Tentamen Moleculaire Simulaties - 8C November uur

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Tentamen Moleculaire Simulaties - 8C November uur"

Transcriptie

1 Tentamen Moleculaire Simulaties - 8C November uur Vier algemene opmerkingen: Het tentamen bestaat uit 6 opgaven verdeeld over 3 pagina's. Op pagina 3 staat voor iedere opgave het maximale aantal punten dat voor de opgave behaald kan worden. Het gebruik van boeken, aantekeningen, collegedictaten, notebooks of rekenmachines is bij dit tentamen niet toegestaan. Bij dit tentamen mag u gebruik maken van het bijgevoegd formuleblad. Alle antwoorden dienen duidelijk geformuleerd en gemotiveerd te worden. 1. (a) Geef de denitie van een conservatieve kracht. Gegeven is een kracht F in het tweedimensionale x-y vlak beschreven door F(x; y) = (b) Maak een schets waarin duidelijk te zien is hoe de kracht F zich gedraagt. (c) Is de kracht F een conservatieve kracht? Beargumenteer uw antwoord. (d) Stel we laten op t = 0 een deeltje met massa m = 1 los in het punt (3; 4). Het deeltje heeft geen beginsnelheid. Wat is de maximumsnelheid van dit deeltje? (e) Op welk punt staat het deeltje opnieuw stil? x y! : 2. Beschouw de potentiaal U(r) gegeven door U(r) = (r 1)2 r 3 : (a) Bepaal het punt r min waar U(r) minimaal is en de waarde van U(r) in dat punt. (b) Bepaal het punt r max waar U(r) maximaal is en de waarde van U(r) in dat punt. (c) Schets het verloop van deze potentiaal als functie van r. Geef expliciet aan voor welke waarden van r de potentiaal afstotend respectivelijk aantrekkend is. (d) Geef de expliciete uitdrukking voor de bij deze potentiaal behorende kracht als functie van r. (e) Stel een deeltje met massa m = 2 bevindt zich op tijdstip t = 0 op zeer grote afstand van 3 de oorsprong. Welke snelheid v in de richting van de oorsprong moeten we dit deeltje geven zodat het het punt r = 1 passeert? 1

2 3. Beschouw de dierentiaalvergelijking dy dt = y ; waarbij een positieve parameter is. Neem aan dat de waarde y(t) in een punt t bekend is. (a) Geef de exacte uitdrukking voor y(t + t), waarbij t een gegeven positieve stapgrootte is. (b) Bereken nu een benadering voor y(t + t) met behulp van de impliciete methode van Euler. Noem deze benadering by(t + t). (c) De lokale afbreekfout van de impliciete methode van Euler is het verschil tussen de benadering en de exacte oplossing, dat wil zeggen by(t + t) y(t + t) : Laat zien dat in dit geval de lokale afbreekfout van de impliciete Euler methode gelijk is aan O( t 2 ). 4. Beschouw twee vaten met elk een ideaal gas. Beide vaten hebben een constant volume V en bevatten N deeltjes. Vat 1 heeft temperatuur T 1 en vat 2 heeft temperatuur T 2. Neem aan dat T 1 < T 2. De beide vaten worden in contact gebracht zodat er warmteuitwisseling mogelijk is. Het totale systeem van beide vaten is gesoleerd: er wordt dus geen arbeid op verricht en geen warmte aan toegevoegd. (a) Bereken de eindtemperatuur T eind van de vaten in contact. U mag gebruiken dat de inwendige energie van N deeltjes van een ideaal gas met temperatuur T gelijk is aan E = 3 2 Nk BT. We gaan nu de entropieverandering S 1 van vat 1 berekenen. Omdat de entropie een toestandsfunctie is, kunnen we de entropieverandering van vat 1 berekenen door aan te nemen dat de overgang van begin naar eindtoestand heel langzaam verloopt doordat er heel langzaam warmte wordt toegevoerd totdat de eindtemperatuur bereikt is. (b) Bereken met behulp van de dierentiaal van de inwendige energie E het verband tussen de en ds. (c) Gebruik E = 3 2 Nk BT om het verband tussen dt en ds te vinden. (d) Bereken nu de totale entropieverandering van vat 1. (e) Bereken op dezelfde manier de totale entropieverandering S 2 van vat 2. (f) Bereken de totale entropieverandering S van het hele systeem. (g) Wat geldt er voor het teken van S en waarom? 2

