REKENEN WORDT WISKUNDE

Maat: px
Weergave met pagina beginnen:

Download "REKENEN WORDT WISKUNDE"

Transcriptie

1 REKENEN WORDT WISKUNDE Tine Wijnants Actieonderzoek Bachelor Secundair Onderwijs, KHLim Waarom haken sommige leerlingen af tijdens de lessen wiskunde? Wat maakt het Secundair Onderwijs zo anders dan het Lager Onderwijs? Als studente regentaat wiskunde had ik de kans om de lessen wiskunde voor het Lager Onderwijs te volgen en ontdekte ik een wereld vol didactiek, waarvan ik mij afvroeg op welke manier die toepasbaar was in het secundair onderwijs. In het begin van het Secundair Onderwijs wordt, afhankelijk van de richting meer of minder, een deel van de leerstof herhaald. (BSO meer, ASO minder) Vermits je als leerkracht Secundair Onderwijs weinig zicht hebt op de werkwijze van de lagere school, en hoe ver de leerlingen geraakt zijn met de leerstof, komt het herhalen van deze leerstof grotendeels neer op het herhalen van de technieken die leerlingen kunnen gebruiken. Bij het aanleren en inoefenen van technieken, komt er weinig begrijpen en inzicht te pas. Voor de leerlingen wordt er heel abstract gewerkt en voor de leerkrachten is het abstracte vaak zo evident geworden dat het soms moeilijk is om af te dalen in niveau. Dit zou een reden kunnen zijn dat leerlingen niet graag wiskunde doen en het gevoel krijgen dat ze het niet kunnen. Vanuit de didactiek die ik zelf in de lessen didactiek wiskunde voor de lagere school ontdekte, ben ik verschillende leerstofonderdelen anders gaan bekijken. Kan ik deze op een andere manier aanbrengen? Zodoende heb ik geprobeerd om verschillende didactische principes uit het Lager Onderwijs toe te passen in het Secundair Onderwijs. Vanuit het leren kennen van de voorkennis van de leerlingen en de didactiek die in de lagere school gebruikt wordt, kon ik meer differentiëren, maar vooral de leerlingen ook inzicht geven in de kracht van wiskunde i.p.v. hen technieken aan te leren. 1. Vertrekken vanuit concrete ervaringen In een derde jaar TSO merkte ik tijdens de les dat leerlingen het moeilijk hadden met de stelling van Pythagoras. Ze kregen geen inzicht in de formule en konden niet vatten van welke zijden de kwadraten opgeteld moesten worden om gelijk te zijn aan het kwadraat van de overgebleven zijde. In de wiskundedidactiek van het Lager Onderwijs wordt de leerstof op 3 niveaus van denken aangebracht, namelijk op concreet, schematisch en abstract niveau (CSA-model). Ik ben met deze leerlingen concreet aan de slag gegaan.

2 Een werkwijze die ik hierbij gebruikte, is het afwisselen van wezenlijke en niet-wezenlijke kenmerken. Wat is noodzakelijk voor de stelling van Pythagoras en welke elementen kan je afwisselen. Je kan bijvoorbeeld driehoeken geven met verschillende grootte, maar ze moeten allemaal rechthoekig zijn. De leerlingen kregen elk 3 verschillende driehoeken, waarvan 2 rechthoekige en 1 scherphoekige of stomphoekige driehoek. De lengtes van de zijden waren natuurlijke getallen, wat het werk gemakkelijker maakt. Tegen elk van de zijden past een vierkant, met oppervlakte die gelijk is aan zijde x zijde. Deze vierkanten zijn telkens in een andere kleur geprint en opgedeeld in vakjes van 1 cm op 1 cm. De leerlingen kregen de opdracht om de oppervlaktes van de verschillende vierkanten te vergelijken. Rechthoekige driehoeken De leerlingen zijn gestart met de rechthoekige driehoeken. Welke som van 2 oppervlaktes is gelijk aan een derde oppervlakte? Welk is het grootste vierkant? De leerlingen moesten de verschillende vierkanten verknippen (in cm²) en zo aantonen dat bepaalde oppervlaktes even groot zijn. Leerlingen vonden door het handelen dat ze de som van de oppervlaktes van de 2 kleinste vierkanten moesten maken om de oppervlakte van het grootste vierkant te vinden. En ontdekten zo dat je de som van de kwadraten van de 2 kortste zijden moet nemen om het kwadraat van de langste zijde, de schuine zijde, te vinden. Bij de tweede driehoek zag ik dat sommige leerlingen het effectieve handelen niet meer nodig hadden, ze konden de oppervlaktes vergelijken door de vakjes (cm²) te tellen.

