

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

tabellen, grafieken en diagrammen

tabellen, grafieken en diagrammen tabellen, grafieken en diagrammen vmbo Tabellen, grafieken en diagrammen CSWeetje VMBO 9 In het dagelijkse leven heb je te maken met informatie en gegevens. Op verschillende manieren kun je deze tegen

Nadere informatie

Mini-theorie vooraf. Beelddiagram In een beelddiagram zijn de hoeveelheden aangegeven met figuurtjes

Mini-theorie vooraf. Beelddiagram In een beelddiagram zijn de hoeveelheden aangegeven met figuurtjes Allereerst een goede raad - gebruik de HELP-functie van waar je kunt - sla regelmatig op - gebruik de functie "Ongedaan maken" (Ctrl+Z) als eerste redmiddel Mini-theorie vooraf Soorten grafieken Grafieken

Nadere informatie

Statistiek: Herhaling en aanvulling

Statistiek: Herhaling en aanvulling Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,

Nadere informatie

DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO

DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO Leerlingmateriaal 1. Doel van de praktische opdracht Het doel van deze praktische opdracht is om de theorie uit je boek te verbinden met de data

Nadere informatie

Wiskunde Sta-s-ek LJ3P4

Wiskunde Sta-s-ek LJ3P4 Wiskunde Sta-s-ek LJ3P4 Sta-s-ek en misleiding 1. manipula-e van gegevens 2. manipula-e van conclusies Aselect Representa,ef (opbouw) Representa,ef (aantal) Vraagstelling Ankereffect Getallen of % Oorzaak

Nadere informatie

DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A

DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A Docentenhandleiding 1. Voorwoord Doel van de praktische opdracht bij het hoofdstuk over statistiek 1 : Het doel van de praktische opdracht (PO)

Nadere informatie

4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6

4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 1: 1 miljoen = 1.000.000 4.1 Cijfermateriaal In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 2: 1 miljard = 1.000.000.000 In dit getal komen negen nullen voor.

Nadere informatie

4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100.

4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100. 4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100. 26 26% = = 0,26 100 In het rechterplaatje zijn 80 van de 400

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.3 Representaties In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1 Data presenteren 1.1 Introductie In

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

College 4 Inspecteren van Data: Verdelingen

College 4 Inspecteren van Data: Verdelingen College Inspecteren van Data: Verdelingen Inleiding M&T 01 013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek.

Nadere informatie

Netwerk, 4 Havo D, uitwerkingen Hoofdstuk 1, Statistische verwerking 1

Netwerk, 4 Havo D, uitwerkingen Hoofdstuk 1, Statistische verwerking 1 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking Hoofdstuk Statistische verwerking Kern Populatie en steekproef a In Derbroek vonden + 6 ondervraagden de overlast ernstig tot zeer ernstig.

Nadere informatie

Grafieken - soorten en toepassingen

Grafieken - soorten en toepassingen Grafieken - soorten en toepassingen 2 Grafieksoorten Inhoud Inhoud Inleiding...3 Kolomdiagram...4 Staafdiagram...5 Gestapeld kolom- en staafdiagram...6 Cirkeldiagram...7 Lijndiagram...8 Spreidingsdiagram...9

Nadere informatie

A. Week 1: Introductie in de statistiek.

A. Week 1: Introductie in de statistiek. A. Week 1: Introductie in de statistiek. Populatie en steekproef. In dit vak leren we de basis van de statistiek. In de statistiek probeert men erachter te komen hoe we de populatie het beste kunnen observeren.

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

datavisualisatie Stappen 14-12-12 verzamelen en opschonen analyseren van data interpeteren hoorcollege 4 visualisatie representeren

datavisualisatie Stappen 14-12-12 verzamelen en opschonen analyseren van data interpeteren hoorcollege 4 visualisatie representeren Stappen datavisualisatie hoorcollege 4 visualisatie HVA CMD V2 12 december 2012 verzamelen en opschonen analyseren van data interpeteren representeren in context plaatsen 1 "Ultimately, the key to a successful

Nadere informatie

Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen.

Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen. Statistiek Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het meeste (driemaal) voor, dus de modus is 5. (Kijk maar:

Nadere informatie

Aardgasbaten. (b) Teken bij 1996 een cirkeldiagram (c) Teken bij de tabel een vlakdiagram

Aardgasbaten. (b) Teken bij 1996 een cirkeldiagram (c) Teken bij de tabel een vlakdiagram 1. In figuur 1 zie je gegevens over de aardgasbaten in Nederland gedurende de periode 1985-1994. Je ziet zowel een staafdiagram als een frequentiepolygoon. Aardgasbaten figuur 1 (a) In welk jaar is de

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

1 Inleiding... 3. 2 Beelddiagram... 4 2.1 Wat is een beelddiagram... 4 2.2 Hoeveel heren en dames deden mee van Tata Steel en KLM?...

1 Inleiding... 3. 2 Beelddiagram... 4 2.1 Wat is een beelddiagram... 4 2.2 Hoeveel heren en dames deden mee van Tata Steel en KLM?... INHOUDSOPGAVE Vak: Wiskunde 1 Inleiding... 3 2 Beelddiagram... 4 2.1 Wat is een beelddiagram... 4 2.2 Hoeveel heren en dames deden mee van Tata Steel en KLM?... 4 3 Staafdiagram... 5 3.1 Wat is een staafdiagram...

Nadere informatie

Bovenbouw: Een eigen onderzoek

Bovenbouw: Een eigen onderzoek Bovenbouw: Een eigen onderzoek Grote Rekendag 2005 www.rekenweb.nl 67 68 www.rekenweb.nl Grote Rekendag 2005 Bovenbouw Overzicht van de activiteiten activiteit 1 activiteit 2 activiteit 3 activiteit 4

Nadere informatie

Onderzoeksmethodiek LE: 2

Onderzoeksmethodiek LE: 2 Onderzoeksmethodiek LE: 2 3 Parameters en grootheden 3.1 Parameters Wat is een parameter? Een karakteristieke grootheid van een populatie Gem. gewicht van een 34-jarige man 3.2 Steekproefgrootheden Wat

Nadere informatie

Effectief Rapporteren

Effectief Rapporteren Effectief Rapporteren van rapporteren naar inzicht Michel Dekker michel.dekker@novasilva.com Bron: http://www.orrplumbing.com/plumbing-problems/plumbing-a-bathroom/ Bron:http://www.telegraph.co.uk/news/picturegalleries/howaboutthat/2689914/The-upside-down-house.html?image=6

Nadere informatie

TIP 10: ANALYSE VAN DE CIJFERS

TIP 10: ANALYSE VAN DE CIJFERS TOETSTIP 10 oktober 2011 Bepaling wat en waarom je wilt meten Toetsopzet Materiaal Betrouw- baarheid Beoordeling Interpretatie resultaten TIP 10: ANALYSE VAN DE CIJFERS Wie les geeft, botst automatisch

Nadere informatie

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 2 : Grafische beschrijving van data Marnix Van Daele Marnix.VanDaele@UGent.be Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Grafische beschrijving van data p. 1/35 Soorten meetwaarden

Nadere informatie

Handleiding Data op Maat Gemeente Zoetermeer

Handleiding Data op Maat Gemeente Zoetermeer Pagina 1 Inhoud 1. Introductie... 2 Uitleg over het systeem... 2 Beschikbaarheid van data... 2 2. Werkwijze in stappen... 3 Stap 1. Een thema kiezen... 3 Stap 2. Een presentatievorm of één of meerdere

Nadere informatie

Grafieken Cirkeldiagram

Grafieken Cirkeldiagram Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Samenvatting Tentamenstof. Statistiek 1 - Vakgedeelte

Samenvatting Tentamenstof. Statistiek 1 - Vakgedeelte Samenvatting Tentamenstof Statistiek 1 - Vakgedeelte Naam: Thomas Sluyter Nummer: 1018808 Jaar / Klas: 1e jaar Docent Wiskunde, deeltijd Datum: 14 oktober, 2007 Voorwoord Het eerstejaars vak Statistiek