3 5. (a) Geef de totale dierentiaal van de vrije energie F. (b) Bereken daaruit de afgeleiden van F naar de temperatuur T, het volume V en het aantal deeltjes N. Geef daarbij duidelijk aan welke variabelen bij het dierentieren constant worden gehouden. (c) Leid de Maxwellrelatie van de (d) Voor een ideaal gas met N deeltjes geldt P V = Nk B T. Bereken nu met de hiervoor afgeleide Maxwellrelatie hoe voor een ideaal gas de entropie afhangt van het volume. N;T =? 6. De kansdichtheid van de impulsen van N deeltjes met massa m wordt gegeven door (p 1 ; p 2 ; : : : ; p N ) = e p 2 1 2m (2mk B T ) 3=2 p2 2 2m p2 N 2m e (2mk B T ) : : : e 3=2 (2mk B T ) : 3=2 Hierbij is p i de impulsvector van deeltje i, met componenten p i;x, p i;y en p i;z en = 1 kbt. (a) Laat zien dat Z dp 1 dp 2 : : : dp N (p 1 ; p 2 ; : : : ; p N ) = 1 : R Hierbij staat voor 3N integraaltekens, allen met grenzen 1 en 1, en is dp i = voor a > 0. R p 1 dp i;x dp i;y dp i;x. U mag gebruiken dat 1 e ax2 = a (b) Bereken < p 2 1;x >, d.w.z. de verwachtingswaarde van R het kwadraat van de x component 1 van de impuls van deeltje 1. U mag gebruiken dat 1 x2 e ax2 = 2p 1 voor a 3 a > 0. (c) Wat is nu de < p 2 i >, d.w.z. de verwachtingswaarde van het kwadraat van de impulsvector van deeltje i? Honorering: (totaal 60 punten) Opgave 1a: 2 punten Opgave 2a: 2 punten Opgave 3a: 3 punten Opgave 1b: 2 punten Opgave 2b: 2 punten Opgave 3b: 3 punten Opgave 1c: 2 punten Opgave 2c: 2 punten Opgave 3c: 4 punten Opgave 1d: 2 punten Opgave 2d: 1 punt Opgave 1e: 2 punten Opgave 2e: 3 punten Opgave 4a: 1 punt Opgave 5a: 2 punten Opgave 6a: 3 punten Opgave 4b: 2 punten Opgave 5b: 2 punten Opgave 6b: 4 punten Opgave 4c: 2 punten Opgave 5c: 3 punten Opgave 6c: 3 punten Opgave 4d: 2 punten Opgave 5d: 3 punten Opgave 4e: 1 punt Opgave 4f: 1 punt Opgave 4g: 1 punt 3

4

5 Formuleblad / Moleculaire Simulaties - 8C030 De Hamiltoniaan in cartesische coordinaten is gedenieerd als H(p; q) = K + U = NX i=1 p 2 i 2 m i + U(q 1 ; : : : ; q N ) ; In termen van de Hamiltoniaan worden de bewegingsvergelijkingen gegeven door de zogeheten Hamiltoniaanse vergelijkingen en : Gegeven een dierentiaalvergelijking van de vorm dy dt = f(y(t)) ; dan zijn de volgende numerieke oplossingen voor een tijdstap t mogelijk: { Expliciet Euler: ^y(t + t) = y(t) + t f(y(t)) { Impliciet Euler: ^y(t + t) = y(t) + t f(^y(t + t)) { Crank-Nicholson: ^y(t + t) = y(t) + 1 t (f(y(t)) + f(^y(t + t))) 2 { Verbeterde Euler: y (t + t) = y(t) + t f(y(t)) ^y(t + t) = y(t) t (f(y(t)) + f(y (t + t))) { Runge-Kutta: k 1 = f(y(t)) k 2 = f(y(t) t k 1) k 3 = f(y(t) t k 2) k 4 = f(y(t) + t k 3 ) ^y(t + t) = y(t) t (k 1 + 2k 2 + 2k 3 + k 4 ) Totale dierentiaal van inwendige energie E de = T ds P dv + dn : Helmholtz vrije energie Enthalpie Gibbs vrije energie F = E T S : H = E + P V : G = E T S + P V :