3 Niet-rechthoekige driehoeken Wanneer de leerlingen op dezelfde manier te werk gingen met niet-rechthoekige driehoeken, hebben ze niet alleen ervaren wat de stelling van Pythagoras is, maar ook de beperkingen ervan. Ze geldt namelijk niet voor niet-rechthoekige driehoeken. Het feit dat een driehoek rechthoekig is, is wezenlijk of nodig opdat de stelling zou gelden. 2. Progressieve complicering In de les over toepassing van Pythagoras kwamen volgende oefeningen aan bod. Bereken bij onderstaande driehoeken telkens de onbekende zijde. Bij het maken van deze oefeningen hadden de leerlingen problemen met bepalen van welke soort oefening ze voor zich hadden en de gepaste strategie te bedenken om ze aan te pakken. In sommige oefeningen moet je op zoek naar de lengte van de schuine zijde (SZ) (type 1), in andere gaat het om de lengte van één van de rechthoekszijden (type 2). In mijn handboek stonden de oefeningen door elkaar. Ik paste een werkwijze toe uit de didactiek van de lagere school. Daar wordt gewerkt volgens het principe van progressieve complicering. Je werkt van gemakkelijk naar moeilijk, met telkens 1 kleine moeilijkheid erbij. 3 In een eerste fase ben ik met de leerlingen gemakkelijke oefeningen, met gemakkelijke getallen, van het eerste type gaan maken. Telkens liet ik de leerlingen de onbekende zijde in kleur aanduiden. Bij het oplossen van de oefening verwees ik naar de algemene formule a² + b² = c² en liet ik de leerlingen a, b en c vervangen door de gegevens op de tekening. 4 x² = 3² + 4² x² = x² = 25 x = 5

4 Op deze manier slaagden leerlingen erin op een systematische manier de lengte van de onbekende zijde te berekenen. Voor de leerlingen van het TSO was dit een systematische werkwijze die structuur bood. In een tweede fase schakelden we dan over op naar opgaven van het tweede type, waar ik de oefeningen volgens hetzelfde patroon opbouwde. Bij de leerlingen was de omvorming van de formule het belangrijkste inzicht, waarvoor een basis algebra nodig is. Voor sommigen blijft dit moeilijk. Voor deze leerlingen is het belangrijk dat je kan afdalen van niveau. Hierbij heb ik een abstracte redenering ondersteund door een schematische voorstelling en heb ik terug verwezen naar de oppervlaktes van de verschillende vierkanten. We weten al dat c² = a² + b² Wat moet je doen om de oppervlakte van het donkergrijze vierkant (b²) te berekenen? Je neemt de oppervlakte van het grote vierkant (c²) en trekt hier de oppervlakte van het lichtgrijze vierkant vanaf (a²). In de formule wordt dit dan: c² - a² = b² Met deze formule konden de leerlingen terug de lengte van de onbekende zijde berekenen. In een derde fase konden de leerlingen de verschillende types van oefeningen door mekaar oplossen. 3. Voordelen van wiskunde ontdekken Voor de eerste les van congruente driehoeken in het tweede jaar Latijn, heb ik de leerlingen concreet aan het werk gezet. Ik vreesde dat deze leerlingen de aanpak belachelijk zouden vinden, aangezien de meerderheid van deze klasgroep snel inzicht heeft op abstract niveau. Ik wou hen op deze manier de kracht van wiskunde aantonen. De leerlingen hadden de achtergrondkennis van congruente figuren en we werkten deze les in de richting van de congruentiekenmerken van driehoeken. Congruente driehoeken zijn driehoeken waarvan de overeenkomstige zijden even lang zijn en de overeenkomstige hoeken even groot. Ik gaf de leerlingen een blad met verschillende driehoeken erop. De leerlingen kregen de opdracht de congruente driehoeken aan te duiden. Met een geodriehoek moesten ze de verschillende hoeken en zijden van de driehoeken beginnen meten. Ik hoorde al snel Pffff! Kan dat niet sneller of op een andere manier? Daar moeten we toch iets voor kunnen bedenken!. Ik merkte duidelijk hoe de vraag naar een gemakkelijke methode bij de leerlingen rees. Ik heb de groep onderverdeeld en ze zijn zelf op zoek gegaan naar de verschillende congruentiekenmerken. De leerlingen leerden op deze manier zelf de kracht van wiskunde kennen en gingen zelf op zoek naar gemakkelijkere en abstractere oplossingsstrategieën.

5 Met de ervaringen die ik in de enkele voorbeelden hierboven aanhaal, heb ik kunnen ervaren dat de verschillende didactische principes en werkwijzen uit het Lager Onderwijs, maar ook het inzicht in de beginsituatie kunnen bijdragen tot een sterk opgebouwde les in het Secundair Onderwijs. Ook al ken je die principes, het is geen goed idee om ze gedachteloos in te zetten. Het is belangrijk om een evenwicht te vinden: wanneer hebben de leerlingen het nodig om concreet te werken, wanneer zijn ze al ver genoeg geëvolueerd om abstract de denkwijze op te bouwen, maar ook welke leerstof leent zich ertoe en welke niet. Zelfs bij volwassenen kan dit werken! Bibliografie Bosmans, A., Detrez, C., Gombeir, D. (1998). Jongeren aanspreken op hun leerkracht. Leuven: Acco. de Boer, E. (reds.). (1996) Handboek zelfstandig leren (pp ). Loenen aan de Vecht: Edumedia. Van Emelen, E. (2008) Didactiek wiskunde Bachelor Leerkracht Lager Onderwijs. Hasselt: Katholieke Hogeschool Limburg Campus Hemelrijk. Deckers, M., Aerts, R. (2005) Kinderen rekenen. Mechelen: Wolters Plantyn.

6

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

HANDMATIG WORTELTREKKEN

HANDMATIG WORTELTREKKEN HANDMATIG WORTELTREKKEN 1. INLEIDING Boer Jaak bezit een vierkant stuk grond (oppervlakte = 169 m²). Hij wil heel graag een hek zetten langs één kant van dat stuk grond. Hij heeft vroeger niet zo goed

Nadere informatie

Stelling van Pythagoras

Stelling van Pythagoras 1 of 6 Stelling van Pythagoras Uit Wikipedia, de vrije encyclopedie De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras inhoudsopgave 1 de grote lijn applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek 1 de grote lijn hoofdlijn de zijlijn De oppervlakte van rechthoekige driehoeken. Van een

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

I. Meetkunde in de basisschool. Vernieuwde inzichten.

I. Meetkunde in de basisschool. Vernieuwde inzichten. m r VLAKKE FIGUREN Inhoud: I. Meetkunde in de basisschool. Vernieuwde inzichten. 1. Vroeger 2. Tegenwoordig 3. Bedenking II. Meetkunde in de (eerste) en tweede graad. III. Hoe werken met de figurenset

Nadere informatie

1 MEETKUNDE. Wat vindt u van deze preview? www.plantyn.com/integraal. Laat het ons weten op. http://wiskunde.plantyn.com/mijnmeningoverintegraal

1 MEETKUNDE. Wat vindt u van deze preview? www.plantyn.com/integraal. Laat het ons weten op. http://wiskunde.plantyn.com/mijnmeningoverintegraal INTEGRL www.plantyn.com/integraal INTEGRL SNEK PREVIEW DEEL HOOFDSTUK MEETKUNDE LEERWERKOEK Wat vindt u van deze preview? Laat het ons weten op http://wiskunde.plantyn.com/mijnmeningoverintegraal WISKUNDE

Nadere informatie

HANDMATIG WORTELTREKKEN

HANDMATIG WORTELTREKKEN HANDMATIG WORTELTREKKEN Kelly Vankriekelsvenne & Julie Vanmarsenille Doelstellingen: Na deze workshop moeten jullie in staat zijn om: Het algoritme voor handmatig wortels te trekken toe te passen. De stappen