Nadere informatie

Handleiding interactieve website 1. G3nt 1n cijfer5

Handleiding interactieve website 1. G3nt 1n cijfer5 Handleiding interactieve website 1 G3nt 1n cijfer5 1. Inleiding De Stad Gent verspreidt cijfers en indicatoren via een interactieve website: Gent in cijfers (http://www.gent.be/gentincijfers). Deze handleiding

Nadere informatie

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c Hoofdstuk 8, Statistische maten 1 Hoofdstuk 8 Statistische maten Kern 1 Centrum- en spreidingsmaten 1 a Partij is een kwalitatieve variaele, kindertal een kwantitatieve, discrete variaele.,c d kindertal

Nadere informatie

BESCHRIJVENDE STATISTIEK MET GEOGEBRA 4.0

BESCHRIJVENDE STATISTIEK MET GEOGEBRA 4.0 ? BESCHRIJVENDE STATISTIEK MET GEOGEBRA 4.0 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Roger Van Nieuwenhuyze

Nadere informatie

6 Grafieken in Excel 2003

6 Grafieken in Excel 2003 4 141 6 Grafieken in Excel 2003 In dit hoofdstuk leren we grafieken maken. Aan de orde komt: waarvoor dienen grafieken; de soorten grafieken die er zijn; het wijzigen van het grafiektype; het maken van

Nadere informatie

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B basis Inhoud deel 3A Hoofdstuk 1 Plaatsbepalen Hoofdstuk 2 Grafieken en tabellen Hoofdstuk 3 Rekenen Hoofdstuk 4 Informatieverwerking Hoofdstuk 5 Tekenen en rekenen Computer

Nadere informatie

Onderzoek. B-cluster BBB-OND2B.2

Onderzoek. B-cluster BBB-OND2B.2 Onderzoek B-cluster BBB-OND2B.2 Succes met leren Leuk dat je onze bundels hebt gedownload. Met deze bundels hopen we dat het leren een stuk makkelijker wordt. We proberen de beste samenvattingen voor jou

Nadere informatie

Over verantwoord gebruik van grafieken 1

Over verantwoord gebruik van grafieken 1 Over verantwoord gebruik van grafieken Jelke Bethlehem Universiteit Leiden Instituut voor Politieke Wetenschap Over verantwoord gebruik van grafieken NPSO 26 september 2017 Grafieken Waarom grafieken?

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW]

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW] bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst statistiek/gegevensverwerking los materiaal, niet uit boek [PW] procenten percentage: bv: van de 0 kinderen hadden er 7: hoeveel procent

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

Examen Rekenen en Wiskunde

Examen Rekenen en Wiskunde Examen Rekenen en Wiskunde Niveau Opgavenummer Examenduur : KSE 3 / F : RW3(09) : 90 minuten Instructies Dit examen bevat 9 opdrachten. Vul in het onderstaande vak uw gegevens in. Beantwoord de vragen

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken Inhoud 2.0 Data voor onderzoek 2.1 Data presenteren 2.2 Centrum en spreiding 2.3 Verdelingen typeren 2.4 Relaties 2.5 Overzicht In

Nadere informatie

voorbeeldexamenopgaven statistiek wiskunde A havo

voorbeeldexamenopgaven statistiek wiskunde A havo voorbeeldexamenopgaven statistiek wiskunde A havo FORMULEBLAD Vuistregels voor de grootte van het verschil van twee groepen 2 2 kruistabel a c b d, met phi = ad bc ( a+ b)( a+ c)( b+ d)( c+ d) als phi

Nadere informatie

Handleiding buurtmonitor Antwerpen

Handleiding buurtmonitor Antwerpen Rapport Datum: 20 april 2010 Van: bestuurszaken/studiedienst voor stadsobservatie Betreft: buurtmonitor Antwerpen Handleiding buurtmonitor Antwerpen Inhoudsopgave 1 Inleiding... 1 2 Start... 2 3 Hoe maakt

Nadere informatie

Inleiding tot de meettheorie

Inleiding tot de meettheorie Inleiding tot de meettheorie Meten is het toekennen van cijfers aan voorwerpen. Koeien Koeien in een kudde, studenten in een auditorium, mensen met een bepaalde stoornis, leerlingen met meer dan 15 in

Nadere informatie

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke

Nadere informatie

College Week 4 Inspecteren van Data: Verdelingen

College Week 4 Inspecteren van Data: Verdelingen College Week 4 Inspecteren van Data: Verdelingen Inleiding in de Methoden & Technieken 2013 2014 Hemmo Smit Dus volgende week Geen college en werkgroepen Maar Oefententamen on-line (BB) Data invoeren voor

Nadere informatie

Kijken naar grafieken

Kijken naar grafieken Kijken naar grafieken Kijken naar grafieken Colofon Uitgever Centraal Bureau voor de Statistiek Henri Faasdreef 312, 2492 JP Den Haag www.cbs.nl Prepress: Centraal Bureau voor de Statistiek, Grafimedia

Nadere informatie

6 Grafieken in Excel 2007

6 Grafieken in Excel 2007 156 6 Grafieken in Excel 2007 In dit hoofdstuk leren we grafieken maken. Aan de orde komt: waar grafieken voor dienen; enkele van de typen grafieken die er zijn; het maken van een grafiek; het wissen van

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 3 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

1 Inleiding. 1.1 Werkblad, rijen, kolommen en cellen Als je Excel opent, zie je het volgende scherm (de menubalk bovenin kan iets verschillen):

1 Inleiding. 1.1 Werkblad, rijen, kolommen en cellen Als je Excel opent, zie je het volgende scherm (de menubalk bovenin kan iets verschillen): INLEIDING EXCEL 1 INHOUD 1 Inleiding... 3 1.1 Werkblad, rijen, kolommen en cellen... 3 Cellen invullen... 5 Breedte van de kolommen en tekstterugloop... 5 1.2 Opmaak van de cellen... 6 Uitlijning... 6

Nadere informatie

Aardappelomzet in milj kg.

Aardappelomzet in milj kg. PERIODE STATISTIEK, COMBINATORIEK, Lineaire en Exponentiele functies. Voor al deze opdrachten geldt dat het werken met EXCEL van harte wordt aanbevolen. OPDRACHT 1 Aardappelen Uit onderzoek van de LandbouwUniversiteit

Nadere informatie

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE A HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

HANDLEIDING IMA ATLAS

HANDLEIDING IMA ATLAS 1 HANDLEIDING IMA ATLAS 1. INLEIDING Het InterMutualistisch Agentschap (IMA) stelt beleidsrelevante statistieken en indicatoren ter beschikking via een interactieve website: http://atlas.ima-aim.be. Deze

Nadere informatie

Correctievoorschrift VMBO-GL en TL 2004

Correctievoorschrift VMBO-GL en TL 2004 Correctievoorschrift VMBO-GL en TL 2004 tijdvak 2 WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO-D 4 BEOORDELINGSMODEL Vraag Antwoord Scores EURO maximumscore 3 per land ( ) 3,88 2 3,88 het antwoord is ( ) 46,56

Nadere informatie

3. Een dia met een grafiek met Excel 2007

3. Een dia met een grafiek met Excel 2007 1 3. Een dia met een grafiek met Excel 2007 In een presentatie zullen uw toehoorders snel de draad kwijtraken wanneer u sheets vol getallen en tabellen laat zien. Een grafiek is dan vaak een stuk overzichtelijker.

Nadere informatie

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15 A. Schoolexamen derde leerjaar, 2013-2014 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand. 301B Algebraïsche verbanden en WI/K/4 * * * aanzichten

Nadere informatie

Les 1 Kwaliteitsbeheersing. Les 2 Kwaliteitsgegevens. Les 3 Introductie Statistiek. Les 4 Normale verdeling. Kwaliteit

Les 1 Kwaliteitsbeheersing. Les 2 Kwaliteitsgegevens. Les 3 Introductie Statistiek. Les 4 Normale verdeling. Kwaliteit Kwaliteit Les 1 Kwaliteitsbeheersing Introductie & Begrippen Monstername Les 2 Kwaliteitsgegevens Gegevens Verzamelen Gegevens Weergeven Les 3 Introductie Statistiek Statistische begrippen Statistische

Nadere informatie

Kengetallen. E-5 MPR-Kwaliteit. Inleiding. MPR 24 uur. 4 Betekenis van MPR 24 uur

Kengetallen. E-5 MPR-Kwaliteit. Inleiding. MPR 24 uur. 4 Betekenis van MPR 24 uur Kengetallen E-5 MPR-Kwaliteit Inleiding Via Melkproductieregistratie (MPR) worden gegevens over de melk-, vet en eiwitproductie van de veestapel verzameld. Deze gegevens zijn de basis van managementinformatie

Nadere informatie

ICT-LEERLIJN (met GeoGebra) Luc Gheysens WISKUNDIGE COMPETENTIES

ICT-LEERLIJN (met GeoGebra) Luc Gheysens  WISKUNDIGE COMPETENTIES ICT-LEERLIJN (met GeoGebra) Luc Gheysens www.gnomon.bloggen.be WISKUNDIGE COMPETENTIES 1 Wiskundig denken 2 Wiskundige problemen aanpakken en oplossen 3 Wiskundig modelleren 4 Wiskundig argumenteren 5

Nadere informatie

waarde 0,01 0,02 0,05 0,10 0,20 0,50 1,00 2,00

waarde 0,01 0,02 0,05 0,10 0,20 0,50 1,00 2,00 EURO Vanaf 1 januari 2002 werden de munten en bankbiljetten van twaalf Europese landen vervangen door munten en bankbiljetten in euro. In de tabel hieronder staan de waarden van de euromunten aangegeven.

Nadere informatie

Examen VWO - Compex. wiskunde A1,2

Examen VWO - Compex. wiskunde A1,2 wiskunde A1,2 Examen VWO - Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 25 mei totale examentijd 3 uur 20 05 Vragen 1 tot en met 13 In dit deel staan de vragen waarbij de computer

Nadere informatie

Examenopgaven VMBO-KB 2004

Examenopgaven VMBO-KB 2004 Examenopgaven VMBO-KB 2004 2 tijdvak 2 woensdag 23 juni 13.30 15.30 uur WISKUNDE CSE KB WISKUNDE VBO-MAVO-C Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit examen zijn

Nadere informatie

Eindexamen wiskunde A 1-2 vwo I

Eindexamen wiskunde A 1-2 vwo I Marathonloopsters De Olympische hardloopwedstrijd met de grootste lengte is de marathon: ruim 4 kilometer, om precies te zijn 4 195 meter. De marathon wordt zowel door mannen als door vrouwen gelopen.

Nadere informatie

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3 Schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand.

Nadere informatie

Grafieken en tabellen

Grafieken en tabellen Grafieken en tabellen Over deze lessenreeks In deze lessenserie maken leerlingen kennis met verschillende aspecten van grafieken en tabellen aan de hand van voorbeelden die aansluiten bij hun belevingswereld.

Nadere informatie

Examen HAVO. Wiskunde B1,2

Examen HAVO. Wiskunde B1,2 Wiskunde 1,2 xamen HVO Hoger lgemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 21 juni 13.30 16.30 uur 20 00 it examen bestaat uit 19 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

Natuurkunde havo Evenwicht Naam: Maximumscore 47. Inleiding

Natuurkunde havo Evenwicht Naam: Maximumscore 47. Inleiding Natuurkunde havo Evenwicht Naam: Maximumscore 47 Inleiding De toets gaat over evenwichtsleer. Daarbij gebruikt men de momentenwet: ΣM=0. Moment M = ± kracht F arm r met als eenheid Nm. Teken is + bij draaiïng

Nadere informatie

Gynzy Rekenen Werkbladen

Gynzy Rekenen Werkbladen Werkblad Getalbegrip 001 Getalbegrip 002 Meetkunde 001 Meetkunde 004 Meetkunde 005 Meetkunde 007 Meetkunde 009 Meetkunde 010 Meetkunde 011 Meetkunde 012 Meetkunde 016 Meetkunde 017 Meetkunde 018 Meetkunde

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 5

Uitwerkingen oefeningen hoofdstuk 5 Uitwerkingen oefeningen hoofdstuk 5 5.4.1 Basis 1 a Dit is een voorbeeld van interpoleren. Er zijn namelijk gegevens van voor 1995 en van na 1995 bekend. Binnen de bekende gegevens en dus binnen de tabel

Nadere informatie

wiskunde B pilot havo 2016-I

wiskunde B pilot havo 2016-I De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van

Nadere informatie

21. Een dia met een grafiek

21. Een dia met een grafiek 1 21. Een dia met een grafiek In een presentatie zullen uw toehoorders snel de draad kwijtraken wanneer u sheets vol getallen en tabellen laat zien. Een grafiek is dan vaak een stuk overzichtelijker. In

Nadere informatie

uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo

uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo - 5-6-205 lees verder Kijkcijfers maximumscore 4 Het toepassen van de formule

Nadere informatie

Bereken hoeveel populieren hiervoor gebruikt zijn. Schrijf je berekening op.

Bereken hoeveel populieren hiervoor gebruikt zijn. Schrijf je berekening op. Lucifers Lucifers worden meestal gemaakt van het hout van de ratelpopulier. Van één populier worden gemiddeld 6 miljoen lucifers gemaakt. In een luciferdoosje zitten gemiddeld 60 lucifers. 3p 1 Het bedrijf

Nadere informatie

8.1 Centrum- en spreidingsmaten [1]

8.1 Centrum- en spreidingsmaten [1] 8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte

Nadere informatie

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag Practicum algemeen 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag 1 Diagrammen maken Onafhankelijke grootheid en afhankelijke grootheid In veel experimenten wordt

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor

Nadere informatie

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16 Wiskunde Het schoolexamen in het vierde leerjaar (2015-2016) wordt ook toegepast binnen de locatie Statenkwartier. Schooljaar 2014-2015 ( leerjaar 3 ) Kader Schoolexamen 1 SE 1 De volgende onderdelen worden

Nadere informatie

Maken van een practicumverslag

Maken van een practicumverslag Natuur-Scheikunde vaardigheden Maken van een practicumverslag Format Maken van een tabel met word 2010 2 Havo- VWO H. Aelmans SG Groenewald Maken van een diagram Inleiding. Een verslag van een practicum

Nadere informatie

Examen VWO. wiskunde A1. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde A1. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2008 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde A1 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

Het onderdeel van aardrijkskunde dat zich bezighoudt met de bevolkingsomvang en de bevolkingssamenstelling wordt demografie genoemd.

Het onderdeel van aardrijkskunde dat zich bezighoudt met de bevolkingsomvang en de bevolkingssamenstelling wordt demografie genoemd. Rekenen aan bevolkingscijfers Introductie Het aantal mensen in een gebied is niet steeds gelijk. De bevolkingsomvang verandert voortdurend. Er worden kinderen geboren en er gaan mensen dood. Ook kunnen

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

Niveau 2F Lesinhouden Rekenen

Niveau 2F Lesinhouden Rekenen Niveau 2F Lesinhouden Rekenen LES 1 Begintest LES 2 Getallen Handig optellen en aftrekken Handig vermenigvuldigen en delen Schattend rekenen Negatieve getallen optellen en aftrekken Decimale getallen vermenigvuldigen

Nadere informatie

Examen VWO. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur oud programma wiskunde A1,2 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 82 punten te

Nadere informatie