REKENEN WORDT WISKUNDE

Maat: px
Weergave met pagina beginnen:

Download "REKENEN WORDT WISKUNDE"

Transcriptie

1 REKENEN WORDT WISKUNDE Tine Wijnants Actieonderzoek Bachelor Secundair Onderwijs, KHLim Waarom haken sommige leerlingen af tijdens de lessen wiskunde? Wat maakt het Secundair Onderwijs zo anders dan het Lager Onderwijs? Als studente regentaat wiskunde had ik de kans om de lessen wiskunde voor het Lager Onderwijs te volgen en ontdekte ik een wereld vol didactiek, waarvan ik mij afvroeg op welke manier die toepasbaar was in het secundair onderwijs. In het begin van het Secundair Onderwijs wordt, afhankelijk van de richting meer of minder, een deel van de leerstof herhaald. (BSO meer, ASO minder) Vermits je als leerkracht Secundair Onderwijs weinig zicht hebt op de werkwijze van de lagere school, en hoe ver de leerlingen geraakt zijn met de leerstof, komt het herhalen van deze leerstof grotendeels neer op het herhalen van de technieken die leerlingen kunnen gebruiken. Bij het aanleren en inoefenen van technieken, komt er weinig begrijpen en inzicht te pas. Voor de leerlingen wordt er heel abstract gewerkt en voor de leerkrachten is het abstracte vaak zo evident geworden dat het soms moeilijk is om af te dalen in niveau. Dit zou een reden kunnen zijn dat leerlingen niet graag wiskunde doen en het gevoel krijgen dat ze het niet kunnen. Vanuit de didactiek die ik zelf in de lessen didactiek wiskunde voor de lagere school ontdekte, ben ik verschillende leerstofonderdelen anders gaan bekijken. Kan ik deze op een andere manier aanbrengen? Zodoende heb ik geprobeerd om verschillende didactische principes uit het Lager Onderwijs toe te passen in het Secundair Onderwijs. Vanuit het leren kennen van de voorkennis van de leerlingen en de didactiek die in de lagere school gebruikt wordt, kon ik meer differentiëren, maar vooral de leerlingen ook inzicht geven in de kracht van wiskunde i.p.v. hen technieken aan te leren. 1. Vertrekken vanuit concrete ervaringen In een derde jaar TSO merkte ik tijdens de les dat leerlingen het moeilijk hadden met de stelling van Pythagoras. Ze kregen geen inzicht in de formule en konden niet vatten van welke zijden de kwadraten opgeteld moesten worden om gelijk te zijn aan het kwadraat van de overgebleven zijde. In de wiskundedidactiek van het Lager Onderwijs wordt de leerstof op 3 niveaus van denken aangebracht, namelijk op concreet, schematisch en abstract niveau (CSA-model). Ik ben met deze leerlingen concreet aan de slag gegaan.

2 Een werkwijze die ik hierbij gebruikte, is het afwisselen van wezenlijke en niet-wezenlijke kenmerken. Wat is noodzakelijk voor de stelling van Pythagoras en welke elementen kan je afwisselen. Je kan bijvoorbeeld driehoeken geven met verschillende grootte, maar ze moeten allemaal rechthoekig zijn. De leerlingen kregen elk 3 verschillende driehoeken, waarvan 2 rechthoekige en 1 scherphoekige of stomphoekige driehoek. De lengtes van de zijden waren natuurlijke getallen, wat het werk gemakkelijker maakt. Tegen elk van de zijden past een vierkant, met oppervlakte die gelijk is aan zijde x zijde. Deze vierkanten zijn telkens in een andere kleur geprint en opgedeeld in vakjes van 1 cm op 1 cm. De leerlingen kregen de opdracht om de oppervlaktes van de verschillende vierkanten te vergelijken. Rechthoekige driehoeken De leerlingen zijn gestart met de rechthoekige driehoeken. Welke som van 2 oppervlaktes is gelijk aan een derde oppervlakte? Welk is het grootste vierkant? De leerlingen moesten de verschillende vierkanten verknippen (in cm²) en zo aantonen dat bepaalde oppervlaktes even groot zijn. Leerlingen vonden door het handelen dat ze de som van de oppervlaktes van de 2 kleinste vierkanten moesten maken om de oppervlakte van het grootste vierkant te vinden. En ontdekten zo dat je de som van de kwadraten van de 2 kortste zijden moet nemen om het kwadraat van de langste zijde, de schuine zijde, te vinden. Bij de tweede driehoek zag ik dat sommige leerlingen het effectieve handelen niet meer nodig hadden, ze konden de oppervlaktes vergelijken door de vakjes (cm²) te tellen.

3 Niet-rechthoekige driehoeken Wanneer de leerlingen op dezelfde manier te werk gingen met niet-rechthoekige driehoeken, hebben ze niet alleen ervaren wat de stelling van Pythagoras is, maar ook de beperkingen ervan. Ze geldt namelijk niet voor niet-rechthoekige driehoeken. Het feit dat een driehoek rechthoekig is, is wezenlijk of nodig opdat de stelling zou gelden. 2. Progressieve complicering In de les over toepassing van Pythagoras kwamen volgende oefeningen aan bod. Bereken bij onderstaande driehoeken telkens de onbekende zijde. Bij het maken van deze oefeningen hadden de leerlingen problemen met bepalen van welke soort oefening ze voor zich hadden en de gepaste strategie te bedenken om ze aan te pakken. In sommige oefeningen moet je op zoek naar de lengte van de schuine zijde (SZ) (type 1), in andere gaat het om de lengte van één van de rechthoekszijden (type 2). In mijn handboek stonden de oefeningen door elkaar. Ik paste een werkwijze toe uit de didactiek van de lagere school. Daar wordt gewerkt volgens het principe van progressieve complicering. Je werkt van gemakkelijk naar moeilijk, met telkens 1 kleine moeilijkheid erbij. 3 In een eerste fase ben ik met de leerlingen gemakkelijke oefeningen, met gemakkelijke getallen, van het eerste type gaan maken. Telkens liet ik de leerlingen de onbekende zijde in kleur aanduiden. Bij het oplossen van de oefening verwees ik naar de algemene formule a² + b² = c² en liet ik de leerlingen a, b en c vervangen door de gegevens op de tekening. 4 x² = 3² + 4² x² = x² = 25 x = 5

4 Op deze manier slaagden leerlingen erin op een systematische manier de lengte van de onbekende zijde te berekenen. Voor de leerlingen van het TSO was dit een systematische werkwijze die structuur bood. In een tweede fase schakelden we dan over op naar opgaven van het tweede type, waar ik de oefeningen volgens hetzelfde patroon opbouwde. Bij de leerlingen was de omvorming van de formule het belangrijkste inzicht, waarvoor een basis algebra nodig is. Voor sommigen blijft dit moeilijk. Voor deze leerlingen is het belangrijk dat je kan afdalen van niveau. Hierbij heb ik een abstracte redenering ondersteund door een schematische voorstelling en heb ik terug verwezen naar de oppervlaktes van de verschillende vierkanten. We weten al dat c² = a² + b² Wat moet je doen om de oppervlakte van het donkergrijze vierkant (b²) te berekenen? Je neemt de oppervlakte van het grote vierkant (c²) en trekt hier de oppervlakte van het lichtgrijze vierkant vanaf (a²). In de formule wordt dit dan: c² - a² = b² Met deze formule konden de leerlingen terug de lengte van de onbekende zijde berekenen. In een derde fase konden de leerlingen de verschillende types van oefeningen door mekaar oplossen. 3. Voordelen van wiskunde ontdekken Voor de eerste les van congruente driehoeken in het tweede jaar Latijn, heb ik de leerlingen concreet aan het werk gezet. Ik vreesde dat deze leerlingen de aanpak belachelijk zouden vinden, aangezien de meerderheid van deze klasgroep snel inzicht heeft op abstract niveau. Ik wou hen op deze manier de kracht van wiskunde aantonen. De leerlingen hadden de achtergrondkennis van congruente figuren en we werkten deze les in de richting van de congruentiekenmerken van driehoeken. Congruente driehoeken zijn driehoeken waarvan de overeenkomstige zijden even lang zijn en de overeenkomstige hoeken even groot. Ik gaf de leerlingen een blad met verschillende driehoeken erop. De leerlingen kregen de opdracht de congruente driehoeken aan te duiden. Met een geodriehoek moesten ze de verschillende hoeken en zijden van de driehoeken beginnen meten. Ik hoorde al snel Pffff! Kan dat niet sneller of op een andere manier? Daar moeten we toch iets voor kunnen bedenken!. Ik merkte duidelijk hoe de vraag naar een gemakkelijke methode bij de leerlingen rees. Ik heb de groep onderverdeeld en ze zijn zelf op zoek gegaan naar de verschillende congruentiekenmerken. De leerlingen leerden op deze manier zelf de kracht van wiskunde kennen en gingen zelf op zoek naar gemakkelijkere en abstractere oplossingsstrategieën.

5 Met de ervaringen die ik in de enkele voorbeelden hierboven aanhaal, heb ik kunnen ervaren dat de verschillende didactische principes en werkwijzen uit het Lager Onderwijs, maar ook het inzicht in de beginsituatie kunnen bijdragen tot een sterk opgebouwde les in het Secundair Onderwijs. Ook al ken je die principes, het is geen goed idee om ze gedachteloos in te zetten. Het is belangrijk om een evenwicht te vinden: wanneer hebben de leerlingen het nodig om concreet te werken, wanneer zijn ze al ver genoeg geëvolueerd om abstract de denkwijze op te bouwen, maar ook welke leerstof leent zich ertoe en welke niet. Zelfs bij volwassenen kan dit werken! Bibliografie Bosmans, A., Detrez, C., Gombeir, D. (1998). Jongeren aanspreken op hun leerkracht. Leuven: Acco. de Boer, E. (reds.). (1996) Handboek zelfstandig leren (pp ). Loenen aan de Vecht: Edumedia. Van Emelen, E. (2008) Didactiek wiskunde Bachelor Leerkracht Lager Onderwijs. Hasselt: Katholieke Hogeschool Limburg Campus Hemelrijk. Deckers, M., Aerts, R. (2005) Kinderen rekenen. Mechelen: Wolters Plantyn.

6

Stelling van Pythagoras

Stelling van Pythagoras 1 of 6 Stelling van Pythagoras Uit Wikipedia, de vrije encyclopedie De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

HANDMATIG WORTELTREKKEN

HANDMATIG WORTELTREKKEN HANDMATIG WORTELTREKKEN Kelly Vankriekelsvenne & Julie Vanmarsenille Doelstellingen: Na deze workshop moeten jullie in staat zijn om: Het algoritme voor handmatig wortels te trekken toe te passen. De stappen

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Een boekje met wiskundige vragen en opdrachten voor Havo 3

Een boekje met wiskundige vragen en opdrachten voor Havo 3 Een boekje met wiskundige vragen en opdrachten voor Havo 3 Gemaakt door: Harm Bakker Peter Vaandrager April 2002. Met dank aan mevr.o. De Meulemeester van KSO Glorieux uit Ronse in België. Geschiedenis

Nadere informatie

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Noteer hier eventueel je naam: Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! wwwwiskundekangoeroebe c Vlaamse Wiskunde Olympiade

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp: Kwadraten en Wortels H1 19 De leerling leert passende wiskundetaal te gebruiken voor het ordenen van het eigen denken en voor uitleg aan anderen, en leert de wiskundetaal van anderen te begrijpen.

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde Rakende cirkels Keuzeopdracht voor wiskunde Verrijkende opdracht over construeren en redeneren in figuren Voorkennis: meetkunde: cirkels, raaklijn, loodrecht stand; sinus: waarden voor bekende hoeken als

Nadere informatie

SPLITSEN handleiding. 1, 2, 3, 4, 5, 6, 7, 8, 9 en 10. het leren splitsen van de getallen: handleiding bij oefenboek 1, 2, 3 en 4

SPLITSEN handleiding. 1, 2, 3, 4, 5, 6, 7, 8, 9 en 10. het leren splitsen van de getallen: handleiding bij oefenboek 1, 2, 3 en 4 SPLITSEN handleiding het leren splitsen van de getallen: 1, 2, 3, 4, 5, 6, 7, 8, 9 en 10 handleiding bij oefenboek 1, 2, 3 en 4 inleiding Dit is de handleiding bij vier oefenboeken voor het leren splitsen

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

Dossieropdracht 4. Analyse 1 - Didactiek

Dossieropdracht 4. Analyse 1 - Didactiek Dossieropdracht 4 Analyse 1 - Didactiek Naam: Thomas Sluyter Nummer: 1018808 Jaar / Klas: 1e jaar Docent Wiskunde, deeltijd Datum: 27 november, 2007 Samenvatting Al eerder zijn de studenten bloot gesteld

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

Biljarten op een ellips. Lab kist voor 3-4 vwo

Biljarten op een ellips. Lab kist voor 3-4 vwo Biljarten op een ellips Lab kist voor 3-4 vwo Dit lespakket behoort bij het ellipsvormige biljart van de ITS Academy. Ontwerp: Pauline Vos, in opdracht van Its Academy Juni 2011 Leerdoelen: - kennismaken

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Vraagstukken van de tweede graad

Vraagstukken van de tweede graad Vraagstukken van de tweede graad 1. Een getal en zijn tweedemacht hebben als som 90. Bepaal dat getal.. Bepaal twee opeenvolgende getallen waarvan de som van de kwadraten 365 is. 3. Verdeel het getal 37

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

Small Basic Console Uitwerking opdrachten

Small Basic Console Uitwerking opdrachten Opdracht 1 3 getallen => inlezen Gemiddelde uitrekenen Resultaat afdrukken TextWindow.WriteLine("Dit programma berekend het gemiddelde van drie door U in te voeren getallen.") TextWindow.Write("Voer getal

Nadere informatie

Profilering derde graad

Profilering derde graad De leerling heeft in de 1ste en de 2de graad, de gelegenheid gehad zijn/haar interesses te ontdekken en heeft misschien al enig idee ontwikkeld over toekomstige werk- of studieplannen. Vaardigheden, inzet,

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 3

Uitwerkingen oefeningen hoofdstuk 3 Uitwerkingen oefeningen hoofdstuk 3 3.4.1 Basis Tijd meten 1 Juli heeft 31 dagen. Wanneer 25 juli op zaterdag valt, valt 31 juli dus op een vrijdag. Augustus heeft ook 31 dagen. 1 augustus valt dus op

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Het metriek stelsel. Grootheden en eenheden.

Het metriek stelsel. Grootheden en eenheden. Het metriek stelsel. Metriek komt van meten. Bij het metriek stelsel gaat het om maten, zoals lengte, breedte, hoogte, maar ook om gewicht of inhoud. Er zijn verschillende maten die je moet kennen en die

Nadere informatie

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo kader Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk

Nadere informatie

NAAR SCHOOL IN VLAANDEREN

NAAR SCHOOL IN VLAANDEREN NAAR SCHOOL IN VLAANDEREN Je leest een tekst over de organisatie en de structuur van het onderwijs in Vlaanderen. Wat moet je doen? 1. Kijk naar de woordenlijst op blad 1 (deze pagina) 2. Lees eerst de

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

Planning presentatie Hendrik Van Steenbrugge Begeleidingscommissie: Prof. dr. M. Valcke (promotor, UGent) Prof. dr. A. Desoete (co-promotor, UGent) Prof. dr. K.P.E. Gravemeijer (ESOE) Prof. dr. J. Grégoire

Nadere informatie

Hoezo denkactiviteiten?

Hoezo denkactiviteiten? Hoezo denkactiviteiten? Paul Drijvers, Freudenthal Instituut Peter van Wijk, ctwo/aps 2011-11-05 350 450 100 N F P H Afstand tot F Afstand tot P 350 450 100 N F P H 350 450 100 N F P H Is dit een wiskundige

Nadere informatie

Analytische en andere soorten meetkunde van Mavo tot Maple. Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft.

Analytische en andere soorten meetkunde van Mavo tot Maple. Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft. Analytische en andere soorten meetkunde van Mavo tot Maple Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft.nl Puzzel mavo 3 Puzzel mavo 3 Puzzel mavo 3 Veronderstel: zijde

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

Wiskunde C vwo. Workshop Noordhoff wiskundecongres 19 november 2015 Jan Dijkhuis en Sabine de Waal. Programma

Wiskunde C vwo. Workshop Noordhoff wiskundecongres 19 november 2015 Jan Dijkhuis en Sabine de Waal. Programma Wiskunde C vwo Workshop Noordhoff wiskundecongres 19 november 2015 Jan Dijkhuis en Sabine de Waal Programma 1. Vorm en ruimte in Getal & Ruimte 2. Logisch redeneren in Getal & Ruimte 1. Examenprogramma

Nadere informatie

Differentiëren in een wiskundeles d.m.v. activerende directe instructie. Door Tania Mouton (HoGent) en Brian Baert (HoWest)

Differentiëren in een wiskundeles d.m.v. activerende directe instructie. Door Tania Mouton (HoGent) en Brian Baert (HoWest) Differentiëren in een wiskundeles d.m.v. activerende directe instructie Door Tania Mouton (HoGent) en Brian Baert (HoWest) Wat is differentiëren? Het positief en planmatig omgaan met verschillen tussen

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven INHOUDSOPGAVE Routes in Vakhorst 1 Oppervlakte 6 Formules 9 Roosterkwartier 11 Test 15 Op de grens van Roosterkwartier en Vakhorst 16 Met negatieve getallen 18 Formules uit plaatjes 0 Zonder plaatjes Terugblik

Nadere informatie

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7.

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7. Herhalingsoefeningen Rijen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Onderzoek of de

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

Informatie. vakgebieden. Groep 6

Informatie. vakgebieden. Groep 6 Informatie vakgebieden Groep 6 Taal Gehanteerde methode: Taal in beeld - Spelling in beeld Uitgever: Zwijsen Taal in beeld is een taalmethode voor groep 4 tot en met 8 van het basisonderwijs. De methode

Nadere informatie

Oefenopgaven Stelling van Pythagoras.

Oefenopgaven Stelling van Pythagoras. Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 19 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 19 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2009 tijdvak 1 dinsdag 19 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo inhoudelijke structuur dakpanconstructie planning beschrijving per hoofdstuk Moderne Wiskunde, docentenhandleiding - klas

Nadere informatie

Wiskunde als inspiratie voor een zoektocht

Wiskunde als inspiratie voor een zoektocht Wiskunde als inspiratie voor een zoektocht INLEIDING Een aantal jaar geleden leerde ik een nieuw spel kennen: geocaching. Dit is in feite een zoektocht waarbij je gebruik maakt van GPS-coördinaten. Op

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

VLAAMS VERBOND VAN HET KATHOLIEK SECUNDAIR ONDERWIJS LEERPLAN SECUNDAIR ONDERWIJS WISKUNDE. Derde graad BSO Derde leerjaar: 1 of 2 uur/week

VLAAMS VERBOND VAN HET KATHOLIEK SECUNDAIR ONDERWIJS LEERPLAN SECUNDAIR ONDERWIJS WISKUNDE. Derde graad BSO Derde leerjaar: 1 of 2 uur/week VLAAMS VERBOND VAN HET KATHOLIEK SECUNDAIR ONDERWIJS LEERPLAN SECUNDAIR ONDERWIJS WISKUNDE Derde graad BSO Derde leerjaar: 1 of 2 uur/week Licap - Brussel - september 1995 INHOUD 1 BEGINSITUATIE... 5 2

Nadere informatie

De eenparige rechtlijnige beweging

De eenparige rechtlijnige beweging De eenparige rechtlijnige beweging Inleidende experimenten Via opdrachten met de robot LEGO NXT willen we de leerstof van mechanica aanbrengen en op een creatieve en speelse manier leren nadenken over

Nadere informatie

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! www.wiskundekangoeroe.be Dit initiatief kwam tot stand binnen het actieplan Wetenschapscommunicatie

Nadere informatie

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ... PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...

Nadere informatie

1 Meetkunde en Algebra

1 Meetkunde en Algebra 1 Meetkunde en Algebra Het eerste deel van dit hoofdstuk is een bewerking van Meetkunde met coördinaten, Blok Redeneren met vormen, getallen en formules van Aad Goddijn ten behoeve van het nieuwe programma

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Ruimtelijke oriëntatie: plaats en richting

Ruimtelijke oriëntatie: plaats en richting Ruimtelijke oriëntatie: plaats en richting 1 Lijnen en rechten Hoe kunnen lijnen zijn? gebogen of krom gebroken recht We onthouden: Een rechte is een rechte lijn. c a b Een rechte heeft geen begin- en

Nadere informatie

Profilering derde graad

Profilering derde graad De leerling heeft in de 1ste en de 2de graad, de gelegenheid gehad zijn/haar interesses te ontdekken en heeft misschien al enig idee ontwikkeld over toekomstige werk- of studieplannen. Vaardigheden, inzet,

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

Vlaamse Wiskunde Olympiade 2011-2012: tweede ronde

Vlaamse Wiskunde Olympiade 2011-2012: tweede ronde Vlaamse Wiskunde Olympiade 011-01: tweede ronde 1. Op hoeveel manieren kan deze ronde van de wiskunde olympiade opgelost worden met precies één antwoord dat foutief of blanco is? () 0 () 10 (C) 150 (D)

Nadere informatie

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B basis Inhoud deel 3A Hoofdstuk 1 Plaatsbepalen Hoofdstuk 2 Grafieken en tabellen Hoofdstuk 3 Rekenen Hoofdstuk 4 Informatieverwerking Hoofdstuk 5 Tekenen en rekenen Computer

Nadere informatie

Zoek nu even zelf hoe het verder gaat. Een schematische voorstelling kan hierbij zeker helpen.

Zoek nu even zelf hoe het verder gaat. Een schematische voorstelling kan hierbij zeker helpen. De rij van Fibonacci Leonardo di Pisa (/ ca. 1170, artiestennaam Fibonacci, invoerder van de Indische cijfers in Europa), zat in 1202 met het volgende zware wiskundige probleem: Stel: een boer koopt op

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

Elde college Schijndel. Kernteam Techniek

Elde college Schijndel. Kernteam Techniek Elde college Schijndel Kernteam Techniek Wiskunde lesstof stapelaars docent: Joost van Veghel Voorwoord Gefeliciteerd! Als je dit leest, heb je het schooljaar afgesloten met een diploma voor de basisberoepsgerichte

Nadere informatie

---9. r-:- ------------------ I Getallenkenni:li. Tips voor de toets. Meetkunde. Bewerldngen. Meten en metend rekenen

---9. r-:- ------------------ I Getallenkenni:li. Tips voor de toets. Meetkunde. Bewerldngen. Meten en metend rekenen 5 r-:- ------------------ Getallenkenni:li Wat leerde ik? Een verhouding uitdrukken in percent en i omgekeerd Breuken vermenigvuldigen met een natuurlijk getal en omgekeerd Waar staat dit in het onthoudboek?

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Viervlakken. Op een tafel vóór je staan vier viervlakken V 1, V 2, V 3 en V 4. Op elk grensvlak

Nadere informatie

Rekenen in groep 1 en 2. Een goede rekenstart

Rekenen in groep 1 en 2. Een goede rekenstart Rekenen in groep 1 en 2 Een goede rekenstart Onderwerpen in deze workshop Een goede rekenstart, rekentijd Betekenisvol reken- en wiskundeonderwijs Rekeninhouden en doelen Beredeneerd aanbod Werken met

Nadere informatie

Vandaag 11/22/11$ ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN. Moeilijk onderdeel van de leerstof

Vandaag 11/22/11$ ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN. Moeilijk onderdeel van de leerstof 2 3 ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN ErasmushogeschoolBrussel Lerarenopleiding LSO anne.schatteman@ehb.be Vandaag 2 Moeilijk onderdeel van de leerstof 3 Bewijzen worden behandeld

Nadere informatie

Scoreblad bewis 01. naam cursist: naam afnemer: werkpunt. niet goed. tellen. getalbegrip. algemeen 01 04. bewerking en. optellen en.

Scoreblad bewis 01. naam cursist: naam afnemer: werkpunt. niet goed. tellen. getalbegrip. algemeen 01 04. bewerking en. optellen en. Scoreblad bewis naam cursist: datum: naam afnemer: inhoud vraag opmerkingen OK werkpunt niet goed tellen eieren tellen in dozen van 10 getallen verder aanvullen in kralenketting getalbegrip getallen ertussen

Nadere informatie

Colofon. Dit is een uitgave van: Philips Human Resources Benelux / Jet-Net Gebouw VB-12 Postbus 80003 5600 JZ Eindhoven

Colofon. Dit is een uitgave van: Philips Human Resources Benelux / Jet-Net Gebouw VB-12 Postbus 80003 5600 JZ Eindhoven Straatverlichting, wat kost dat L 30 30 30 x x een wiskundeproject voor 4 havo/vwo Colofon Dit is een uitgave van: Philips Human Resources Benelux / Jet-Net Gebouw VB- Postbus 80003 600 JZ Eindhoven Uitgave:

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2014 tijdvak 1 maandag 19 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen Wat voorafgaat aan het leren van de staartdeling: De kinderen moeten al vertrouwd zijn met de schrijfwijze van de delingen (hoofdrekenen)

Nadere informatie

Informatie. vakgebieden. Groep 5

Informatie. vakgebieden. Groep 5 Informatie vakgebieden Groep 5 Taal Gehanteerde methode: Taal in beeld - Spelling in beeld Uitgever: Zwijsen Taal in beeld is een taalmethode voor groep 4 tot en met 8 van het basisonderwijs. De methode

Nadere informatie

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Examen VMBO-BB. wiskunde CSE BB. tijdvak 1 donderdag 22 mei 9.00-10.30 uur

Examen VMBO-BB. wiskunde CSE BB. tijdvak 1 donderdag 22 mei 9.00-10.30 uur Examen VMBO-BB 2014 tijdvak 1 donderdag 22 mei 9.00-10.30 uur wiskunde CSE BB Naam kandidaat Kandidaatnummer Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal 62 punten te behalen. Voor elk

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Titel Moderne wiskunde onderbouw en vmbo (8e editie) Vak/onderwerp wiskunde

Titel Moderne wiskunde onderbouw en vmbo (8e editie) Vak/onderwerp wiskunde Titel Moderne wiskunde onderbouw en vmbo (8e editie) Vak/onderwerp wiskunde Hardware-eisen Minimumconfiguratie: Windows 98, Pentium 400 Mhz Processor, 32 Mb intern geheugen, schermresolutie 800x600 pixels,

Nadere informatie

PROFESSIONELE BACHELOR IN HET ONDERWIJS: LAGER ONDERWIJS

PROFESSIONELE BACHELOR IN HET ONDERWIJS: LAGER ONDERWIJS PROFESSIONELE BACHELOR IN HET ONDERWIJS: LAGER ONDERWIJS LESONTWERP Katholieke Hogeschool Leuven Departement Lerarenopleiding Professionele bachelor in onderwijs: lager onderwijs Campus Heverlee Hertogstraat

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

Correctievoorschrift VBO-MAVO-C. Wiskunde

Correctievoorschrift VBO-MAVO-C. Wiskunde Wiskunde Correctievoorschrift VBO-MAVO-C Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs 20 02 Tijdvak 1 Inzenden scores Uiterlijk op 29 mei de scores van de alfabetisch eerste

Nadere informatie

Sum of Us 2014: Topologische oppervlakken

Sum of Us 2014: Topologische oppervlakken Sum of Us 2014: Topologische oppervlakken Inleiding: topologische oppervlakken en origami Een topologisch oppervlak is, ruwweg gesproken, een tweedimensionaal meetkundig object. We zullen in deze tekst

Nadere informatie

Publicatielijst particulieren Eureka Expert www.eurekaexpert.be

Publicatielijst particulieren Eureka Expert www.eurekaexpert.be Publicatielijst particulieren Eureka Expert www.eurekaexpert.be Alle prijzen zijn ENKEL voor PARTICULIEREN. Alle werkboeken zonder prijsvermelding kosten 15 BTW incl. Online kan je de digitale versie 9,

Nadere informatie

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B vmbo kader Inhoud deel 3A Hoofdstuk 1 Vlakke meetkunde Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Rekenen Hoofdstuk 4 Statistiek Hoofdstuk 5 Ruimtemeetkunde Hoofdstuk

Nadere informatie

ruimte Handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek handleiding

ruimte Handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek handleiding Handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek 1 de grote lijn de zijlijn hoofdlijn Kennismaken met verschillende soorten

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch inhoudelijke structuur dakpanconstructie planning beschrijving per hoofdstuk Moderne Wiskunde, docentenhandleiding -

Nadere informatie