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

FAYA LOBI WEDSTRIJD 2014

FAYA LOBI WEDSTRIJD 2014 1. betekent: het aantal elementen van de verzameling Van twee verzamelingen en is gegeven: en. en Voor en geldt: en en en en 2. en. De verzameling heeft elementen. 3. Zie onderstaande beweringen ( is een

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

REKENEN IN WILLEKEURIGE DRIEHOEKEN

REKENEN IN WILLEKEURIGE DRIEHOEKEN REKENEN IN WILLEKEURIGE DRIEHOEKEN Auteur: Wouter Veldhuiz, Almde College, Silvolde, W.Veldhuiz@almdecollege.nl Klas: VWO 4,5,6 Wiskunde-B HAVO 4, 5 Wiskunde-B Onderwerp: sinus- cosinusregel ontdekk toepass

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid.

Nadere informatie

in een driehoek zijn de twee korte zijden samen langer dan de derde zijde

in een driehoek zijn de twee korte zijden samen langer dan de derde zijde Stellingenboekje in een driehoek zijn de twee korte zijden samen langer dan de derde zijde Laat het kind met de latjes voor de geometrie een paars, lichtbruin en een geel latje pakken en hiermee een driehoek

Nadere informatie

Een boekje met wiskundige vragen en opdrachten voor Havo 3

Een boekje met wiskundige vragen en opdrachten voor Havo 3 Een boekje met wiskundige vragen en opdrachten voor Havo 3 Gemaakt door: Harm Bakker Peter Vaandrager April 2002. Met dank aan mevr.o. De Meulemeester van KSO Glorieux uit Ronse in België. Geschiedenis

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Pythagoreïsche drietallen Guy Van Leemput, Sint-Jozefcollege te Turnhout, België

Pythagoreïsche drietallen Guy Van Leemput, Sint-Jozefcollege te Turnhout, België Pythagoreïsche drietallen Guy Van Leemput, Sint-Jozefcollege te Turnhout, België Toelichtingen: Wat op de volgende bladzijden volgt is een werktekst met antwoorden rond het zoeken van rechthoekige driehoeken

Nadere informatie

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Noteer hier eventueel je naam: Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! wwwwiskundekangoeroebe c Vlaamse Wiskunde Olympiade

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

4 - Stelling van Pythagoras

4 - Stelling van Pythagoras 4 - Stelling van Pythagoras De opdracht omschrijving voor dit hoofdstuk bestond uit het volgende: D1 - Maak de 5 opdrachten. Zorg voor nette uitwerkingen. D2 - Maak een powerpoint over de stelling van

Nadere informatie

A. B. C. D. Opgave 3. In een groot vierkant is een kleiner vierkant getekend. Wat is de oppervlakte van het kleine vierkant? A. B. C. D.

A. B. C. D. Opgave 3. In een groot vierkant is een kleiner vierkant getekend. Wat is de oppervlakte van het kleine vierkant? A. B. C. D. FAJALOBI 2015 Opgave 1 Het getal heet een palindroom. Dat is een getal dat als je het van achter naar voren leest het hetzelfde is als van voor naar achter. Een palindroom begint niet met een nul. Wat

Nadere informatie

DRIEHOEKSGETALLEN GETALLENRIJEN AFLEVERING 3. som

DRIEHOEKSGETALLEN GETALLENRIJEN AFLEVERING 3. som GETALLENRIJEN AFLEVERING In deze jaargang van Pythagoras staan getallenrijen centraal. Deze aflevering gaat over de rij,, 6, 0,, 2,... Dit zijn de zogeheten driehoeksgetallen. Ze vormen een interessante

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur Wiskunde B Profi (oude stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 20 juni 3.30 6.30 uur 20 0 Voor dit eamen zijn maimaal 78 punten te behalen; het eamen bestaat uit 4 vragen.

Nadere informatie

Eenparig rechtlijnige beweging met de NXT

Eenparig rechtlijnige beweging met de NXT Eenparig rechtlijnige beweging met de NXT Project tweede graad : VRIJ TECHNISCH INSTITUUT VEURNE Iepersesteenweg 90 8630 VEURNE e-mail: info@vtiveurne.be vzw Katholiek Secundair Onderwijs Veurne Nieuwpoort,

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp: Kwadraten en Wortels H1 19 De leerling leert passende wiskundetaal te gebruiken voor het ordenen van het eigen denken en voor uitleg aan anderen, en leert de wiskundetaal van anderen te begrijpen.

Nadere informatie

gelijkvormigheid handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek

gelijkvormigheid handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek gelijkvormigheid inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek gelijkvormigheid gelijkvormigheid 1 de grote lijn hoofdlijn de zijlijn

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2014 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 00 1 (20 punten) Gegeven zijn drie aan elkaar rakende cirkels met straal 1. Hoe groot is de (donkergrijze) oppervlakte

Nadere informatie

wiskunde C pilot vwo 2017-I

wiskunde C pilot vwo 2017-I wiskunde C pilot vwo 207-I De formule van Riegel en kilometertijden maximumscore 3 4 minuten en 52 seconden komt overeen met 292 seconden,07 0000 T2 = 292 2223 (seconden) (of nauwkeuriger) 500 Dat is 37

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

Volgorde van de bewerkingen.

Volgorde van de bewerkingen. Bijlage 4: Illustratie Gedifferentieerd werken in de wiskundelessen Onderwerp: Volgorde van de bewerkingen. 4.1 Naam:... Klas:.. Groep A Gedifferentieerd werken in de wiskundelessen. Voor je toets van

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Opgave 1 - Uitwerking

Opgave 1 - Uitwerking Opgave 1 - Uitwerking Om dit probleem op te lossen moeten we een zogenaamd stelsel van vergelijkingen oplossen. We zetten eerst even de tips van de begeleider onder elkaar: 1. De zak snoep weegt precies

Nadere informatie

Naam:... Nr... SPRONG 6

Naam:... Nr... SPRONG 6 Naam:... Nr.... SPRONG 6 G 1 Percenten a Bereken het percent. Schrijf de tussenuitkomsten op. 5 % van 500 = van 500 = x = 15 % van 200 = van 200 = x = 4 % van 2 000 = van 2 000 = x = 10 % van 700 = van

Nadere informatie

BRUGPAKKET 8: VLAKKE FIGUREN

BRUGPAKKET 8: VLAKKE FIGUREN BRUGPAKKET 8: VLAKKE FIGUREN Brugpakket 8: Vlakke figuren 1 Vlakke figuren 1.1 Vlakke figuren: Veelhoeken en niet-veelhoeken Een veelhoek is enkel begrensd door rechte lijnen. OEFENING Zet een kruisje

Nadere informatie

Opdrachtbladen (I) Hoe komt een formule tot stand?

Opdrachtbladen (I) Hoe komt een formule tot stand? Opdrachtbladen (I) Hoe komt een formule tot stand? Adriaan Herremans Dag van de wiskunde Kortrijk 14/11/2015 Hieronder vinden jullie opdrachten. Je werkt samen met je buur en kan overleggen met je overburen.

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1997-1998: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

2.9 Stelling van Pythagoras

2.9 Stelling van Pythagoras Auteur hannie janssen Laatst gewijzigd 24 March 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/74171 Dit lesmateriaal is gemaakt met Wikiwijs Maken

Nadere informatie

Eigenschappen van driehoeken

Eigenschappen van driehoeken 5 igenschappen van driehoeken it kun je al een hoek meten de verschillende soorten driehoeken definiëren 3 de verschillende soorten hoeken definiëren 4 de eigenschappen van de verschillende soorten hoeken

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 990-99: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt: een deelnemer start met 0 punten Per

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Inhoud Methode Materiaal Timing V: Eigenschap: De som van de hoeken in een driehoek is gelijk aan 180.

Inhoud Methode Materiaal Timing V: Eigenschap: De som van de hoeken in een driehoek is gelijk aan 180. V: De som van de hoeken in een driehoek is gelijk aan 180. Neem dan eens allemaal een blad papier en teken daarop een driehoek. In elke hoek zet je een letter (A, B en C) of geef je een kleurtje. Knip

Nadere informatie

SPLITSEN handleiding. 1, 2, 3, 4, 5, 6, 7, 8, 9 en 10. het leren splitsen van de getallen: handleiding bij oefenboek 1, 2, 3 en 4

SPLITSEN handleiding. 1, 2, 3, 4, 5, 6, 7, 8, 9 en 10. het leren splitsen van de getallen: handleiding bij oefenboek 1, 2, 3 en 4 SPLITSEN handleiding het leren splitsen van de getallen: 1, 2, 3, 4, 5, 6, 7, 8, 9 en 10 handleiding bij oefenboek 1, 2, 3 en 4 inleiding Dit is de handleiding bij vier oefenboeken voor het leren splitsen

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Kleine didactiek DE VERSCHILFORMULE VOOR DE SINUS. [ Dick Klingens ]

Kleine didactiek DE VERSCHILFORMULE VOOR DE SINUS. [ Dick Klingens ] Kleine didactiek DE VERSCHILFORMULE VOOR DE SINUS [ Dick Klingens ] In de vierde klas vwo komt de uitbreiding van de goniometrische verhoudingen sinus en cosinus voor andere dan scherpe hoeken aan de orde.

Nadere informatie

Deel 3 t.e.m. 11 van De Wiskanjers Zorg: Rekenmonsters

Deel 3 t.e.m. 11 van De Wiskanjers Zorg: Rekenmonsters Deel 3 t.e.m. 11 van De Wiskanjers Zorg: Rekenmonsters Het is onze taak als leerkracht om ervoor te zorgen dat we onze kinderen zodanig ondersteunen en begeleiden dat ze voor moeilijke vakonderdelen hun

Nadere informatie

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde Rakende cirkels Keuzeopdracht voor wiskunde Verrijkende opdracht over construeren en redeneren in figuren Voorkennis: meetkunde: cirkels, raaklijn, loodrecht stand; sinus: waarden voor bekende hoeken als

Nadere informatie

Homogene groepen, de balk

Homogene groepen, de balk Volgende week mag je zelf een les van ongeveer 20 minuten geven aan je medeleerlingen over de balk, cilinder of kegel. Een goede les bevat veel leerlingactiviteit. Zorg er dus voor dat je je leerlingen

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

handleiding pagina s 687 tot Handleiding 1.1 Kopieerbladen pagina 444: tangram 2 Werkboek 3 Posters

handleiding pagina s 687 tot Handleiding 1.1 Kopieerbladen pagina 444: tangram 2 Werkboek 3 Posters week 22 les 4 toets en foutenanalyse handleiding pagina s 687 tot 695 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 444: tangram 12 Huistaken huistaak 14: bladzijde 445 (vierhoeken tekenen)

Nadere informatie

handleiding passen en meten

handleiding passen en meten handleiding passen en meten inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4 Applets 4 1 Vierhoeken 4 2 Met passer en geodriehoek 5 3 Tegelvloertjes 5 4 Onderzoek 5 tijdpad 6 materialen

Nadere informatie

Vergelijkingen met één onbekende

Vergelijkingen met één onbekende - 89 - Hoofdstuk 3: ergelijkingen met één onbekende Opgave boek pag 67 nr. 5: Los op in R a. 3 ( + ) 4 7.................. {... }... proef : 1 e lid :... e lid :... b. ( 3 ) + 7 5 ( )........................

Nadere informatie

Bijlage 1 Rekenen met wortels

Bijlage 1 Rekenen met wortels Bijlage Rekenen met wortels Deze bijlage hoort bij het hoofdstuk Meetkunde en Algebra juli 0 Opgaven gemarkeerd met kunnen worden overgeslagen. Uitgave juli 0 Colofon 0 ctwo Auteurs Aad Goddijn, Leon van

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

Dossieropdracht 4. Analyse 1 - Didactiek

Dossieropdracht 4. Analyse 1 - Didactiek Dossieropdracht 4 Analyse 1 - Didactiek Naam: Thomas Sluyter Nummer: 1018808 Jaar / Klas: 1e jaar Docent Wiskunde, deeltijd Datum: 27 november, 2007 Samenvatting Al eerder zijn de studenten bloot gesteld

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 008-009: tweede ronde ( 7) = (A) 7 (B) 7 (C) 7 of + 7 (D) 7 (E) onbepaald Beschouw de rij opeenvolgende natuurlijke getallen beginnend met en eindigend met Wat is het middelste

Nadere informatie

Biljarten op een ellips. Lab kist voor 3-4 vwo

Biljarten op een ellips. Lab kist voor 3-4 vwo Biljarten op een ellips Lab kist voor 3-4 vwo Dit lespakket behoort bij het ellipsvormige biljart van de ITS Academy. Ontwerp: Pauline Vos, in opdracht van Its Academy Juni 2011 Leerdoelen: - kennismaken

Nadere informatie

Thema: Stelling van Pythagoras vmbo-kgt12

Thema: Stelling van Pythagoras vmbo-kgt12 Auteur VO-content Laatst gewijzigd 12 August 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/57157 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein.

Nadere informatie

LEERPLANSTUDIE Tweede graad TSO/KSO leerplan d

LEERPLANSTUDIE Tweede graad TSO/KSO leerplan d LEERPLANSTUDIE Tweede graad TSO/KSO leerplan d 1 Leerplannen Eerste graad A-stroom (D/2009/7841/003) In voege sinds 1 september 2009 Tweede graad KSO/TSO (D/2002/0279/048) In voege sinds 1 september 2002

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

Wiskunde Leerjaar 2 - Periode 1 Meetkunde

Wiskunde Leerjaar 2 - Periode 1 Meetkunde Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier

Nadere informatie

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo Docentenhandleiding Netwerk 3e editie deel 3B havo 0 Hoofdstuk 7 Verschillende verbanden Beginniveau Al eerder hebben de leerlingen kennis gemaakt met lineaire, kwadratische en exponentiële verbanden.

Nadere informatie

Differentiëren in een wiskundeles d.m.v. activerende directe instructie. Door Tania Mouton (HoGent) en Brian Baert (HoWest)

Differentiëren in een wiskundeles d.m.v. activerende directe instructie. Door Tania Mouton (HoGent) en Brian Baert (HoWest) Differentiëren in een wiskundeles d.m.v. activerende directe instructie Door Tania Mouton (HoGent) en Brian Baert (HoWest) Wat is differentiëren? Het positief en planmatig omgaan met verschillen tussen

Nadere informatie

jaar Wiskundetoernooi Estafette n = 2016

jaar Wiskundetoernooi Estafette n = 2016 992 993 2000 994 999 995 997 998 996 200 2002 2003 204 205 206 202 203 2004 20 200 2005 2009 2007 2006 2008 jaar Wiskundetoernooi Estafette 206 Opgave 206 is een driehoeksgetal: er bestaat een geheel getal

Nadere informatie

1 DE STELLING VAN PYTHAGORAS

1 DE STELLING VAN PYTHAGORAS 1 DE STELLING VAN PYTHAGORAS 1.1 Verkennende opdrachten 1.1.1 Pythagoras puzzel (mozaïek van Henry Perigal 1801-1898) Open de link naar het bestand 1 Pythagoras_puzzel.htm Gegeven is een rechthoekige driehoek

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

2. Het getal = 1800 is even. De andere antwoorden zijn oneven: 2009, = 11, = 191, = 209.

2. Het getal = 1800 is even. De andere antwoorden zijn oneven: 2009, = 11, = 191, = 209. 1. De smiley is in de cirkel en in het vierkant, maar niet in de driehoek. Kangoeroewedstrijd editie Koala: jaargang 2009, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 2. Het getal 200 9 = 1800 is even.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

Hoe groot is de kans?

Hoe groot is de kans? Hoe groot is de kans? 1 Met een witte en een grijze dobbelsteen gooien en het product maken Wat denk jij spontaan? Noteer je antwoord in de denkballon Welke producten zijn er allemaal mogelijk als je met

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2015-2016: tweede ronde 1. ls de wieken van een windmolen op hun hoogste punt komen, dan reikt hun uiteinde tot een hoogte van 105 meter. Op hun laagste punt ligt het uiteinde

Nadere informatie

Zeepvliezen PO. door M. van den Bosch- Knip Meetkunde Presentatie WiskundeCongres

Zeepvliezen PO. door M. van den Bosch- Knip Meetkunde Presentatie WiskundeCongres Zeepvliezen PO door M. van den Bosch- Knip mirjamvdbk@gmail.com Meetkunde Presentatie 16-11-2016 WiskundeCongres Uw spreker Ir Mirjam van den Bosch- Knip RBA MSc MSc TU Twente: Chemische Technologie Rabobank:

Nadere informatie

BEWERKINGEN. B0 Doelstellingen

BEWERKINGEN. B0 Doelstellingen BEWERKINGEN B0 Doelstellingen Deze doelstellingen zijn bedoeld voor de studenten kleuteronderwijs Arteveldehogeschool. Ze geven een beeld van wat verwacht wordt voor het examen. Toch is het ook voor anderen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 99 99 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per

Nadere informatie

Vraagstukken van de tweede graad

Vraagstukken van de tweede graad Vraagstukken van de tweede graad 1. Een getal en zijn tweedemacht hebben als som 90. Bepaal dat getal.. Bepaal twee opeenvolgende getallen waarvan de som van de kwadraten 365 is. 3. Verdeel het getal 37

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Aanvullende tekst bij hoofdstuk 1

Aanvullende tekst bij hoofdstuk 1 Aanvullende tekst bij hoofdstuk 1 Wortels uit willekeurige getallen In paragraaf 1.3.5 hebben we het worteltrekalgoritme besproken. Dat deden we aan de hand van de relatie tussen de (van tevoren gegeven)

Nadere informatie

Zomercursussen Wiskunde en Chemie 2016

Zomercursussen Wiskunde en Chemie 2016 FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN Campus Geel Zomercursussen Wiskunde en Chemie 2016 Voor de opleidingen Industrieel Ingenieur: Bachelor en Master in de biowetenschappen Bachelor en Master

Nadere informatie

Positieve houding. Hoge verwachtingen. Flexibele planning

Positieve houding. Hoge verwachtingen. Flexibele planning Visie Aanpassingen in de gedragingen van de leerkracht Het vertalen van een politiek besluit zoals het M- decreet in de dagelijkse praktijk is geen gemakkelijke opgave. Als leerlingen met een beperking

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

Small Basic Console Uitwerking opdrachten

Small Basic Console Uitwerking opdrachten Opdracht 1 3 getallen => inlezen Gemiddelde uitrekenen Resultaat afdrukken TextWindow.WriteLine("Dit programma berekend het gemiddelde van drie door U in te voeren getallen.") TextWindow.Write("Voer getal

Nadere informatie

AGENDA KENNISMAKING HISTORIEK 27/11/2008

AGENDA KENNISMAKING HISTORIEK 27/11/2008 Contract-en hoekenwerk in eerste graad BSO (A.De Witte ) AGENDA Contractwerk: definitie Contractwerk: basisprincipes Contractwerk: voordelen Contractwerk : voorbeeld Hoekenwerk: definitie Hoekenwerk: basisvormen

Nadere informatie

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1?

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Voorkennis hfst 2 ontbinden in factoren (waarom ook al weer?) kwadratische functies 1 pw en eerste 2 uur vanmorgen science plein hw in orde?

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 6 les 4

Wiskunde D Online uitwerking 4 VWO blok 6 les 4 Wiskunde Online uitwerking 4 VWO blok 6 les 4 Paragraaf 4 Het inproduct om hoeken te berekenen Opgave a e hoek is kleiner dan 4, want het dak zelf staat onder een hoek van 45, en de kilgoot loopt schuin

Nadere informatie

Rijen in het dagelijks leven Handleiding leerkracht

Rijen in het dagelijks leven Handleiding leerkracht Rijen in het dagelijks leven Handleiding leerkracht Aantal lestijden: ± 5 Graad: 2 e Jaar: 2 e Gelinkte vakken: Wiskunde, fysica, biologie, aardrijkskunde, ICT, geschiedenis, godsdienst, L.O. 1 Korte inhoud

Nadere informatie