6 De ergodenstelling luidt waarbij O de observabele is. O 1 Z 0 O (t) dt = X P O hoi ; De microscopische denitie van temperatuur is gegeven door = ln k B T N;V ; met k B = 1: J K 1 de constante van Boltzmann. Voor het microkanonieke ensemble geldt voor de entropie de vergelijking van Boltzmann S = k B ln ; welke overgaat in de Gibbs vergelijking voor entropie voor elk willekeurig ensemble X S = k B P ln P : De kanonieke moleculaire partitiefunctie wordt gegeven door Q (N; V; T ) = X e E : De Boltzmanndistributie is P = e E P e E : De klassieke partitiefunctie wordt geschreven als het product Z Z Q = Q kin Z N = 1 1 N! h 3N e K(pN ) dp N e U(qN ) dq N : met h = 6: J s de constante van Planck. De isochore warmtecapaciteit wordt gegeven door door E E D( E) 2 = D(E hei) 2 = k B T 2 C V : De Taylorreeksbenadering van de functie f rond het punt x is gegeven door f(x + x) = f(x) + f 0 (x) x + f 00 (x) 2 ( x) f (n) (x) ( x) n + : n!

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d Eindtoets 3BTX1: Thermische Fysica Datum: 3 juli 2014 Tijd: 9.00-12.00 uur Locatie: paviljoen study hub 2 vak c & d Deze toets bestaat uit 3 opgaven die elk op een nieuwe pagina aanvangen. Maak de opgaven

Nadere informatie

Eindtoets 3BTX1: Thermische Fysica. Datum: 12 augustus 2014 Tijd: uur Locatie: Matrix Atelier 3

Eindtoets 3BTX1: Thermische Fysica. Datum: 12 augustus 2014 Tijd: uur Locatie: Matrix Atelier 3 Eindtoets 3BTX: Thermische Fysica Datum: augustus 04 Tijd: 4.00-7.00 uur Locatie: Matrix Atelier 3 Deze toets bestaat uit 3 opgaven. Begin de beantwoording van elke opgave op een nieuw antwoordvel. Een

Nadere informatie

7. Hamiltoniaanse systemen

7. Hamiltoniaanse systemen 7. Hamiltoniaanse systemen In de moleculaire dynamica, maar ook in andere gebieden zoals de hemelmechanica of klassieke mechanica, worden oplossingen gezocht van het Hamiltoniaanse systeem van differentiaalvergelijkingen

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 15 augustus 2011, 9.00-12.00 uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 15 augustus 2011, 9.00-12.00 uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 15 augustus 2011, 9.00-12.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die

Nadere informatie

Tentamen Statistische Thermodynamica MS&T 27/6/08

Tentamen Statistische Thermodynamica MS&T 27/6/08 Tentamen Statistische Thermodynamica MS&T 27/6/08 Vraag 1. Toestandssom De toestandssom van een systeem is in het algemeen gegeven door de volgende uitdrukking: Z(T, V, N) = e E i/k B T. i a. Hoe is de

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB januari 2013, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB januari 2013, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 23 januari 2013, 1400-1700 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die

Nadere informatie

Opgave 2. Voor vloeibaar water bij 298.15K en 1 atm zijn de volgende gegevens beschikbaar:

Opgave 2. Voor vloeibaar water bij 298.15K en 1 atm zijn de volgende gegevens beschikbaar: Oefenopgaven Thermodynamica 2 (29-9-2010) Opgave 1. Een stuk ijs van -20 C en 1 atm wordt langzaam opgewarmd tot 110 C. De druk blijft hierbij constant. Schets hiervoor in een grafiek het verloop van de

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 5 juli 2013, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 5 juli 2013, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 5 juli 2013, 9.00-12.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die bij

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA TECHNISCHE UNIERSITEIT EINDHOEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA Tentamen Thermische Fysica 1 (3NB60, op vrijdag 20 april 2012, 09.00-12.00. Het tentamen levert maximaal 100 punten

Nadere informatie

Biofysische Scheikunde: Statistische Mechanica

Biofysische Scheikunde: Statistische Mechanica Biofysische Scheikunde: Statistische Mechanica De Boltzmannverdeling Vrije Universiteit Brussel 4 december 2009 Outline 1 De Boltzmannverdeling 2 Outline De Boltzmannverdeling 1 De Boltzmannverdeling 2

Nadere informatie

HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009, 18.30 20.30

HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009, 18.30 20.30 HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009, 18.30 20.30 Bij het tentamen mag gebruik worden gemaakt van een GR en BINAS. NB: Geef bij je antwoorden altijd eenheden,

Nadere informatie

De twee snelheidsconstanten hangen op niet identieke wijze af van de temperatuur.

De twee snelheidsconstanten hangen op niet identieke wijze af van de temperatuur. In tegenstelling tot een verandering van druk of concentratie zal een verandering in temperatuur wel degelijk de evenwichtsconstante wijzigen, want C k / k L De twee snelheidsconstanten hangen op niet

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA Tentamen Thermische Fysica 1 (3NB60), op woensdag 13 april 2011, 900-1200 uur Het tentamen levert maximaal 100

Nadere informatie

TENTAMEN CHEMISCHE THERMODYNAMICA voor F2/MNW2. Vrijdag 23 december 2005

TENTAMEN CHEMISCHE THERMODYNAMICA voor F2/MNW2. Vrijdag 23 december 2005 TENTAMEN CHEMISCHE THERMODYNAMICA voor F/MNW Vrijdag 3 december 005 Bij het tentamen mag gebruik worden gemaakt van een GR. Mogelijk nodige constantes: Gasconstante R = 8.31447 Jmol 1 K 1 = 8.0574 10 L

Nadere informatie

Wiskundige functies. x is het argument of de (onafhankelijke) variabele

Wiskundige functies. x is het argument of de (onafhankelijke) variabele Wiskundige functies Een (wiskundige) functie voegt aan ieder getal een ander getal toe. Bekijk bijv. de functie f() = 2 1 Aan het getal 2, d.w.z. = 2, wordt het getal 3 toegevoegd, want f(2) = 2 2 1 =

Nadere informatie

TENTAMEN CHEMISCHE THERMODYNAMICA. Dinsdag 25 oktober 2011 13.15 15.15

TENTAMEN CHEMISCHE THERMODYNAMICA. Dinsdag 25 oktober 2011 13.15 15.15 TENTAMEN CHEMISCHE THERMODYNAMICA Dinsdag 25 oktober 2011 13.15 15.15 Bij het tentamen mag gebruik worden gemaakt van BINAS en een (grafische) rekenmachine. Let op eenheden en significante cijfers. 1.

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 en Statistische Fysica 3CC augustus 2010,

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 en Statistische Fysica 3CC augustus 2010, Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 en Statistische Fysica 3CC10 23 augustus 2010, 09.00-12.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld

Nadere informatie

Technische ThermoDynamica Samenvatter: Maarten Haagsma /6 Temperatuur: T = ( /U / /S ) V,N

Technische ThermoDynamica Samenvatter: Maarten Haagsma /6 Temperatuur: T = ( /U / /S ) V,N 2001-1/6 Temperatuur: T = ( /U / /S ) dw = -PdV Druk: P = - ( /U / /V ) S,N dq = TdS Chemisch potentiaal: = ( /U / /N ) S,V Energie representatie: du = TdS + -PdV + dn Entropie representatie: ds = du/t

Nadere informatie

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS 22 juli 1999 70 --- 13 de internationale olympiade Opgave 1. Absorptie van straling door een gas Een cilindervormig vat, met de as vertikaal,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA ECHNISCHE UNIVERSIEI EINDHOVEN FACULEI DER ECHNISCHE NAUURKUNDE GROEP RANSPORFYSICA entamen hermische Fysica 1 (3NB60), op vrijdag 21 januari 2011, 14.00-17.00 uur. Het tentamen levert maximaal 100 punten

Nadere informatie

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Mechanica 1 voor N en Wsk (3NA40 en 3AA40) Donderdag 21 januari 2010 van 09.00u tot 12.00u Dit tentamen bestaat uit vier opgaven.

Nadere informatie

Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7

Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7 VAK: Thermodynamica A Set Proeftoets AT01 Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 100 minuten Uw naam:... Klas:...

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 6 juli 2012, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 6 juli 2012, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 6 juli 2012, 14.00-17.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die bij

Nadere informatie

QUANTUM FYSICA 1 3NB50. donderdag 28 oktober uur. Dit tentamen omvat 2 opgaven.

QUANTUM FYSICA 1 3NB50. donderdag 28 oktober uur. Dit tentamen omvat 2 opgaven. 1 QUANTUM FYSICA 1 3NB5 donderdag 8 oktober 1 14. 17. uur Dit tentamen omvat opgaven. Bij ieder onderdeel wordt aangegeven wat de maximale score is op een schaal van 1 punten. Het formuleblad voor dit

Nadere informatie

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Opgave 1 Botsend blokje (5p) Een blok met een massa van 10 kg glijdt over een glad oppervlak. Hoek D botst tegen een klein vastzittend blokje S

Nadere informatie

Opgave 1 Vervormd vierkant kristal en elektronische structuur (totaal 24 punten)

Opgave 1 Vervormd vierkant kristal en elektronische structuur (totaal 24 punten) 3NC2 Gecondenseerde materie 215 Extra tentamen, 1 april 215 Algemeen: Beargumenteer je antwoorden. Vermeld zowel de gebruikte basisformules als de tussenstappen in de afleiding. Mogelijk te gebruiken formules:

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) dinsdag 21 januari 2003 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is een formulier

Nadere informatie

VAK: Thermodynamica - A Set Proeftoets 01

VAK: Thermodynamica - A Set Proeftoets 01 VAK: Thermodynamica - A Set Proeftoets 01 Thermodynamica - A - PROEFTOETS- set 01 - E_2016 1/8 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 100 minuten Uw naam:... Klas:...

Nadere informatie

Examen VWO. wiskunde B1,2

Examen VWO. wiskunde B1,2 wiskunde B1,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart 2015 14.00-15.30 uur Docenten: L. de Smet, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart 2015 14.00-15.30 uur Docenten: L. de Smet, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart 2015 14.00-15.30 uur Docenten: L. de Smet, B. Dam Naam:. Studentnummer Leiden:... En/of Studentnummer Delft:... Dit tentamen bestaat

Nadere informatie

Eindronde Natuurkunde Olympiade 2013 theorietoets deel 1

Eindronde Natuurkunde Olympiade 2013 theorietoets deel 1 Eindronde Natuurkunde Olympiade 2013 theorietoets deel 1 Opgave 1 Helikopter (3p) Een helikopter A kan in de lucht stilhangen als het geleverde vermogen door de motor P is. Een tweede helikopter B is een

Nadere informatie

Elektromagnetische veldtheorie (121007) Proeftentamen

Elektromagnetische veldtheorie (121007) Proeftentamen Elektromagnetische veldtheorie (121007) Proeftentamen Tijdens dit tentamen is het gebruik van het studieboek van Feynman toegestaan, en zelfs noodzakelijk. Een formuleblad is bijgevoegd. Ander studiemateriaal

Nadere informatie

Differentiaalvergelijkingen I : separabele en lineaire 1ste orde DV

Differentiaalvergelijkingen I : separabele en lineaire 1ste orde DV WISKUNDIGE ANALYSE OEFENZITTING 0 c D. Keppens 2004 Differentiaalvergelijkingen I : separabele en lineaire ste orde DV Onderwerp : separabele differentiaalvergelijkingen van de eerste orde en vergelijkingen

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 24 November, 2008 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Thermodynamica. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Thermodynamica. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Thermodynamica Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 2009-2010 Inhoudsopgave Eerste hoofdwet - deel 1 3 Oefening 1.1......................................

Nadere informatie

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen Klassieke Mechanica a (Tentamen mei ) Uitwerkingen Opgave. (Beweging in een conservatief krachtenveld) a. Een kracht is conservatief als r F =. Dit blijkt na invullen: (r F) x = @F z =@y @F y =@z = =,

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart 2017 13.30-15.00 uur Docenten: T. Savenije, B. Dam Dit tentamen bestaat uit 30 multiple-choice vragen Hiermee zijn in totaal 20 punten te verdienen Voor

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) donderdag 2 februari 2006 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee of drie open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is

Nadere informatie

Fysische Chemie Oefeningenles 1 Energie en Thermochemie. Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt:

Fysische Chemie Oefeningenles 1 Energie en Thermochemie. Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt: Fysische Chemie Oefeningenles 1 Energie en Thermochemie 1 Vraag 1 Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt: Bij constante T het volume reversibel verdubbeld. Het

Nadere informatie

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur Toets 3 Calculus voor MST, 450CALCY donderdag 20 oktober 206; 3:30-5:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Volgt de lessen bij: (Leids) studentnummer: A (Keijzer)

Nadere informatie

BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA

BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA 1ste Kandidatuur ARTS of TANDARTS Academiejaar 2002-2003 Oefening 2 (p49) BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA Met een stalen rolmeter meten we bij 10 C de lengte van een koperen staaf.

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart uur Docenten: L. de Smet, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart uur Docenten: L. de Smet, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart 2016 13.30-15.00 uur Docenten: L. de Smet, B. Dam Dit tentamen bestaat uit 30 multiple-choice vragen Hiermee zijn in totaal 20 punten te verdienen Voor

Nadere informatie

Hertentamen Statistische en Thermische Fysica II Woensdag 14 februari 2007 Duur: 3 uur

Hertentamen Statistische en Thermische Fysica II Woensdag 14 februari 2007 Duur: 3 uur Hertentamen Statistische en Thermische Fysica II Woensdag 14 februari 2007 Duur: 3 uur Vermeld op elk blad duidelijk je naam, studierichting, en evt. collegekaartnummer! (TIP: lees eerst alle vragen rustig

Nadere informatie

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Mechanica 1 voor N en Wsk (3NA40 en 3AA40) Donderdag 8 april 010 van 09.00u tot 1.00u Dit tentamen bestaat uit vier opgaven.

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 19 juni 2009 9:00-12:00 Rechts boven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur Tentamen Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April 2014 Tijd/tijdsduur: 3 uur Docent(en) en/of tweede lezer: Dr. F.C. Grozema Prof. dr. L.D.A. Siebbeles Dit tentamen bestaat uit 5 opgaven:

Nadere informatie

Tentamen TCl l8 januari 2008' 9-12uur, zaal Cl (Gorlaeus).

Tentamen TCl l8 januari 2008' 9-12uur, zaal Cl (Gorlaeus). I Tentamen TCl l8 januari 2008' 9-12uur, zaal Cl (Gorlaeus). 1. Basisinzichten Geef van de onderstaande beweringen aan of zewaar of niet waar zijn (er hoeven geen argumenten gegeven te worden; het mag

Nadere informatie

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM HEREXAMEN HAVO 2015

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM HEREXAMEN HAVO 2015 MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM HEREXAMEN HAVO 2015 VAK : NATUURKUNDE DATUM : WOENSDAG 29 JUNI 2015 TIJD : 07.45 10.45 Aantal opgaven: 5 Aantal pagina s: 6 Controleer zorgvuldig

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

/14 /28 /28 /30 /100. Naam:.. Studentnr.:.. Resultaten: Totaal: Opgave 1 Opgave 2 Opgave 3 Opgave 4

/14 /28 /28 /30 /100. Naam:.. Studentnr.:.. Resultaten: Totaal: Opgave 1 Opgave 2 Opgave 3 Opgave 4 Tentamen: Fysische Chemie en Kinetiek (4052FYSCK-1415FWN) Datum: 17-4-2015 Tijd/tijdsduur: 9:00-12:00; 3 uur Plaats: Grote en Kleine Pastizaal, ChemE, Delft Docent(en) en/of tweede lezer: Prof. dr. M.T.M.

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

Tentamen Thermodynamica

Tentamen Thermodynamica Tentamen Thermodynamica 4B420 4B421 10 november 2008, 14.00 17.00 uur Dit tentamen bestaat uit 4 opeenvolgend genummerde opgaven. Indien er voor de beantwoording van een bepaalde opgave een tabel nodig

Nadere informatie

Unificatie. Zwakke Kracht. electro-zwakke kracht. Electriciteit. Maxwell theorie. Magnetisme. Optica. Sterke Kracht. Speciale Relativiteitstheorie

Unificatie. Zwakke Kracht. electro-zwakke kracht. Electriciteit. Maxwell theorie. Magnetisme. Optica. Sterke Kracht. Speciale Relativiteitstheorie Electriciteit Magnetisme Unificatie Maxwell theorie Zwakke Kracht electro-zwakke kracht Optica Statistische Mechanica Speciale Relativiteitstheorie quantumveldentheorie Sterke Kracht Klassieke Mechanica

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N46) op maandag 23 Deel 1: Van 14 uur tot uiterlijk 153 uur Het gebruik van het

Nadere informatie

Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen ( )

Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen ( ) Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen (201300156) Werktuigbouwkunde, B1 Faculteit der Construerende Technische Wetenschappen Universiteit Twente Datum: Oefentoets (TTD

Nadere informatie

Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen

Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen 1 Introductie Taylor polynoom, floating point getal, afrondfout Orde symbool Landau 1. Laat f(x) = x 3. Bepaal het tweede orde Taylor

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 11 collegejaar college build slides Vandaag : : : : 17-18 11 23 oktober 2017 35 De sterrennacht Vincent van Gogh, 1889 1 2 3 4 5 Verband met de stelling van n 1 VA intro ection 16.7 Definitie Equation

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel januari 2014 van 14:50 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel januari 2014 van 14:50 17:00 uur TECHISCHE UIVERSITEIT EIDHOVE Eindtoets Experimentele Fysica 1 (3A1X1) - Deel januari 014 van 14:50 17:00 uur Gebruik van dictaat, aantekeningen en laptop computer is niet toegestaan Gebruik van (grafische)

Nadere informatie

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7.

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7. Drs. J.H. Blankespoor Drs.. de Joode Ir. A. Sluijter Toegepaste wiskunde voor het hoger beroepsonderwijs Deel Derde, herziene druk herhalingsopgaven hoofdstuk 7 augustus 009 HBuitgevers, Baarn Toegepaste

Nadere informatie

Elke opgave moet op een afzonderlijk blad worden ingeleverd.

Elke opgave moet op een afzonderlijk blad worden ingeleverd. HERMODYNAMICA (WB14) 4 augustus 011 18.30-1.30 u. AANWIJZINGEN Het tentamen bestaat uit twee open vragen op 7 bladzijden. Het tentamen is een GESLOEN BOEK tentamen. Dit betekent dat tijdens het tentamen

Nadere informatie

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016 Kwantummechanica HOVO cursus Jo van den Brand Lecture 4: 13 oktober 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: jo@nikhef.nl 0620 539 484 / 020

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur wiskunde B Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 22 juni 3.30 6.30 uur 20 05 Voor dit eamen zijn maimaal 86 punten te behalen; het eamen bestaat uit 9 vragen. Voor elk vraagnummer

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde N460 op donderdag 4 juni 010, 14.00-17.00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 3 Inleveropgaven Kansrekening (2WS2) 23-24 Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.. Voetbalplaatjes. Bij

Nadere informatie

Tentamen Verbrandingstechnologie d.d. 9 maart 2009

Tentamen Verbrandingstechnologie d.d. 9 maart 2009 Tentamen Verbrandingstechnologie d.d. 9 maart 2009 Maak elke opgave op een afzonderlijk vel papier Diktaat mag gebruikt worden, aantekeningen niet Succes! Opgave 1: Diversen (a) Geef de algemene reactie

Nadere informatie

1 De Hamilton vergelijkingen

1 De Hamilton vergelijkingen 1 De Hamilton vergelijkingen Gegeven een systeem met m vrijheidsgraden, geparametriseerd door m veralgemeende coördinaten q i, i {1,, m}, met lagrangiaan L(q, q, t). Nemen we de totale differentiaal van

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries)

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries) Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017 Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer) / B

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Opgave Zonnestelsel 2005/2006: 7. 7 Het viriaal theorema en de Jeans Massa: Stervorming. 7.1 Het viriaal theorema

Opgave Zonnestelsel 2005/2006: 7. 7 Het viriaal theorema en de Jeans Massa: Stervorming. 7.1 Het viriaal theorema Opgave Zonnestelsel 005/006: 7 7 Het viriaal theorema en de Jeans Massa: Stervorming 7. Het viriaal theorema Het viriaal theorema is van groot belang binnen de sterrenkunde: bij stervorming, planeetvorming

Nadere informatie

Werkcollege 3: evenwicht bij zuivere stoffen

Werkcollege 3: evenwicht bij zuivere stoffen Werkcollege 3: evenwicht bij zuivere stoffen Vraag 1 Devormings-vrijeenthalpie G f vanbr 2(g)enBr 2 (l)bedraagtrespectievelijk3.11kjmol 1 en 0 kjmol 1. Wat is de dampdruk van Br 2 (g) bij 298K? Een eenvoudig

Nadere informatie

NATIONALE NATUURKUNDE OLYMPIADE. Tweede ronde - theorie toets. 21 juni beschikbare tijd : 2 x 2 uur

NATIONALE NATUURKUNDE OLYMPIADE. Tweede ronde - theorie toets. 21 juni beschikbare tijd : 2 x 2 uur NATIONALE NATUURKUNDE OLYMPIADE Tweede ronde - theorie toets 21 juni 2000 beschikbare tijd : 2 x 2 uur 52 --- 12 de tweede ronde DEEL I 1. Eugenia. Onlangs is met een telescoop vanaf de Aarde de ongeveer

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D d.d. 6 januari 6 van 4: 7: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is

Nadere informatie

1 De Thermodynamica. 1.1 Inleiding

1 De Thermodynamica. 1.1 Inleiding 1 1 De Thermodynamica 1.1 Inleiding In de thermodynamica houden we ons bezig met het bestuderen van fysische systemen die macroscopisch volledig beschreven kunnen worden met slechts een klein aantal grootheden.

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) Tentamen Inleiding Experimentele Fysica (3AA10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) Tentamen Inleiding Experimentele Fysica (3AA10) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) Tentamen Inleiding Experimentele Fysica (3AA10) d.d. 30 oktober 2009 van 9:00 12:00 uur Vul de presentiekaart

Nadere informatie

Analyse 1 November 2011 Januari 2011 November 2010

Analyse 1 November 2011 Januari 2011 November 2010 WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010

Nadere informatie

3 niet expliciet genoemd in eindtermen Verklaar het verschijnsel diffusie met de moleculaire theorie.

3 niet expliciet genoemd in eindtermen Verklaar het verschijnsel diffusie met de moleculaire theorie. Domein D: Warmteleer Subdomein: Gas en vloeistof 1 niet expliciet genoemd in eindtermen, moet er een groep vragen gemaakt worden waarin die algemene zaken zijn vervat? zie ook mededelingen voor eindexamendocenten.

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Einsteinvergelijkingen: 7 oktober 009 Traagheid van gasdruk SRT: hoe hoger de gasdruk, des te moeilijker is het om het gas te versnellen

Nadere informatie

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN HAVO 2015

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN HAVO 2015 MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN HAVO 2015 VAK : NATUURKUNDE DATUM : DINSDAG 23 JUNI 2015 TIJD : 07.45 10.45 Aantal opgaven: 5 Aantal pagina s: 6 Controleer zorgvuldig of

Nadere informatie

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem

Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem PLANETENSTELSELS - WERKCOLLEGE 3 EN 4 Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem In de vorige werkcolleges heb je je pythonkennis opgefrist. Je hebt een aantal fysische constanten ingelezen,

Nadere informatie

Tentamen - uitwerkingen

Tentamen - uitwerkingen Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan.

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan. Tentamen Inleiding Meten en Modelleren Vakcode 8C1 7 april 1, 9. - 1. uur Dit tentamen bestaat uit 4 opgaven. Indien u een opgave niet kunt maken, geeft u dan aan hoe u de opgave zou maken. Dat kan een

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Examen Klassieke Mechanica Herbert De Gersem, Eef Temmerman 2de bachelor burgerlijk ingenieur en bio-ingenieur 14 januari 2008, academiejaar 07-08 NAAM: RICHTING: vraag 1 (/3) vraag 2 (/5) vraag 3 (/5)

Nadere informatie

Botsingen. N.G. Schultheiss

Botsingen. N.G. Schultheiss 1 Botsingen N.G. Schultheiss 1 Inleiding In de natuur oefenen voorwerpen krachten op elkaar uit. Dit kan bijvoorbeeld doordat twee voorwerpen met elkaar botsen. We kunnen hier denken aan grote samengestelde

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie