op het interval 5, 15 betekent 5 x 15. 4b x op het interval 6, 10 betekent 6 x < 10. 5d Bij 3 < x π hoort het interval 3, π

Maat: px
Weergave met pagina beginnen:

Download "op het interval 5, 15 betekent 5 x 15. 4b x op het interval 6, 10 betekent 6 x < 10. 5d Bij 3 < x π hoort het interval 3, π"

Transcriptie

1 G&R havo B deel Veranderingen C. von Schwarzenberg / a b c Tussen en uur. Van en uur neem de sijging oe. Van o 6 uur neem de sijging af. Van o 8 uur neem de daling oe. Van 8 o uur neem de daling af. 6,,,,, en,. a op he inerval, ] beeken. < c [ ] op he inerval, beeken. b op he inerval 6, beeken 6 <. d op he inerval ;, beeken <,. a Bij 8 < hoor he inerval 8,. c [ ] Bij, 7, hoor he inerval,; 7,. b Bij < hoor he inerval,. d Bij < π hoor he inerval, π ]. 6 Afnemend dalend op,. Toenemend sijgend op,. Afnemend sijgend op,. Toenemend dalend op,. 7 Afnemend dalend op, en,. Toenemend sijgend op, en,. Afnemend sijgend op,. Toenemend dalend op,. 8a Consan sijgend op, ; afnemend sijgend op, ; oenemend dalend op, ; afnemend dalend op, 7 en oenemend sijgend op 7,. 8b Bij de seilse klim is de snelheid he laags na 7 minuen. 9a Maak een sches van de plo hiernaas me op [, 8 ]. 9b De opie maimum geef,67. Dus na uur en minuen is C maimaal. 9c 9d C (inersec), 6,. Dus op he ijdsinerval,; 6, is C > (mg/l). Bij gaa de grafiek van C over van oenemend dalend naar afnemend dalend. Dus na (ongeveer) uur neem de daling van de concenraie af. (gebruik TRACE om me de cursor over de grafiek e lopen) a In he eerse kwaraal van was de omze me gesegen (en opziche van he vorige kwaraal). Dus de omze in eerse kwaraal van is 8 +. b De omze in vierde kwaraal van was c De omze in was d De omze in he vierde kwaraal van 6 was e De omze daalde in he weede, derde en vierde kwaraal van 6. a b y -inerval me y ---/ [, ], [, ] [, ] [, ] [, ],, y -inerval me y, 6 9 / / [, ] [, ], [, 6], [6, 9] [9, ] Toenamediagram op [, ] me Toenamediagram op [, ] me

2 a b c G&R havo B deel Veranderingen C. von Schwarzenberg / y -inerval me y /--- [, ] [, ] [, ] [, ] [, ] N -inerval me, N,,,,,, 6 7, 8 7, 6 /--- [ ;,] [,; ] [ ;,] [,; ] [ ;,] [,; ] [;,] [,; ],,,,,,,, Toenamediagram op [, ] me De eindpunen van de oenamen in he oenamediagram liggen op een reche lijn. Toenamediagram op [, ] me, N a y -inerval me y 8 8,8,, 6,8 [ 8, ] [, ] [, ] [, 8] [8, ],,,,, Toenamediagram op [ 8, ] me b c z R z -inerval me z R 8 6 [, ] [, 8] [8, ] [, 6] [6, ] [, ] Toenamediagram op [, ] me z De grafieken in he boek zijn reche lijnen. Dus zijn de oenamen consan. De eindpunen van de oenamen in he oenamediagram liggen dus op een horizonale lijn. R z a Bij een reche lijn liggen de eindpunen van de oenamen in he oenamediagram op een horizonale lijn. (zie opg. ) b Bij een parabool liggen de eindpunen van de oenamen op een reche lijn die nie horizonaal is. (zie opgave ) a b c 6a 6b

3 G&R havo B deel Veranderingen C. von Schwarzenberg / 7a 7b 8a 8b 8c Consane daling. (oenames zijn consan en negaief) 7c Consane sijging. (oenames zijn consan en posiief) Afnemende sijging. (oenames nemen af en zijn posiief) 7d Toenemende daling. (oenames nemen oe en zijn negaief) A -inerval me A [, ] [, ] [, ] [, ] [, ] [, ] [, ] [, ] Toenamediagram op [, ] me A ( ) Na jaar is er 8 m hou. Na kappen van m is er nog 8 m hou evenveel als e zien bij. Vijf jaar laer, dus op 7, is de 8 m aangegroeid o 8 m hou. Er is dus onvoldoende voor een kap van opnieuw m hou. [ ] De groose oename in een periode van jaar is in he ijdsinerval, me (een oename van) m hou. De bosopzicher kan he bese beginne me kappen na jaar. Hij kan dan elke vijf jaa r m hou kappen. Op, is T, + + +,,,. Dus Mieke heef gelijk. 9a [ ] 9b [ ] Op, is T,,,,. Dus om : is T +,, C. Op [, ] is T, + +,. Dus om : is T +,, C. 9c Zie een mogelijke grafiek van he emperauurverloop hiernaas. T a b c h + (m). h + ( abc-formule/zero/inersec/table) (sec). Neem de abel hieronder over. (gebruik TABLE op de GR) h d In de eerse seconde (van o ) val he voorwerp 6 9 m. In de weede seconde (van o ) val he voorwerp m. In de derde seconde (van o ) val he voorwerp m. In de vierde seconde (van o ) val he voorwerp m. In de vijfde seconde (van o ) val he voorwerp 9 9 m. e h -inerval me h [, ] [, ] [, ] [, ] [, ] Maak eers de abel hieronder. (gebruik TABLE op de GR) y y /--- 7 Z h Toenamediagram op [, ] me Toenamediagram op [, ] me

4 G&R havo B deel Veranderingen C. von Schwarzenberg / Maak eers de abel hieronder. (gebruik TABLE op de GR) y y,, 7,,,,,,,,, a Maak eers de gegevens in de abel hieronder ui figuur s Op he ijdsinerval [,] is de gemiddelde snelheid (m/s). Op he inerval [,7] is de gemiddelde snelheid 6,7 (m/s). b Op he inerval [,6] is de gemiddelde snelheid 8 (m/s). c Op he inerval [6,7] is de gemiddelde snelheid 6 (m/s). Di is km/u ( m/s,6 km/u). d Omda de grafiek ussen en 7 een reche lijn is, heef Jan gelijk. e Nee, wan de snelheid neem oe in de derde seconde. Toenamediagram op [, ] me a Op he inerval [,] is zijn gemiddelde snelheid s (m/min) ( m/min 6 m/u). Di is km/u. Op he inerval [,] is zijn gemiddelde snelheid s 6 (m/min). Da is km/u. Op he inerval [,] is zijn gemiddelde snelheid s 8 6 (m/min). Da is km/u. b De grafiek is afnemend sijgend. c Op he inerval [,] is de gemiddelde snelheid s 8 8 (m/min). Da is 6 km/u. He gemiddelde van (km/u), (km/u) en (km/u) is km/u. a Op he inerval [,] is N en N 6 9,7. b Op he inerval [,8] is N c Op [,8] is de grafiek seiler dan op [,]. d De gemiddelde oename per dag is he groos op he inerval [,8], wan daar is de grafiek he seils. De gemiddelde oename per dag is he kleins op he inerval [,], wan daar is de grafiek he mins seils. 6a Op [6, ] is de gemiddelde emperauurverandering T, 7 ( C/uur). (lees T af bij en 6) Op [9, ] is T 8 6,6 ( C/uur). (lees T af bij en 9) 6b Op 6 is T en op is T 7 op [6, ] is T 7 ( C). 6c Op [6, ] is T 7, 7 ( C/uur). De emperauur (omda een min-eken) daal,7 C/uur. 6d Op he inerval [, 6] is T ( C/uur) en op [,] is T ( C/uur) a De gemiddelde verandering van op [, ] is y. 7bc He differeniequoiën op [, 6] is en op [, ] is. 6 7d De helling van de lijn is he differeniequoiën op [, ] de helling van is OA OA. 8a De gemiddelde verandering van K op [ 6, ] is K en op [, ] is K P P. 8b He differeniequoiën op [, ] is K en op [, ] is K 6. P P 7

5 G&R havo B deel Veranderingen C. von Schwarzenberg / 9a De verwarming werke van 6: o 9: (de grafiek sijg) en van : o :. Dus oaal + 6 uur. 9b De grafiek is oenemend dalend op de inervallen [, 6], [9, ] en [,; 6] (di laase nie noeren als [:, 6]). 9c 9d Op [, 6] is T 9, 6, 8 ( C/uur) 6, op [, 7] is T 7 en op [7, 7] is T 7 7. Bij vraag 9c was [, 6] he groose inerval waarvoor de gemiddelde emperauursijging T ( C/uur). Houd je geodriehoek nu langs de wee uierse punen op he inerval [, 6] (di zijn A(;, ) en B(6, 9)). We proberen nu door de geodriehoek evenwijdig e verschuiven de wee punen op de grafiek e vinden die zo ver mogelijk ui elkaar liggen. We vinden (, ) en (;,). He groos mogelijke inerval is [, ]. 9e Houd je geodriehoek langs wee punen zo, da rc, (bijvoorbeeld langs C (, ) en D(, )). We proberen nu door de geodriehoek evenwijdig e verschuiven de wee punen op de grafiek e vinden die zo ver mogelijk ui elkaar liggen. We vinden (,6; 9,8) en (, 6). He groose mogelijke inerval is [,6; ]. a b Sel da A, B, C, D, E en F op de grafiek liggen me A, B, C, D, E en F. Omda op [, ] geld, moe rcab. Zo is rcbc, rccd, rcde en rcef. (zie de lijnsukjes in de grafiek) Een passende grafiek zie je hiernaas. Nu moe rcab, rcac, rcad, rcae en rcaf. (zie de lijnsukjes in de grafiek) Een passende grafiek zie je hiernaas. A rc B E rc rc rc C D rc F rc F a b He differeniequoiën op [, ] is f () f () 6 8. He differeniequoiën op [, ] is f () f () 6. rc E a b c He differeniequoiën op [, ] is f () f ( ) 6 6. He differeniequoiën op [, ] is f ( ) f ( ) 6. He differeniequoiën op [, ] is f () f (). A B rc rc C D a Maak een sches van de plo hiernaas. b c d De gemiddelde oename op [, ] is f () f (). He differeniequoiën op [, ] is f () f ( ) De helling van () ( ) (he differeniequoiën op [, ]) is f f AB 6. a b c () () De gemiddelde snelheid op [, ] is s s s (m/s). (,) () De gemiddelde snelheid op [;, ] is s s s (m/s) 6,., (,) () De gemiddelde snelheid op [;,] is s s s, 6 (m/s)., s(,) s ( De gemiddelde snelheid op [;,] is s ), 6 (m/s)., (,) () De gemiddelde snelheid op [;, ] is s s s, 6 (m/s)., Vermoeden: de gemiddelde snelheid kom seeds dicher bij m/s e liggen. (,) () Conrole: op [;, ] is s s s, 6 (m/s)., d Op is de snelheid m/s. (,) () De snelheid op is (bij benadering) s s s op [;, ], dus, (m/s)., (,) () De snelheid op is (bij benadering) s s s op [;, ], dus, (m/s).,

6 G&R havo B deel Veranderingen C. von Schwarzenberg 6/ 6 (,) () De snelheid op is (bij benadering) s s s op [;, ], dus, (m/s)., (,) () De snelheid op is (bij benadering) s s s op [;, ], dus, (m/s)., 7 A A(,) A(), De snelheid op is (bij benadering) op [;, ], dus,6 (m /dag). () () 8a De gemiddelde snelheid op [, ] is s s s (m/s). () () De gemiddelde snelheid op [, ] is s s s (m/s). s() s () De gemiddelde snelheid op [, ] is s (m/s). (,) () De gemiddelde snelheid op [;,] is s s s, (m/s)., 8b Van de vier lijnen kom de lijn AB he dichs bij de lijn die de grafiek raak in A. 9a De snelheid op 8 is rc 7 raaklijn in A. (de raaklijn in 8 gaa door A(8, ) en door (, 7)) 8 9b De snelheid op is rc raaklijn in 6,7. (de raaklijn in gaa door (, ) en (, )) 9c Gedurende de eerse vier uur neem de snelheid af, wan de grafiek is op [, ] afnemend sijgend. 9d Op is de snelheid minimaal. (de grafiek is daar he mins seil) a b De snelheid van Den Herog is consan op [, ]. (de grafiek is een reche lijn) () () Zijn snelheid is zijn gemiddelde snelheid op [, ] is s s s (m/min). Da is km/u. Valkenberg sar snel en loop daarna seeds langzamer. Snelheid op 7 is rc 7 7 (m/min). (raaklijn in 7 door (7, 7) en (, 7)). Dus km/u. 7 6 Snelheid op is rc (m/min). (raaklijn in door (,) en (,)). Dus 7, km/u. c raaklijn in 7 d raaklijn in e f Den Herog en Valkenberg lopen even hard op he momen da beide grafieken even seil lopen. De raaklijn aan de grafiek van Valkenberg is evenwijdig me de grafiek van Den Herog bij. Valkenberg loop in minuen meer en da moeen er minsens 6 zijn. a Snelheid op 6 is rc 7 raaklijn in 6 cm/jaar. (raaklijn in 6 door (6, ) en (, 7)) 6 6 b Snelheid op is rc 6 raaklijn in (raaklijn in door (, 6) en (, )) c De gemiddelde snelheid op [, 8] is l 8 7, cm/jaar. 8 8 d Teken de lijn k door de punen (, ) en (8, 8). ( k hoor bij de gemiddelde groeisnelheid van o 8 jaar) Verschuif k evenwijdig. Je vind drie raaklijnen die evenwijdig me k zijn. (deze lijnen raken bij, en ) Dus bij, en jaar was de groeisnelheid van Loe gelijk aan haar gemiddelde groeisnelheid op [, 8]. a b De helling in is (bij benadering) y (,999) y ( ) op [ ;, 999], dus,., De snelheid in 6 is (bij benadering) s(6,) s(6) op [6; 6, ], dus,6, Als je he goed doe krijg je de figuur hieronder. B A

7 G&R havo B deel Veranderingen C. von Schwarzenberg 7/ Neem GR - pracicum door. (uiwerkingen aan he eind) Sel : me k y a + b a d. k: y + b + b b. Dus k: y. f ( ) A(, ) Sel l : y a + b me a. d l : y + b b b. Dus l : y + +. g() A(, ) Sel k: y a + b me a, 8. d k: y,8 + b,8 + b b,. Dus k: y,8 +,. f ( ) A(, ) Sel l : y a + b me a. d l : y + b + b b. Dus l : y +. f () B(, ) k: y, 8 +, snijden me l : y + geef,8 +, + (algebraïsch of inersec) S(,7;,8). 6a D,,,7 (inersec),8. ( nie me inersec of zero, maar zie je direc aan de formule of in TABLE,) Dus de onderzeeër is (ongeveer),8 minuen onder waer. 6b dd,77. Di beeken da de diepe, na minuen d onder waer, me een snelheid van,77 m/min oeneem. 6c D,,, 7 (opie minimum) minimum voor 7,. Vijf minuen na he minimum is bij,. dd, hij sijg dan me een snelheid van, m/min. d, 6d, (min) geef D 7, (m). 7, Als de sijgsnelheid, m/min blijf, dan doe hij daar nog 8,7 minuen over., De onderzeeër kom dan boven op, + 8,7,8. Da is na minuen en seconden. 7a 7b De snelheid op is dt d,, C/uur. De snelheid op is dt,... C/uur. d Op is T 7, C. He duur dan nog (ongeveer), minuen +, 6,. 8a 8b F + + (opie maimum), (min) en F (slagen/min). + 9 He duurde minuu en de maimale harslagfrequenie was slagen/minuu. F + + (inersec), 67 ( min ). + 9 He duur (ongeveer), 67,,7 minuen (na de inspanning). Na inspanning duur he (ongeveer) seconden o de frequenie afgenomen is o slagen per minuu. De snelheid op, 67 is df, 6 (slagen/min). d,67 Op da momen neem de harslag af me ongeveer slagen per minuu.

8 G&R havo B deel Veranderingen C. von Schwarzenberg 8/ Diagnosische oes Bij hoor,. Db Bij < hoor,. Dc Bij hoor [,. Da [ ] D Afnemend sijgend op,. Toenemend dalend op,. Afnemend dalend op, 6. Toenemend sijgend op 6,. D Maak eers de abel hiernaas. (he oenamediagram naas de abel) y y 6,,,, Toenamediagram op [, 6] me Da In de globale grafiek hieronder is (, ) als beginpun gekozen. (di mag elk ander pun op de y -as zijn) Toenamediagram op [, 7] me D y y Zie he oenamediagram hiernaas. (maak eers abel hierboven) , 8 7, 6,,,,,,,, D6a De gemiddelde snelheid op [, ] is en op [, 8] is 6 6, 67. D6b He differeniequoiën op [, ] is, en op [, 7] is 6,. D7 D8 He differeniequoiën op [, ] is f () f ( ), 7,,. (,) () De snelheid op is (bij benadering) s s s op [;, ], dus, (m/s)., Snelheid op is rc 8 6 (m/s). (raaklijn in door (,6) en (,8)). D9 raaklijn in d Da Sel : me y k y a + b a d,. k: y, + b, + b b. Dus k: y,. f () B(, ) Db Sel l : y a + b me a,. d l : y, + b, b b. Dus l : y,. door A(, ) + (TABLE) Da dt,6 op daal de emperauur me een snelheid van,6 C/min. d Db dt,6. d Op is T. Vanaf duur he nog minuen.,6 (oda he vriespun word bereik) He (momen) is dan +.

9 G&R havo B deel Veranderingen C. von Schwarzenberg 9/ Gemengde opgaven. Veranderingen Ga Vanaf 7 o, wan in deze periode sijg de waerhooge aanzienlijk. Da is eind augusus en de maand sepember. Gb Op [, ] is W (fee/dag) (fee/dag) en op [8, ] is W,. Gc Leg je geodriehoek zo op he rooser da rc, (bijvoorbeeld door (, ) en (, 6)). Verschuif je geodriehoek (langs een liniaal) evenwijdig oda je wee punen op de grafiek me elkaar verbind die zo ver mogelijk ui elkaar liggen. Da blijken de punen (6, ) en (, ) e zijn. He groos mogelijke inerval is [6, ]. Gd Leg je geodriehoek zo op he rooser da rc, (bijvoorbeeld door (, 6) en (, )). Je geodriehoek lig direc goed. De wee gezoche punen zijn (, 6) en (8, ) e zijn. He groos mogelijke inerval is [, 8]. 7 N ( ) 6 Ga Om uuur waren er bezoekers. Gb Haal de gegevens in ondersaande abel ui he oenamediagram N Zie hiernaas een mogelijke grafiek. Gc He is mogelijk da ussen en uur 6 bezoekers in he park waren. Om uur was weer een deel van deze bezoekers verrokken. De direceur kan gelijk hebben. Ga De gemiddelde snelheid op [, 8] is s (km/min). Di is km/u. 8 Gb Snelheid op is rc,7,, raaklijn in (raaklijn in door (;, ) en (;, 7)), km/min km/u. Gc De snelheid is maimaal als de helling van de raaklijn maimaal is, dus voor. Snelheid op is rc raaklijn in, km/min (raaklijn in gaa door (, ) en (, )). Dus km/u. km/u is, km/min rc. Ga na da di is op en 6. Gd raaklijn in uur Ga Maak (in je schrif) een sches van de plo hieronder. Gb Maak eers de abel hieronder. (gebruik TABLE op de GR) y y,,,,,,,,,,9,6,,,6,9, He oenamediagram saa hiernaas. Toenamediagram op [, ] me, Gc De gemiddelde verandering op [, ] (gebruik TABLE) is 8 6. Gd He differeniequoiën op [, ] (gebruik TABLE) is Ge (, ) en (6, ) (zie TABLE) de helling van lijn is A B AB op [, 6], dus 8 6. O Snelheid bij is rc 68, (giscellen/min). (raaklijn in door (, ) en (, 68)) G6b Bij 9 is de groeisnelheid even groo als bij (de raaklijnen zijn evenwijdig). G6a raaklijn in G6c De populaie groei he snels bij (ongeveer) 6 (de grafiek is daar op zijn seils). Snelheid bij 6 is rc 78 raaklijn in 6, (giscellen/min). (raaklijn in 6 door (6, ) en (8, 78)) 8 6 G6d Maak eers de abel hieronder waarin om de minuen he aanal giscellen saan (gebruik de grafiek in figuur G.) Vul de abel aan me een (de vierde) kolom waarin de oenamen komen. (de derde kolom mag wegblijven) Naas de abel saa he oenamediagram.

10 G&R havo B deel Veranderingen C. von Schwarzenberg / Toenamediagram op [, ] me N -inerval me N [, ] [, ] [, 6] [6, 8] [8, ] [, ] G6e Verwijder hij na minuen giscellen, dan kan de overgebleven populaie van 9 giscellen nie voldoende aangroeien om voordurend elke minuen giscellen e kunnen verwijderen. Al na wee keer is er geen giscel meer over. G6f In he oenamediagram (of in de abel) zie je de groose oename (van giscellen) op he inerval [, 6]. Als hij op 6 een aanal van giscellen verwijder, dan kan hij di elke minuen opnieuw doen. N G7a Sel k: y a + b me a,. d k: y, + b,, + b b. Dus k: y +. f ( ), A( ;,) G7b Sel l : y a + b me a,. d l : y, + b, + b b. Dus l : y,. B(, ) k: y, + snijden me l : y, geef, +, (inersec of) 8 6 en y, Dus S( 6, ). G8a Maak een sches van de plo hiernaas ( uur 6 kwarier). G8b P,, 8 +, 6 (opie maimum), (kwarier). Na 8 minuen is he promillage maimaal. G8c d P,, (promille/kwarier). d 7 De snelheid waarmee P (he promillage) afneem op 7 (na 7 kwarier) is, promille/kwarier. G8d d P,6; d P,9; d P,; d P,; d P,; d 8 d 9 d d d Dus na (ongeveer) kwarier neem de daling af. G8e P, (inersec),9. Dus na kwarier (na uur) mag de proefpersoon weer auorijden. De snelheid is dp, (promille/kwarier). d De snelheid waarmee P (he promillage) dan afneem is, promille/kwarier. G9a ds,6 (m/s). Di is,6,6 km/u. d G9b s() (m) en ds, 8 (m/s). d Over de reserende meer doe de auo sec.,8 In seconden, vanaf, heef de auo 8 meer gereden. G9c To de grafiek van de formule s ekenen. Vanaf o is de grafiek een reche lijn door (, ) en (, 8). (of gebruik: bij he laase pun in de grafiek hoor en s +,8 9) Zie de grafiek hiernaas.

11 G&R havo B deel Veranderingen C. von Schwarzenberg / Ga (m) h 6, (m). Gb De sang is m uieinden liggen, m ui he midden van de sang. +, (m) h 6,, (m). Dus op een hooge van cm. Gc h 6 (inersec), 7 (m). De lenge van de sang is (Ans ),9 (m). Dus 9 cm. Gd De helling van de lijn PT is dh d,77. Ge Sel de lijn PT is y,77 + b. y,77 + b 8, 77 b b 9, 7. P (, 8) + y,77 + 9,7 snijden me de -as ( y ) geef 9,7, , 7, 77 9, 7 T 6, 9.,77 RT T R T 6,9 m. Ga De rode lijn gaa door (, ) en (9, 9). De rode lijn heef als formule H av + b me a H 8V + b 8 + b b 8. Dus H 8V + 8. door (, ) Gb De lijn H 76, 8 + 6, 6 V me (overal dezelfde) helling rc a 6, 6. De andere formule heef bij V 7 als helling (me opie op de GR) dh 6,6. d dv V 7 De hellingen zijn dus vrijwel gelijk. Gc V (dus V 7) H 96., 7,86 Hma 96, 9L 96, 9L L 7 (jaar). Hma, 9L,9 Ga N (opie maimum) en y 7. Er zijn maimaal 7 baceriën. Gb De derde week loop van o. Me N () en N () 7. In de derde week komen er gemiddeld 7 7 baceriën per dag bij. 7 7 Gc N (inersec), 9. Lees af in een plo: vanaf, 9 zijn er meer dan baceriën. Gd N (inersec), 966. N + (inersec),8. Ui de grafiek van figuur G.9 volg dan: van,966 o,8 zijn er meer dan baceriën. Er zijn gedurende (, 8, 966) 7 7 dagen meer dan baceriën.

12 G&R havo B deel Veranderingen C. von Schwarzenberg / a TI-8. Helling Plo de grafiek op [, ] [, ]. Kies ` $ ( ) en dan rc van de raaklijn aan de grafiek van f in A is è 6 _ e,8. d d Kies opnieuw ` $ ( è) 6 e rc van de raaklijn aan de grafiek van in is y f B d,. b Kies ` $ ( è) 6 e snelheid waarmee f verander voor is. (zie hieronder) d c Kies weer ` $ ( è) 6 8e (zie hiernaas) de helling van de grafiek in 8 is,. d 8 ab Zie de plo op [, 6] [, ] hiernaas. Kies ` $ ( ) rc van de raaklijn aan de grafiek van g in P is è 6 _ e 7. d d Kies ` $ ( è) 6 e rc van de raaklijn aan de grafiek van g in Q is y d,. c Kies ` $ ( è) 6 e snelheid waarmee g verander voor is,. (zie hieronder) d d Kies weer ` $ ( è) 6 e (zie hiernaas) de helling van de grafiek in is. d

C. von Schwartzenberg 1/11

C. von Schwartzenberg 1/11 G&R havo A deel C von Schwarzenberg 1/11 1a m 18:00 uur He verbruik was oen ongeveer 1150 kwh 1b Minimaal ongeveer 7750 kwh (100%), maimaal ongeveer 1150 kwh (145,%) Een oename van ongeveer 45,% 1c 1d

Nadere informatie

4e Het absolute maximum is 3 (voor x = 1). 4c De grafiek is afnemend dalend op 2, 3. 4f Er is een minimum voor x = 3. Dit minimum is 0.

4e Het absolute maximum is 3 (voor x = 1). 4c De grafiek is afnemend dalend op 2, 3. 4f Er is een minimum voor x = 3. Dit minimum is 0. G&R vwo A/C eel C. von Schwarzenberg 1/16 1a 1b 1c Da was begin 00. Er waren oen 140000 banen. Toename van 10000 naar 140000, us een oename van 0000 banen. Vóór juli 1998 is e oename oenemen (e oename

Nadere informatie

OEFENTOETS HAVO B DEEL 1

OEFENTOETS HAVO B DEEL 1 EFENTETS HAV B DEEL 1 HFDSTUK 2 VERANDERINGEN PGAVE 1 Een oliehandelaar heef gedurende 24 uur nauwkeurig de olieprijs bijgehouden. Zie de figuur hieronder. Hierin is P de prijs in dollar per va. P 76 75

Nadere informatie

C. von Schwartzenberg 1/18. 1b Dat zijn de punten (0, 0) en (1; 0,5). Zie de plot hiernaast.

C. von Schwartzenberg 1/18. 1b Dat zijn de punten (0, 0) en (1; 0,5). Zie de plot hiernaast. a G&R havo B deel 9 Allerlei uncies C von Schwarzenber /8 Zie de plo hiernaas b Da zijn de punen (0, 0) en (; 0,5) c Van de raieken van en li een enkel pun onder de -as d De raieken van en hebben de -as

Nadere informatie

Ze krijgt 60% korting op het basisbedrag van 1000,- (jaarpremie) en moet dan 400,- (jaarpremie) betalen.

Ze krijgt 60% korting op het basisbedrag van 1000,- (jaarpremie) en moet dan 400,- (jaarpremie) betalen. 1a 1b G&R havo A deel 1 Tabellen en grafieken C. von Schwarzenberg 1/14 Een buspakje kan door de brievenbus, een pakke nie. Een zending die voorrang krijg. 1c 5, 40. (Worldpack Basic prioriy Buien Europa

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden 6 Blok - Vaardigheden Blok - Vaardigheden Exra oefening - Basis B-a Bij abel A zijn de facoren achereenvolgens 8 : = 6 ; 08 : 8 = 6 en 68 : 08 = 6. Bij abel A is sprake van exponeniële groei. Bij abel

Nadere informatie

Overzicht Examenstof Wiskunde A

Overzicht Examenstof Wiskunde A Oefenoes ij hoofdsuk en Overzih Examensof Wiskunde A a X min 0, X max 0, Y min 0 en Y max 000. 0 lier per minuu. Als de ank leeg is, dan is W 0, dus 00 0 0 dus 0. Na 0 minuen is de ank leeg. a Neem de

Nadere informatie

Dus de groeifactor per 20 jaar is 1,5 = 2,25 een toename van 125% in 20 jaar. Dus Gerben heeft geen gelijk.

Dus de groeifactor per 20 jaar is 1,5 = 2,25 een toename van 125% in 20 jaar. Dus Gerben heeft geen gelijk. G&R havo B deel Groei C. von Schwarzenber / a In 980 is N i = 0 + 0 = 800 miljoen. b Vermenivuldien me,. (iedere 0 jaar van 00% naar 0% iedere 0 jaar keer,) c In 980 is N o = = N o = = d 0% oename per

Nadere informatie

Hoofdstuk 2 - Formules voor groei

Hoofdstuk 2 - Formules voor groei Moderne wiskunde 9e ediie Havo A deel Uiwerkingen Hoofdsuk - Formules voor groei bladzijde 00 V-a = 08, ; 870 08, ; 70 0, 8; 60 00 00 870 70 08,, gemiddeld 0,8 b De beginhoeveelheid is 00 en de groeifacor

Nadere informatie

Hoofdstuk 3 Exponentiële functies

Hoofdstuk 3 Exponentiële functies Havo B deel Uiwerkingen Moderne wiskunde Hoofdsuk Eponeniële funies ladzijde 6 V-a Door zih in weeën e delen vermenigvuldig he aanal aeriën per ijdseenheid zih seeds me een faor is de eginhoeveelheid,

Nadere informatie

Blok 4 - Vaardigheden

Blok 4 - Vaardigheden Havo B deel Uiwerkingen Moderne wiskunde Blok - Vaardigheden bladzijde a domein en bereik b x = = = c Me behulp van onderdeel b en de grafiek: d Eers: log x = ofwel x = = Dan me behulp van de grafiek:

Nadere informatie

Antwoordmodel VWO wa II. Speelgoedfabriek

Antwoordmodel VWO wa II. Speelgoedfabriek Anwoordmodel VWO wa 00-II Anwoorden Speelgoedfabriek Voorwaarde II hoor bij immeren Voor immeren zijn 60x + 40y minuen nodig Voor immeren zijn 80 uur dus 4800 minuen beschikbaar 60x + 40y 4800 kom overeen

Nadere informatie

2000 loopt van t = 5 tot t = 6. De toename in 2000 is N L(6) N L(5) 69 (lepelaars).

2000 loopt van t = 5 tot t = 6. De toename in 2000 is N L(6) N L(5) 69 (lepelaars). G&R havo A deel 0 Groei C. von Schwarzenber /6 a b Na drie weken 750 + 50 = 00 (m ); na vijf weken 750 + 5 50 = 500 (m ). Na één week 6 = (m ); = = na vier weken 6 6 56 (m ). w c 750 + w 50 = 6 (inersec)

Nadere informatie

C. von Schwartzenberg 1/20. Zie de plot hiernaast. 1b Alle grafiek gaan door O (0,0) en (1;0,5). 1c 1d

C. von Schwartzenberg 1/20. Zie de plot hiernaast. 1b Alle grafiek gaan door O (0,0) en (1;0,5). 1c 1d a G&R vwo A deel 0 Allerlei uncie C. von Schwarzenber /0 Zie de plo hiernaas. b Alle raiek aan door O (0,0) en (;0,). c d De raieken van y = 0, en y = 0, komen nie onder de -as. De raieken van y = 0, en

Nadere informatie

Hoofdstuk 3 - De afgeleide functie

Hoofdstuk 3 - De afgeleide functie ladzijde 7 V-a Plo de grafiek van y = x + x +. Me al-zero vind je x 8,. Plo ook de grafiek me y = x+ 5. Me al-inerse vind je x 89, en y= g( 89, ),. V-a d Exa, wan de vergelijking is lineair. Me de rekenmahine,

Nadere informatie

Boek 3 hoofdstuk 10 Groei havo 5

Boek 3 hoofdstuk 10 Groei havo 5 Boek 3 hoofdsuk 0 Groei havo 5. Lineaire en exponeniële groei. a. Opp = 750 + 50 me = 0 op juni, per week en opp. in m. Y =750 + 50 Y (3) = 00 m en Y (5) = 500 m (mehode : voer in Y, daarna rekenscherm,

Nadere informatie

Hoofdstuk 1 Lineaire en exponentiële verbanden

Hoofdstuk 1 Lineaire en exponentiële verbanden Hoofsuk Lineaire en exponeniële veranen lazije A: Geen lineair veran, als x me oeneem, neem y nie sees me ezelfe waare oe. B: Lineair veran, als x me oeneem, neem y sees me, oe. C: Geen lineair veran,

Nadere informatie

Uitwerkingen H14 Algebraïsche vaardigheden 1a. x = 6 2 = 4 en y = 9,60 5 = 4,60

Uitwerkingen H14 Algebraïsche vaardigheden 1a. x = 6 2 = 4 en y = 9,60 5 = 4,60 Uiwerkingen H Algebraïsche vaardigheden = 6 = en y = 9,60 5 =,60 Voor km een bedrag van,60 euro Per km dus een bedrag van,5 euro. Da is he quoiën van y en. Bij km zijn de kosen 5 euro dus bij 0 km zijn

Nadere informatie

Hoofdstuk 1 - Exponentiële formules

Hoofdstuk 1 - Exponentiële formules V-1a 4 Hoofdsuk 1 - Exponeniële formules Hoofdsuk 1 - Exponeniële formules Voorkennis prijs in euro s 70 78,0 percenage 100 119 1,19 b Je moe de prijs me he geal 1,19 vermenigvuldigen. c De BTW op de fies

Nadere informatie

OPQ OQ PQ p p p 3 p. C. von Schwartzenberg 1/27 A = O = = 1 1 2 = 1 1 1 = = = =. = = 1. ax A( ) 2 8 2 8 6 3 6.

OPQ OQ PQ p p p 3 p. C. von Schwartzenberg 1/27 A = O = = 1 1 2 = 1 1 1 = = = =. = = 1. ax A( ) 2 8 2 8 6 3 6. G&R vwo deel Toepassingen C von Schwarzenberg /7 a PQ y Q f ( O OPQR OP PQ b PQ yq f ( p p p OOPQR OP PQ p p p p c p p (opie maimum ma, (voor p,7 a OQ Q P p en PQ yp f ( p p O OPQ OQ PQ p p p p b d + p

Nadere informatie

Hoofdstuk 3 - Exponentiële functies

Hoofdstuk 3 - Exponentiële functies Hoofdsuk - Eponeniële funcies Voorkennis: Groeifacoren ladzijde 7 V-a 060, 80 8, - euro 079, 0, 9, 88 c 0, 98, - 998, V-a De facor waarmee je de oude prijs vermenigvuldig om de nieuwe prijs e krijgen is

Nadere informatie

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A, (nieuwe sijl) Correcievoorschrif VWO Voorbereidend Weenschappelijk Onderwijs 0 0 Tijdvak Inzenden scores Uierlijk op juni de scores van de alfabeisch eerse vijf kandidaen per school op de daaroe

Nadere informatie

. Tijd 75 min, dyslecten 90min. MAX: 44 punten 1. (3,3,3,3,2,2p) Chemische stof

. Tijd 75 min, dyslecten 90min. MAX: 44 punten 1. (3,3,3,3,2,2p) Chemische stof RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T112-HCMEM-H579 Voor elk onderdeel is aangegeven hoeveel punen kunnen worden behaald. Anwoorden moeen alijd zijn voorzien van een berekening, oeliching

Nadere informatie

x 3x x 7x x 2x x 5x x 4x G&R havo B deel 1 3 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/12 TOETS VOORKENNIS

x 3x x 7x x 2x x 5x x 4x G&R havo B deel 1 3 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/12 TOETS VOORKENNIS G&R havo B deel Vergelijkingen en ongelijkheden C. von Schwartzenberg / a x = x =. b x = x x =. c d x (x ) 0 x = 0 =. 9. e f x 0 x ( x ) 0. x x = x x ( x )( x + ). TOETS VOORKENNIS a ( x + ) = x c x e

Nadere informatie

Examen VWO. Wiskunde B1 (nieuwe stijl)

Examen VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 83 punen e behalen; he examen besaa ui 20 vragen. Voor

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a Blok - Vaardigheden ladzijde d 9 B B 6 f a a e r 9 9r r r r 8 a De rihingsoëffiiën van de lijn is gelijk aan en he sargeal is dus 7 0 de vergelijking is y x+ De rihingsoëffiiën van de lijn is gelijk

Nadere informatie

1 Inleidende begrippen

1 Inleidende begrippen 1 Inleidende begrippen 1.1 Wanneer is een pun in beweging? Leg di ui aan de hand van een figuur. Rus en beweging (blz. 19) Figuur 1.1 Een pun in beweging 1.2 Wanneer is een pun in rus? Leg di ui aan de

Nadere informatie

Extra oefening bij hoofdstuk 1

Extra oefening bij hoofdstuk 1 Era oefening ij hoofdsuk a Een goede venserinselling voor de funie f is : X min en X ma en Y min eny ma 0. Voor de funie g X min 0 en X ma 0 en Y min 0 eny ma 0. y 0 8 8 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 Veriale

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de funcie f : R R : 7 cos(2 ). Bepaal de afgeleide van de funcie f in he pun 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D) f 0

Nadere informatie

1 Herhalingsoefeningen december

1 Herhalingsoefeningen december 1 Herhalingsoefeningen december Een lichaam word vericaal omhoog geworpen. Welke van de ondersaande v, diagrammen geef dan he juise verloop van de snelheidscomponen weer? Jan rijd me de fies over een lange

Nadere informatie

Hoofdstuk 6 - Formules maken

Hoofdstuk 6 - Formules maken Hoofdsuk 6 - Formules maken ladzijde 0 V-a Formule, wan de grafiek gaa door he pun (,) 0 en formule is exponenieel. Formule heef voor x = 0 geen eekenis, erwijl de grafiek door he pun (0, 3) gaa. Formule,

Nadere informatie

Krommen in het platte vlak

Krommen in het platte vlak Krommen in he plae vlak 1 Een komee beschrijf een baan om de zon. We brengen een assenselsel aan in he vlak van de baan van de komee, me de zon als oorsprong. Als eenheid in he assenselsel nemen we de

Nadere informatie

Hoofdstuk 3 - Exponentiële functies

Hoofdstuk 3 - Exponentiële functies Hoofsuk - Eponeniële funies lazije 7 V-a hooge in m 7, 8 8, 9 ij in uren 9, Aangezien e punen op een rehe lijn liggen, noemen we eze groei lineair. Als je e rehe lijn naar links voorze, an kun je aflezen

Nadere informatie

C. von Schwartzenberg 1/20

C. von Schwartzenberg 1/20 a G&R vwo B deel Eponenen en loarimen C. von Schwarzenber /0 Ze zijn elkaars spieelbeeld en opziche van de y -as. b Beide raieken hebben de -as (de lijn y = 0) als horizonale asympoo. c B = B = 0,. a b

Nadere informatie

Vaardigheden - Blok 4

Vaardigheden - Blok 4 Vaarigheen - Blok lazije + a p p p is nie juis wel gel p p p p 8 ( r ) r r ; e ewering is juis 9 + ( ) ( ) ; e ewering is juis mis 0 9 + 8 ( a a ) a is nie juis wel juis is ( a a ) ( a ) ( a ) a a + (

Nadere informatie

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking.

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking. G&R havo B deel Differentiaalrekening C von Schwartzenberg /0 Toets voorkennis EXTRA: Differentiëren op bladzijde 56 aan het einde van deze uitwerking a f ( ) 5 7 f '( ) 8 5 b g( ) ( 5) 5 g '( ) 6 0 c

Nadere informatie

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I VWO

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I VWO UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 00-I VAK: WISKUNDE A, NIVEAU: VWO EXAMEN: 00-I De uigever heef ernaar gesreefd de aueursrechen e regelen volgens de weelijke bepalingen. Degenen die

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B,2 (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 86 punen e behalen; he examen besaa ui 9 vragen. Voor

Nadere informatie

n: x y = 0 x 0 2 x 0 1 x 0 1 x 0 4 y -6 0 y 1 0 y 0 1 y 2 0 p =. C. von Schwartzenberg 1/10

n: x y = 0 x 0 2 x 0 1 x 0 1 x 0 4 y -6 0 y 1 0 y 0 1 y 2 0 p =. C. von Schwartzenberg 1/10 1a 1b G&R havo B deel C. von Schwartzenberg 1/10 Tien broden kosten 16 euro blijft over voor bolletjes 60 16 = euro. Hij kan nog = 110 bolletjes kopen. 0,0 90 bolletjes kosten 6 euro blijft over voor broden

Nadere informatie

Hoofdstuk 7 - Logaritmische functies

Hoofdstuk 7 - Logaritmische functies Hoodsuk 7 - Logarimishe unies ladzijde 0 V-a De dagwaarde egin op 000 en daal naar 000. Dus: 000 g 000 = = 06 ; g = 000 06 0 909. = 000 g ; Op ijdsip = 0 is de dagwaarde 000. De groeiaor g 0 909 dus W

Nadere informatie

m: y = 0, 5x + 21 snijden met de x -as ( y = 0) 0 = 0, 5x , 5x = 21 x = 42. Snijpunt met x -as: (42, 0).

m: y = 0, 5x + 21 snijden met de x -as ( y = 0) 0 = 0, 5x , 5x = 21 x = 42. Snijpunt met x -as: (42, 0). C. von Schwartzenberg 1/1 1a In 1 minuut zakt het watereil 1 0 = cm (in 10 minuten zakt het water 0 cm). 10 Na 1 minuut is de waterhoogte 0 = 6 cm en na minuen is de waterhoogte 0 = cm. 1b II h = 0 t,

Nadere informatie

2.4 Oppervlaktemethode

2.4 Oppervlaktemethode 2.4 Opperlakemehode Teken he --diagram an de eenparige beweging me een snelheid an 10 m/s die begin na 2 seconden en eindig na 4 seconden. De afgelegde weg is: =. (m/s) In he --diagram is de hooge an de

Nadere informatie

Hoofdstuk 11: Groei 11.1 Exponenti 0 5le groei Opgave 1: Opgave 2: Opgave 3:

Hoofdstuk 11: Groei 11.1 Exponenti 0 5le groei Opgave 1: Opgave 2: Opgave 3: Hoofdsuk : Groei. Eponeni 0 le groei Opgave : a. 60 7 70 7 800 miljoen b., c. 980: N 7 00 7, 7 900 miljoen o 990: N 7 00 7, 7 0 miljoen o 900 7 00 d. klop nie, per 0 jaar is de oename: 700% 7 % 00 Opgave

Nadere informatie

Eindexamen wiskunde B 1 vwo 2003-I

Eindexamen wiskunde B 1 vwo 2003-I Eindexamen wiskunde B vwo 2003-I Lenge Ui saisisch onderzoek is gebleken da de volwassen Nederlandse mannen in 999 gemiddeld 80,0 cm lang waren, en da er een sandaardafwijking van 2,8 cm was in de lengeverdeling.

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correcievoorschrif VWO 009 ijdvak wiskunde A, He correcievoorschrif besaa ui: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2003-I

Eindexamen wiskunde A1-2 vwo 2003-I Eindexamen wiskunde A- vwo 003-I 4 Anwoordmodel Levensduur van kfiezeapparaen Maximumscore 4 Na,5 jaar zijn er 500 0,99 0,97 apparaen Na 3,5 jaar zijn er 500 0,99 0,97 0,87 apparaen He verschil hierussen

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correcievoorschrif VWO 2007 ijdvak 2 wiskunde A,2 He correcievoorschrif besaa ui: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de

Nadere informatie

40 = = Kruislings vermenigvuldigen geeft 40( c + 3) = 100 c waaruit volgt dat

40 = = Kruislings vermenigvuldigen geeft 40( c + 3) = 100 c waaruit volgt dat Kern Analyse 00 ( + 0) 00 a = 0 geef S = =. We zoeken de oplossing van de vergelijking S = 85. Oplossen + 0+ 3 + 3 lever = 7. b ijd (uren) 0 3 7 7 57 percenage S 0 50 70 80 90 95 c S 80 60 40 0 O 0 0 30

Nadere informatie

Bij een tonnage van ton (over mijl) kost het 0,75 $/ton totale kosten ,75 = ($).

Bij een tonnage van ton (over mijl) kost het 0,75 $/ton totale kosten ,75 = ($). C von Schwartzenberg 1/14 1a 0,5 $/ton (zie de verticale as bij punt A) 0 000 0,5 = 10 000 ($) 1b,1 $/ton (ga vanuit A verticaal omhoog naar de rood gestippelde grafiek) 0 000,1 = 4000 ($) us 4, keer zoveel

Nadere informatie

wiskunde A bezem havo 2017-I

wiskunde A bezem havo 2017-I Disribuieriem Een disribuieriem is een geribbelde riem die in een moderne verbrandingsmoor van een auo zi. Zo n riem heef en opziche van een keing voordelen: hij maak minder lawaai en er is geen smering

Nadere informatie

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A, (nieuwe sijl) Correcievoorschrif VWO Voorbereidend Weenschappelijk Onderwijs 0 03 Tijdvak Inzenden scores Vul de scores van de alfabeisch eerse vijf kandidaen per school in op de opisch leesbare

Nadere informatie

Extra oefening hoofdstuk 1

Extra oefening hoofdstuk 1 Era oefening hoofdsuk a Meekundig, u = 76, r = en u 9 = ( ) =, 76 86 Meekundig, u =,, r =, en u =, ( ) = 9 c Rekenkundig, u =, v = en v = + 9 = 8 9 d Meekundig, u =, r = 98, en u = (, 98) =, 87776 e Geen

Nadere informatie

Snelheid en richting

Snelheid en richting Snelheid en riching Di is een onderdeel van Meekunde me coördinaen en behoeve van he nieuwe programma (05) wiskunde B vwo. Opgaven me di merkeken kun je, zonder de opbouw aan e asen, overslaan. * Bij opgaven

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 4 Goniometrie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 4 Goniometrie De Wageningse Mehode & VWO wiskunde B Uigebreidere anwoorden Hoofdsuk Goniomerie Paragraaf Cirkelbewegingen a. De hooge van he wiel is de y-coördinaa van he hoogse pun van de grafiek, dus 80 cm b. De periode

Nadere informatie

Oefeningen Elektriciteit I Deel Ia

Oefeningen Elektriciteit I Deel Ia Oefeningen Elekriciei I Deel Ia Di documen beva opgaven die aansluien bij de cursuseks Elekriciei I deel Ia ui he jaarprogramma van de e kandidauur Indusrieel Ingenieur KaHo Sin-Lieven.. De elekrische

Nadere informatie

11 Groeiprocessen. bladzijde 151 21 a A = c m 0,67 } m = 40 en A = 136. 136 = c 40 0,67 136 = c

11 Groeiprocessen. bladzijde 151 21 a A = c m 0,67 } m = 40 en A = 136. 136 = c 40 0,67 136 = c Groeiprocessen ladzijde a A = c m 7 } m = 40 en A = = c 40 7 = c, 40 0 7 c, Dus de evenredigheidsconsane is,. m = 7 geef A =, 7 7 Dus de lichaamsoppervlake is ongeveer dm. c A =, geef, m 7 =, m 7 009 m

Nadere informatie

Hoofdstuk 7 - Veranderingen

Hoofdstuk 7 - Veranderingen Moerne wiskune 9e eiie Havo A eel Hoofsuk 7 - Veraneringen lazije 68 V-a Op zijn eriene was Jos 7 m en op zijn waalfe. Zijn lenge nam us 7 m oe. Dorri haar lenge nam oe van 5 naar 55, us 5 m. De grafiek

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 4 Exra oefening hoofdsuk a Invullen van a en geef B. Dus saa er, op de meer. B +, 8 +, 5 euro. c 5 +, 8a +, 5 5 + 8, a d 8, a 4 a 5 Er is 5 km afgelegd. Chauffeur X leg km in ijvooreeld minuen af. Dan

Nadere informatie

Correctievoorschrift VWO 2015

Correctievoorschrift VWO 2015 Correcievoorschrif VWO 205 ijdvak wiskunde C (pilo) He correcievoorschrif besaa ui: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correcievoorschrif VWO 2007 ijdvak 2 wiskunde A,2 He correcievoorschrif besaa ui: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaarigheen a lazije 5 5, 9 B B 6 5 5 f a a e r 9 9r r r r 5 8 5 5 a De rihingsoëffiiën van e lijn is gelijk aan 5 en he sargeal is 5, us 7 0 e vergelijking is y x+ 5. De rihingsoëffiiën van e lijn

Nadere informatie

Antwoordmodel VWO 2002-II wiskunde A (oude stijl) Speelgoedfabriek

Antwoordmodel VWO 2002-II wiskunde A (oude stijl) Speelgoedfabriek Anwoordmodel VWO 00-II wiskunde A (oude sijl) Anwoorden Speelgoedfabriek Voorwaarde II hoor bij immeren Voor immeren zijn 60x + 40y minuen nodig Voor immeren zijn 80 uur dus 4800 minuen beschikbaar 60x

Nadere informatie

Lineaire processen. HAVO - CM en EM

Lineaire processen. HAVO - CM en EM PERIODE STATISTIEK, COMBINATORIEK, Lineaire en Exponeniele funcies. DERDE WEEK Lineaire processen. HAVO - CM en EM Er is een duidelijk recep voor he opsellen van lineaire (rechlijnige) formules op basis

Nadere informatie

x 4,60en y 6,22. Dus de maximale gemiddelde winst is 6,22 euro per mat. Er worden dan 460matten per week geproduceerd. dw dq

x 4,60en y 6,22. Dus de maximale gemiddelde winst is 6,22 euro per mat. Er worden dan 460matten per week geproduceerd. dw dq 15 Differeie«re bladzijde178 16 a dw dq ˆ 1,5q2 8,25q W 550mae per week, dus q ˆ 5,5 dw dq ˆ 1,5 5,5 2 8,25 5,5 ˆ 0 qˆ5,5 Ui de sches volg da W maimaal is voor q ˆ 5,5. W ma ˆ 0,5 5,5 3 4,125 5,5 2 10

Nadere informatie

Uitwerkingen Toets 1 IEEE, Modules 1 en 2

Uitwerkingen Toets 1 IEEE, Modules 1 en 2 Uiwerkingen Toes IEEE, Modules en Daum: 9 sepember 007 Tijd: 0.40.0 (90 minuen) Opgave I) Di is een warmmakerje. In woorden is V is de serieschakeling van, en (de parallelschakeling van 3 en 4) of V =

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correcievoorschrif VWO 04 ijdvak wiskunde A (pilo) He correcievoorschrif besaa ui: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de

Nadere informatie

x 0 2 y -1 0 x 0 1 y 2-1 y 3 4 y 0 2 G&R vwo A/C deel 1 2 Functies en grafieken C. von Schwartzenberg 1/15 1a 1b

x 0 2 y -1 0 x 0 1 y 2-1 y 3 4 y 0 2 G&R vwo A/C deel 1 2 Functies en grafieken C. von Schwartzenberg 1/15 1a 1b G&R vwo A/C deel 1 Functies en grafieken C. von Schwartzenberg 1/15 1a 1b t =, 5 d 10, 5 + 46 = 1 (m). 1 minuut en 45 seconden geeft t = 1,75 d 10 1,75 + 46 = 8,5 (m). 1c 1d Per minuut wordt de diepte

Nadere informatie

Gebruik van condensatoren

Gebruik van condensatoren Gebruik van condensaoren He spanningsverloop ijdens he laden Als we de schakelaar s sluien laden we de condensaor op. De condensaorspanning zal oenemen volgens een exponeniële funcie en de spanning over

Nadere informatie

( ) ( ) ( ) ( ) ( ) ( ) 2 4 ( ) 2 25 ( ) ( ) ( ) 1 ( ) 2 ( ) 2 2 2. y y x. a 3a. ab b a b b a b. a a. a a. a a

( ) ( ) ( ) ( ) ( ) ( ) 2 4 ( ) 2 25 ( ) ( ) ( ) 1 ( ) 2 ( ) 2 2 2. y y x. a 3a. ab b a b b a b. a a. a a. a a G&R hvo B deel Eponenen en lorimen C von Schwrzenber / y = en y = b komen op hezelde neer = en = c y y komen nie op hezelde neer y = en y = komen op hezelde neer b c 8 = d = = 0 8 = e ( ) ( ) 9 = = 8 8

Nadere informatie

= cos245 en y P = sin245.

= cos245 en y P = sin245. G&R havo B deel C. von Schwartzenberg / a b overstaande rechthoekszijde PQ PQ sinα = (in figuur 8.) sin = = PQ = sin 0, 9. schuine zijde OP aanliggende rechthoekszijde OQ OQ cosα = (in figuur 8.) cos =

Nadere informatie

Vaardigheden. bladzijde 174. De toename per jaar is = 102, = dus de toename per 100 jaar is De toename per jaar is.

Vaardigheden. bladzijde 174. De toename per jaar is = 102, = dus de toename per 100 jaar is De toename per jaar is. Vaarigheen lazije 74 00 440 De oename per jaar is = 0, 00 99 ij in jaren 990 000 00 00 00 aanal 440 7,, 00 De oename per jaar is 609900 00 000 700 89 ij in jaren 700 800 900 997 000 aanal 00 00 48 000

Nadere informatie

wiskunde A vwo 2015-I

wiskunde A vwo 2015-I wiskunde A vwo 05-I Diabeesrisicoes maximumscore 4 He aanal personen me verborgen diabees is binomiaal verdeeld me n = 400 en p = 0, 0 P( X 00 ) = P( X 99 ) Beschrijven hoe di me de GR berekend word De

Nadere informatie

Eindexamen havo wiskunde A I

Eindexamen havo wiskunde A I Eindexamen havo wiskunde A 0 - I Supersize me maximumscore 3 33,6 G = 5000 G 49 (kg) He anwoord: 49 85 = 64 (kg) ( nauwkeuriger) maximumscore 4 E b = 33,6 85 = 856 Zijn energieoverscho is 5000 856 = 44

Nadere informatie

x 2x x 4x x 1x x 8x x x 12 = 0 G&R vwo B deel 1 1 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/25

x 2x x 4x x 1x x 8x x x 12 = 0 G&R vwo B deel 1 1 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/25 C. von Schwartzenberg 1/ 1 I, II, IV en V zijn tweedegraadsvergelijkingen. (de hoogste macht van is steeds ; te zien na wegwerken haakjes?) (III is een eerstegraadsvergelijking en VI is een derdegraadsvergelijking)

Nadere informatie

C. von Schwartzenberg 1/8. 1b Bij situatie II is er sprake van een evenredig verband. bij p = 12,50 hoort q = 6500. W is evenredig met S,

C. von Schwartzenberg 1/8. 1b Bij situatie II is er sprake van een evenredig verband. bij p = 12,50 hoort q = 6500. W is evenredig met S, G&R havo A eel C vo Schwarzeberg 1/8 1a Bij I wor y vier keer zo klei (us he viere eel) ; bij II wor y (precies als ) ook vier keer zo groo 1b Bij siuaie II is er sprake va ee evereig verba a (rech)evereig

Nadere informatie

Eindexamen wiskunde A 1-2 vwo 2002-I

Eindexamen wiskunde A 1-2 vwo 2002-I Eindexamen wiskunde A 1-2 vwo 2002-I Vogels die voedsel zoeken Vogels die voedsel zoeken op de grond veronen vaak een karakerisiek paroon van lopen en silsaan. In iguur 1 is di paroon voor wee vogelsooren

Nadere informatie

Hoofdstuk 1: Rust en beweging

Hoofdstuk 1: Rust en beweging Hoofdsuk 1: Rus en beweging 1.1 Rus en beweging zijn relaief Ten opziche van he vlieguig is de passagier in................................................ Ten opziche van he aardoppervlak is he vlieguig

Nadere informatie

Samenvatting Natuurkunde 1 HAVO Beweging

Samenvatting Natuurkunde 1 HAVO Beweging Beweging Samenvaing Nauurkunde HAVO Eenparig rechlijnige beweging a Eenparig versnelde rechlijnige beweging a a = consan a = 0 m/s Oppervlake = v = 0 m/s Oppervlake = v v v v = consan v() = a Oppervlake

Nadere informatie

digitale signaalverwerking

digitale signaalverwerking digiale signaalverwerking deel 2: sampling en digiale filerechniek Hoewel we de vorige keer reeds over he samplen van signalen gesproken hebben, komen we daar nu op erug, om de ermee samenhangende effecen

Nadere informatie

Opgave 1 (30 punten) + + = B h Z

Opgave 1 (30 punten) + + = B h Z Tenamen CT222 Dynamica van Sysemen 25 juni 212 14.-17. Le op: - Vermeld op ieder blad je naam en sudienummer - Maak elk van de drie opgaven op een apar vel Opgave 1 (3 punen) 2 Een bekken (links) me berging

Nadere informatie

Werkboek. meer. check! Geluk. in 3Weken! Marjan van de Bult

Werkboek. meer. check! Geluk. in 3Weken! Marjan van de Bult Werkboek meer Geluk J check! in 3Weken! Marjan van de Bul www.gelukfabriek.nl Unlock your Luck vormgeving www.somehingilse.nl Alsjeblief! Hier is jouw eigen werkboek voor meer geluk in 3 weken. Misschien

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correcievoorschrif VWO 04 ijdvak nauurkunde He correcievoorschrif besaa ui: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

E 1. Voor de coördinaten van P geldt: x (t) = cos t + t sin t y (t) = sin t t sin t

E 1. Voor de coördinaten van P geldt: x (t) = cos t + t sin t y (t) = sin t t sin t Buieling Gegeven een halve cirkel me sraal. Lijnsuk raak de halve cirkel in pun R. De lenge van is consan π meer, erwijl he raakpun R langs de cirkel loop, me een snelheid van m/s. Gebruik de ekening.

Nadere informatie

Overzicht. Inleiding. Classificatie. NP compleetheid. Algoritme van Johnson. Oplossing via TSP. Netwerkalgoritme. Job shop scheduling 1

Overzicht. Inleiding. Classificatie. NP compleetheid. Algoritme van Johnson. Oplossing via TSP. Netwerkalgoritme. Job shop scheduling 1 Overzich Inleiding Classificaie NP compleeheid Algorime van Johnson Oplossing via TSP Newerkalgorime Job shop scheduling 1 Inleiding Gegeven zijn Machines: M 1,,..., M m Taken: T 1, T 2,... T n Per aak

Nadere informatie

x y C. von Schwartzenberg 1/22 = + = Zie de lijnen in de figuur hiernaast. Zie de grafiek van k in de figuur rechts hiernaast. 2b

x y C. von Schwartzenberg 1/22 = + = Zie de lijnen in de figuur hiernaast. Zie de grafiek van k in de figuur rechts hiernaast. 2b G&R vwo D deel C von Schwartzenberg / a k: = x gaat door (0, ) ( 0 = ) en (, ) ( = ) l : x = 6 gaat door (0, ) (0 = 6) en (, 0) ( 0 = 6) Zie de lijnen in de figuur hiernaast b = x x = of x = of x = 6 of

Nadere informatie

GEBRUIKSAANWIJZING. Binnenunit voor lucht-waterwarmtepompsysteem EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1

GEBRUIKSAANWIJZING. Binnenunit voor lucht-waterwarmtepompsysteem EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 GEBRUIKSAANWIJZING Binnenuni voor luch-waerwarmepompsyseem en opies EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1

Nadere informatie

Examen VWO. Wiskunde A1,2 (nieuwe stijl)

Examen VWO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A1,2 (nieuwe sijl) Examen VWO Voorbereidend Weenschappelijk Onderwijs Tijdvak 1 Dinsdag 28 mei 13.30 16.30 uur 20 02 Voor di examen zijn maximaal 90 punen e behalen; he examen besaa ui 20 vragen.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a V-a 16 Hoofsuk 6 - Proenuele groei Hoofsuk 6 - Proenuele groei Voorkennis Een lenge van 1 meer 5 is een lenge van 15 m. hooge in m 6 1 15 lenge shauw in m 9 1,5 5 De shauw van Henk als hij rehop saa

Nadere informatie

Correctievoorschrift VWO 2015

Correctievoorschrift VWO 2015 Correcievoorschrif VWO 205 ijdvak wiskunde C He correcievoorschrif besaa ui: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Extra oefening bij hoofdstuk 1

Extra oefening bij hoofdstuk 1 Exra oefening ij hoofdsuk a ( x)( x ) ( x) of ( x ) x of x x of x of x, ( + x ) x, ( + x ) of x x of x x of x x of x x + x x x + x en x x ( x + ) en x x + x d x + x x( + 8x) x of + 8x x of x 8 e x x x

Nadere informatie

Studiekosten en andere scholings uitgaven

Studiekosten en andere scholings uitgaven bij aangife inkomsenbelasing 20 IB 266-1TFD (2576) Sudiekosen en andere scholings uigaven Volgde u in 20 een opleiding of een sudie voor uw (oekomsige) beroep? Of had u kosen voor een EVCprocedure (Erkenning

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 1. Lineair verband. 1a. na 1 min 36 cm, na min. 3 cm, daling 4 cm per minuut. b. h = 40 4t h in cm en t per minuut b. k: rc = -3 m: rc = 0.5 p: rc

Nadere informatie

Studiekosten of andere scholingsuitgaven

Studiekosten of andere scholingsuitgaven 12345 Aanvullende oeliching bij aangife inkomsenbelasing IB 266-1T02FD (2464) Sudiekosen of andere scholingsuigaven Volgde u in een opleiding of een sudie voor uw (oekomsige) beroep? Dan mag u de uigaven

Nadere informatie

Studiekosten en andere scholings uitgaven

Studiekosten en andere scholings uitgaven 20 Aanvullende oeliching bij aangife inkomsenbelasing 20 IB 266-1T12FD (2576) Sudiekosen en andere scholings uigaven Volgde u in 20 een opleiding of een sudie voor uw (oekomsige) beroep? Of had u kosen

Nadere informatie

Het wiskunde B1,2-examen

Het wiskunde B1,2-examen Ger Koole, Alex van den Brandhof He wiskunde B,2 examen NAW 5/4 nr. 2 juni 2003 65 Ger Koole Faculei der Exace Weenschappen, Afdeling Wiskunde, Vrije Universiei, De Boelelaan 08 a, 08 HV Amserdam koole@cs.vu.nl

Nadere informatie

Studiekosten of andere scholings uitgaven

Studiekosten of andere scholings uitgaven 20 Aanvullende oeliching bij aangife inkomsenbelasing 20 Sudiekosen of andere scholings uigaven Volgde u in 20 een opleiding of een sudie voor uw (oekomsige) beroep? Of had u kosen voor een EVCprocedure

Nadere informatie

Uitwerkingen opgaven hoofdstuk 4. 4.1 Soorten straling en stralingsbronnen

Uitwerkingen opgaven hoofdstuk 4. 4.1 Soorten straling en stralingsbronnen Uiwerkingen opgaven hoofdsuk 4 Opgave 1 a 4.1 Sooren sraling en sralingsbronnen Eröngenfoon = h f h f 4 = 6, 6607 10 Js 19 = 1, 9 10 Hz E = = röngenfoon 4 19 14 6, 6607 10 1,9 10 1, 59 10 J b De hoeveelheid

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie