Speciale relativiteitstheorie: de basisconcepten in een notedop

Maat: px
Weergave met pagina beginnen:

Download "Speciale relativiteitstheorie: de basisconcepten in een notedop"

Transcriptie

1 Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie:... 1 de basisconcepten in een notedop Klassieke Relativiteit Twee waarnemers zien een verschillende beweging Klassieke relativiteit Maxwell De relativiteit volgens Einstein Tijdrek en klokvertraging Afstand meten: lengtekrimp Ruimte-tijd... 6 De bedoeling van deze tekst is om de basisconcepten op een zo eenvoudige mogelijke manier weer te geven. Deze concepten zijn: inertiaal systemen, toepassing van de fysica in inertiaal systemen, het bestaan van verschillende waarnemers elk met hun eigen standpunt, het belang van de constante lichtsnelheid en de gevolgen hiervan zijnde klokvertraging, lengte contractie. 1. Klassieke Relativiteit De relativiteitstheorie vertrekt van het principe dat, als een voorwerp zich met een constante snelheid beweegt, er geen test verzonnen kan worden die deze beweging detecteert. Dus als een auto zich op een rechte weg met een constante snelheid voortbeweegt, kunnen we een bal omhoog gooien of een kop koffie inschenken op net dezelfde manier als wanneer de wagen zou stilstaan. De bal gaat recht omhoog en omlaag omdat we geen onderscheid kunnen maken tussen eenparige beweging en rust zijn ze hetzelfde. Deze observaties gelden alleen als er geen acceleratie is. Als we slechts één voorwerp beschouwen is het niet zinvol om naar de snelheid van dat voorwerp te vragen. Daartoe is een tweede voorwerp nodig. Als we twee voorwerpen hebben die zich ten opzichte van elkaar bewegen, kan de beweging wel gedetecteerd worden en de snelheid gemeten worden maar er kan geen uitspraak gedaan worden welk voorwerp beweegt en welk stilstaat. Snelheid is een relatief begrip. We kunnen alleen spreken over de relatieve snelheid van een frame ten opzichte van een ander frame maar niet over de absolute snelheid. Een passagier of een waarnemer W1 in de wagen kan dus denken dat de wagen stilstaat en de aarde beweegt. Dit noemen we een interne of meereizende of meebewegende waarnemer.

2 Terwijl de meereizende waarnemer W1 in de wagen denkt dat de wagen stilstaat en de aarde beweegt is er een tweede waarnemer W2, die zich buiten de wagen bevindt en denkt dat de wagen beweegt en de aarde stil staan. En voor een derde waarnemer, die zich op de zon bevindt, beweegt zowel de auto als de aarde met een snelheid van ongeveer 30 km/s zijn ( de omloopsnelheid van de aarde om de zon). En voor een vierde waarnemer in het centrum van de melkweg geldt er weer wat anders. Wat is nu de echte snelheid? Wie heeft er gelijk? Antwoord: ze hebben allemaal gelijk omdat de waarneming afhangt van de positie en snelheid van de waarnemer. Iedere waarnemer kan aannemen dat hij stil staat en dat de rest van het universum beweegt. Het is onmogelijk uit te maken welk voorwerp beweegt omdat er geen krachten aanwezig zijn en dus elk object rechtlijnig beweegt met constante snelheid. Elke waarnemer kan denken dat hij stil staat en dat alle andere voorwerpen (de rest van het universum) bewegen met dezelfde snelheid. 1.1 Twee waarnemers zien een verschillende beweging Keren we terug naar het voorbeeld van een rijdende wagen waarin een bal omhoog wordt gegooid. Als we aannemen dat we te maken hebben met een glazen wagen dan ziet een externe waarnemer dat de bal reeds een horizontale beweging uitvoerde voor hij wordt opgegooid en dat deze bewegingscomponente behouden blijft na het opgooien. Dit laatste is nodig opdat deze waarnemer zou kunnen verklaren dat de bal niet tegen de wand botst. Dit betekent ook dat externe waarnemer op aarde W2 de bal een omgekeerde V patroon ziet beschrijven. De breedte van de V wordt groter als de snelheid van de wagen toeneemt. Als v=0 is de breedte ook gelijk aan nul. De snelheid van het bewegend voorwerp heeft dus impact op de waarnemingen van W2 ( wat hij ziet en meet.) De meebewegende waarnemer W1 (in de wagen) daarentegen ziet de bal op dezelfde plaats op en neer bewegen. 1.2 Klassieke relativiteit Relativiteit bestond reeds ten tijde van Galilei. Het is een manier om waarnemingen vanuit twee verschillende gezichtspunten of waarnemers, die ten opzichte van elkaar bewegen, met elkaar in overeenstemming te brengen en te verklaren. De klassieke relativiteit is gebaseerd op de transformatieformules van Galileo. Voor een assenstelsel S (x,t ) dat met constante snelheid v langs de x-as beweegt van een stelsel S (x,t) geldt x =x-vt t =t. Hieruit volgt dat de tijd en ruimte intervallen dezelfde zijn voor alle waarnemers. En dat de snelheden moeten worden opgeteld. Dit betekent dat een voorwerp met een snelheid u ten opzichte van een assenstelsel dat op zijn beurt een snelheid v heeft ten opzichte van een referentiestelsel een totale snelheid heeft van v+u als beide bewegingen in dezelfde richting gaan of v-u als ze tegengesteld zijn of ergens tussen beide grenzen afhankelijk van de hoek tussen de vectoren. Newton heeft dit principe overgenomen. Eén van de consekwenties is dat de snelheid steeds groter kan worden en er dus geen maximum of een absolute begrenzing bestaat.

3 Eén van de gevolgen hiervan is dat gebeurtenissen oneindig snel gecommuniceerd worden. Bijvoorbeeld, als de zon plots zou ophouden te schijnen, zouden we dat op aarde ogenblikkelijk kunnen vaststellen. 1.3 Maxwell Onderzoekers geraakten steeds meer geinteresserd in de studie van licht. Ze kwamen er achter dat licht een golfverschijnsel was. Deze laatste waren bekend, bijv als geluidsgolven die een medium nodig hebben. Bovendien waren er de eerste metingen van de snelheid en deze bleek overeen te komen met de snelheid van elektromagnetische golven. De theorie over de elektromagnetische golven werd door James Clerk Maxwell ontwikkeld in Een in-de-tijd-wisselend magnetisch en elektrisch veld treden altijd samen op en dat leidt tot een golf waarvan de snelheid gegeven wordt door c = 1 / ε 0µ 0. Hierin is ε 0 de dielekrische constante en µ 0 de magnetische permeabiliteit. Omdat dit constanten zijn ligt hiermee de lichtsnelheid vast: ze is steeds dezelfde onafhankelijk van de snelheid van de bron. Dit werd bevestigd in de experimenten van Michelson en Morley. Dit was echter in tegenspraak met de klassieke relativiteit toegepast op golven waarbij men aannam dat golven in het algemeen een medium nodig hebben om zich voort te planten. Stel dat we dit medium S (ether) noemen. In een frame S bevindt zich de lichtbron of de detector. Als c de snelheid is ten opzichte van het medium en v de snelheid van S dan verwachtte men gemeten snelheden tussen c+v en c-v. Niet dus in de proef van Michelson en Morley 2. De relativiteit volgens Einstein: eindige lichtsnelheid Er ontstaan problemen als klassieke relativiteit toegepast wordt op licht dat we modelleren als deeltjes (fotonen). Bijvoorbeeld, als we in het voorbeeld van de auto de bal door een lichtpuls vervangen ontstaat er een tegenstrijdigheid tussen de klassieke relativiteit met het optellen van snelheden en het absolute karakter van de lichtsnelheid. Einstein lost deze tegenstelling op door beide uitgangspunten te aanvaarden. Dit was alleen maar mogelijk door de relativiteit anders te definieren. Einstein vertrekt van twee principes. 1. De wetten van de fysica zijn dezelfde in alle inertiaalsystemen. Tot de wetten van de fysica behoort de constante lichtsnelheid van Maxwell. 2. De lichtsnelheid in de vrije ruimte is dezelfde in alle inertiaalframes en is dus absoluut. Terwijl in de klassieke relativiteit snelheid relatief is en de begrippen waaruit het is afgeleid (tijd en afstand) absoluut draait Einstein dit om. Als de lichtsnelheid absoluut is moeten tijd en afstand relatief zijn. Omdat tijd centraal staat in deze discussie, hebben we het eerst over een klok.

4 2.1 Tijdrek en klokvertraging Een klok is een meetinstrument dat een periodiek signaal genereert. We kiezen voor een lichtklok waarbij een lichtpuls verticaal heen en weer gaat tussen twee horizontale reflecterende spiegels waartussen een afstand L. We gaan nu één en hetzelfde fysisch gebeuren vanuit twee waarnemers beschrijven. Dit gebeuren is gedefinieerd door twee gebeurtenissen, namelijk het vertrek onderaan van de lichtpuls en de aankomst bij dezelfde spiegel na reflectie tegen de bovenste spiegel. Er zijn twee waarnemers W1 en W2 (zie Figuur 1). W1 bevindt zich samen met de klok in dezelfde auto bevindt en noemen we meebewegend. W2 zich buiten de auto op een vast positie op aarde bevindt en wordt de rustende waarnemer genoemd. Het gaat er nu om wat elke waarnemer ziet en meet. W1 in de auto spiegel W2 buiten de auto B L A AC=v t C Figure 1 Verschillende snelheidsverschillen tussen een waarnemer en een klok. De linker situatie toont een meebewegende waarnemer. De klok bereikt haar grootste snelheid. De rechter helft toont een klok die met een snelheid v beweegt ten opzichte van de waarnemer die zich in rust bevindt. Daardoor wordt de afgelegde weg groter en bijgevolg ook de periode tussen twee opeenvolgende kloktikken. Analyse van de meebewegende waarnemer W1 (Figuur 1links) Deze ziet een stilstaande klok en meet dat de lichtstraal een weg aflegt gelijk aan 2L. Hij weet dat de lichtsnelheid constant is en kan daarom de tijd berekenen door de afgelegde weg te delen door de lichtsnelheid. Hij vindt T W1 =2L/c waarbij T staat voor de periode of de tijd tussen beide gebeurtenissen. Analyse van de waarnemer W2 (Figuur 1 rechts) W2 ziet een bewegende klok en observeert een afgelegde weg in de vorm van een 2 vtw 2 omgekeerde V. Vermits AB = L + > L betekent dit dat het licht een weg 2 moet afleggen die langer is dan in het voorgaande geval van W1. Wegens het constant zijn van de lichtsnelheid doet het licht daar dus een langere tijd over. De periode wordt langer en de klok trager. 2

5 We kunnen dit meer in detail berekenen. We berekenen opnieuw de tijd als de afgelegde_weg gedeeld door de lichtsnelheid 2AB T W 2 = c Na enkele berekeningen volgt hieruit 2L = T W c v W2 ziet een vertraagde klok. Conclusie: 1. Als een klok in rust is ten opzichte van de waarnemer bereikt ze haar maximale snelheid of eigen-snelheid. Dit is het geval voor een meebewegende waarnemer in het stelsel S. 2. Als ze daarentegen beweegt ten opzichte van een waarnemer dan observeert deze laatste een tragere klok waarbij de vertragingsfactor is gelijk aan ( v / ) 2 γ = 1/ 1 c. Er zijn twee limiet situaties. Als v=0 dan is er geen vertraging en is de kloksnelheid het grootste. Als v=c is de periode oneindig, m.a.w. dan staat de tijd stil. t S S t t x Figure 2 Het verband tussen de klokperiode van een meebewegende waarnemer t en een vaste waarnemer t. Er geldt t=γ t Opmerking. Dit geldt alleen voor de bewegende klok gezien door de ogen van een vaste waarnemer. Dit geldt niet voor de meebewegende waarnemer W1. Deze doet immers alsof hij stilstaat en alsof de rest van het universum beweegt. Hij denkt dus dat er niets aan de hand is met zijn klok maar dat integendeel de klok van de rest van het universum langzamer geworden is. Zijn klok loopt dus op de normale snelheid. Hij meet de eigentijd τ= t 2.2 Afstand meten: lengtekrimp De eenvoudigste manier is om dit af te leiden van de tijdvertraging. Dit gaat als volgt. We gaan uit van 2 stelsels die ten opzichte van elkaar bewegen met een snelheid v. S heeft

6 een meetlat op een vaste plaats en S een waarnemer, eveneens op een vaste plaats. We definieren 2 events zijnde de passages van de waarnemer met het begin, respectievelijk einde van de meetlat. S meet tussen beide gebeurtenissen een tijd van t die gelijk is aan de eigentijd vermits beide metingen in S op dezelfde plaats gebeuren. S meet de rust afstand L en de tijd t die nodig is om deze afstand te overbruggen met een snelheid van S vindt t=l/v. t is niet de eigentijd vermits beide metingen op verschillende plaatsen gebeuren. Het verband is γ t = t. In S geldt v t =L. Hieruit volgt L L' L t v = = = γ L' = L t t' L' t' Dit betekent dat een meetlat in rust ten opzichte van de waarnemer als maximaal wordt gemeten maar dat een kleiner lengte wordt gemeten als ze in beweging is. 2.3 Ruimte-tijd De eindigheid van de lichtsnelheid maakt dat er tijd nodig is om een gebeurtenis, die op een bepaalde plaats gebeurt, kenbaar te maken op een andere plaats. Bijvoorbeeld, als de zon plots zou ophouden te schijnen, zouden we daar op aarde slechts 8 min later iets van merken omdat dit de tijd is die het licht nodig heeft om de afstand aarde-zon te overbruggen. Plaats en tijd geraken op die manier in elkaar verstrengeld. Dit blijkt ook uit de transformatie formules van S (x,t ) naar S(x,t) x =γ(x-vt) t =γ(t -vx/c 2 )

Relativiteitstheorie met de computer

Relativiteitstheorie met de computer Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie De drie vragen van Einstein Wat is licht? Wat is massa? Wat is tijd? In 1905, Einstein was toen 26 jaar! Klassiek: wat is licht? Licht is een golf, die naar alle kanten door

Nadere informatie

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde André van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s speciale relativiteitstheorie, maarr dan begrijpelijk

Nadere informatie

Relativiteit. Relativistische Mechanica 1

Relativiteit. Relativistische Mechanica 1 Relativiteit University Physics Hoofdstuk 37 Relativistische Mechanica 1 Relativiteit beweging voorwerp in 2 verschillende inertiaal stelsels l relateren Galileo Galileïsche transformatie 2 Transformatie

Nadere informatie

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Albert Einstein en Euclides Geboren te Ulm op 14 maart 1879 Als kind geinteresseerd in Wiskunde en wetenschappen:magneten,electromotoren, wiskundige

Nadere informatie

1 Leerlingproject: Relativiteit 28 februari 2002

1 Leerlingproject: Relativiteit 28 februari 2002 1 Leerlingproject: Relativiteit 28 februari 2002 1 Relativiteit Als je aan relativiteit denkt, dan denk je waarschijnlijk als eerste aan Albert Einstein. En dat is dan ook de bedenker van de relativiteitstheorie.

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. Een korte inleiding:

Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. Een korte inleiding: 1 Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. 23-09-2015 -------------------------------------------- ( j.eitjes@upcmail.nl) Een korte inleiding: Is Ruimte zoiets als Leegte, een

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Gravitatie en Kosmologie

Gravitatie en Kosmologie Gravitatie en Kosmologie FEW cursus Jo van den Brand & Jeroen Meidam Les 1: 3 september 2012 Parallax Meten van afstand Meet positie van object ten opzichte van achtergrond De parallaxhoek q, de afstand

Nadere informatie

RELATIVITEIT VWO. Lengtecontractie Rust- bewegende massa Relativistisch optellen

RELATIVITEIT VWO. Lengtecontractie Rust- bewegende massa Relativistisch optellen RELATIVITEIT VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan op

Nadere informatie

Uit: Niks relatief. Vincent Icke Contact, 2005

Uit: Niks relatief. Vincent Icke Contact, 2005 Uit: Niks relatief Vincent Icke Contact, 2005 Dé formule Snappiknie kanniknie Waarschijnlijk is E = mc 2 de beroemdste formule aller tijden, tenminste als je afgaat op de meerderheid van stemmen. De formule

Nadere informatie

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Het Quantum Universum. Cygnus Gymnasium

Het Quantum Universum. Cygnus Gymnasium Het Quantum Universum Cygnus Gymnasium 2014-2015 Wat gaan we doen? Fundamentele natuurkunde op de allerkleinste en de allergrootste schaal. Groepsproject als eindopdracht: 1) Bedenk een fundamentele wetenschappelijk

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber Tijd in de fysica Paul Koerber Postdoctoraal Onderzoeker FWO Instituut voor Theoretische Fysica, K.U.Leuven Kunsthumaniora Brussel, 2 maart 2011 1 / 16 Wat is tijd? Een coördinaat om de positie van een

Nadere informatie

Maar het leidde ook tot een uitkomst die essentieel is in mijn werkstuk van een Stabiel Heelal.

Maar het leidde ook tot een uitkomst die essentieel is in mijn werkstuk van een Stabiel Heelal. -09-5 Bijlage voor Stabiel Heelal. --------------------------------------- In deze bijlage wordt onderzocht hoe in mijn visie materie, ruimte en energie zich tot elkaar verhouden. Op zichzelf was de fascinatie

Nadere informatie

Lengte van een pad in de twee dimensionale Euclidische ruimte

Lengte van een pad in de twee dimensionale Euclidische ruimte Lengte van een pad in de twee dimensionale Euclidische ruimte Bekijk een willekeurig pad van naar. Verdeel het pad in kleine stukjes die elk voor zich als rechtlijnig beschouwd kunnen worden. De lengte

Nadere informatie

Relativiteitstheorie VWO

Relativiteitstheorie VWO Inhoud... 2 Waarnemingen verrichten... 2 Relativiteitsprincipe van Galileo Galilei... 3 Het (tijd, plaats)-diagram... 4 Iedereen kijkt naar Bobs raket... 4 Het relativiteitsprincipe van Galilei en de snelheid

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

Relativiteit. Bijlagen

Relativiteit. Bijlagen Relativiteit 1 Referentiestelsels; Galileï-transformatie Postulaten van de speciale relativiteitstheorie 3 Tijdsduurrek 4 Lengtekrimp 5 Minkowskidiagram 6 Lorentztransformatie 7 Ruimtetijdinterval 8 Relativistisch

Nadere informatie

Docentencursus relativiteitstheorie

Docentencursus relativiteitstheorie Docentencursus relativiteitstheorie Uitwerkingen opgaven bijeenkomst 1, "Waarom relativiteit?" 18 september 2013 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven

Nadere informatie

hoofdstuk R Noordhoff Uitgevers bv

hoofdstuk R Noordhoff Uitgevers bv R 2 hoofdstuk R 244022_Physics 4NA TF.indd 2 30/07/14 1:07 PM Relativiteit In 1905 publiceerde Albert Einstein de speciale relativiteitstheorie, die zo radicaal vernieuwend was dat hij er de wetenschapper

Nadere informatie

De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox. Metius Werkgroep Theoretische Weer- en Sterrenkunde

De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox. Metius Werkgroep Theoretische Weer- en Sterrenkunde De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox Metius Werkgroep Theoretische Weer- en Sterrenkunde Juli 2010 Inhoud Inleiding SRT postulaten en Lorentz transformatie Tijddilatatie

Nadere informatie

Henk meet: A. Coördinaattijd in het stelsel van de trein. B. Coördinaattijd in het stelsel van het perron. C. Eigentijd. D.

Henk meet: A. Coördinaattijd in het stelsel van de trein. B. Coördinaattijd in het stelsel van het perron. C. Eigentijd. D. Henk en Ingrid zitten in een trein die met constante snelheid een station passeert. Aan de uiteinden van het perron staan twee gesynchroniseerde stationsklokken. Bij passage van de klokken leest Henk de

Nadere informatie

Eenparige rechtlijnige beweging

Eenparige rechtlijnige beweging Eenparige rechtlijnige beweging Leerplandoelen FYSICA TWEEDE GRAAD ASO WETENSCHAPPEN LEERPLAN SECUNDAIR ONDERWIJS VVKSO BRUSSEL D/2012/7841/009 5.1.1 Snelheid B1 In concrete voorbeelden van beweging het

Nadere informatie

Uitwerking Oefeningen Speciale Relativiteitstheorie. Galileitransformaties. versie 1.3, januari 2003

Uitwerking Oefeningen Speciale Relativiteitstheorie. Galileitransformaties. versie 1.3, januari 2003 Uitwerking Oefeningen Speciale Relativiteitstheorie Galileitransformaties versie 1.3, januari 003 Inhoudsopgave 0.1Galileitransformatie 0.1.1 Twee inertiaalsystemen...................... 0.1. Een paraboolbaan.........................

Nadere informatie

In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 10 cm en h3 = 15 cm.

In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 10 cm en h3 = 15 cm. Fysica Vraag 1 In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 1 cm en h3 = 15 cm. De dichtheid ρ3 wordt gegeven door:

Nadere informatie

Werkblad 2 Kracht is een vector -Thema 14 (NIVEAU BETA)

Werkblad 2 Kracht is een vector -Thema 14 (NIVEAU BETA) Werkblad 2 Kracht is een vector -Thema 14 (NIVEAU BETA) Practicum Bij een gedeelte van het practicum zijn minimaal 3 deelnemers nodig. Leerlingen die op niveau gevorderd, of basis werken kunnen je helpen

Nadere informatie

Relativiteit. Bijlagen

Relativiteit. Bijlagen Relativiteit 1 Referentiestelsels; Galileï-transformatie Postulaten van de speciale relativiteitstheorie 3 Tijdsduurrek 4 Lengtekrimp 5 Minkowskidiagram 6 Lorentztransformatie 7 Ruimtetijdinterval 8 Relativistisch

Nadere informatie

ALBERT, BERNARD, ANN, BETTY ET LES AUTRES

ALBERT, BERNARD, ANN, BETTY ET LES AUTRES ALBERT, BERNARD, ANN, BETTY ET LES AUTRES Rustig zit Bernard op een driepotig keukenkrukje in zijn voortsuizend ruimtetuig. Zorgvuldig noteert hij de tijd die hij afleest op een koekoeksklok. Tegelijkertijd

Nadere informatie

Opgave 1 Een inertiaalstelsel is een referentiestelsel waarin de eerste wet van Newton geldt.

Opgave 1 Een inertiaalstelsel is een referentiestelsel waarin de eerste wet van Newton geldt. Uitwerkingen 1 Opgae 1 Een inertiaalstelsel is een referentiestelsel waarin de eerste wet an Newton geldt. Opgae Een gebeurtenis is een fysishe situatie of ooral op één bepaalde plaats en op één bepaald

Nadere informatie

Deeltjes in Airshowers. N.G. Schultheiss

Deeltjes in Airshowers. N.G. Schultheiss 1 Deeltjes in Airshowers N.G. Shultheiss 1 Inleiding Deze module volgt op de module Krahten in het standaardmodel. Deze module probeert een beeld te geven van het ontstaan van airshowers (in de atmosfeer)

Nadere informatie

toelatingsexamen-geneeskunde.be

toelatingsexamen-geneeskunde.be Fysica juli 2009 Laatste update: 31/07/2009. Vragen gebaseerd op het ingangsexamen juli 2009. Vraag 1 Een landingsbaan is 500 lang. Een vliegtuig heeft de volledige lengte van de startbaan nodig om op

Nadere informatie

Afstanden en roodverschuiving in een Stabiel Heelal Inleiding.

Afstanden en roodverschuiving in een Stabiel Heelal Inleiding. Afstanden en roodverschuiving in een Stabiel Heelal ---------------------------------------------------------------------- Inleiding. Wanneer men nu aanneemt dat het heelal stabiel is, dus dat alles in

Nadere informatie

Geleid herontdekken van de golffunctie

Geleid herontdekken van de golffunctie Geleid herontdekken van de golffunctie Nascholingscursus Quantumwereld Lodewijk Koopman lkoopman@dds.nl januari-maart 2013 1 Dubbel-spleet experiment Er wordt wel eens gezegd dat elektronen interfereren.

Nadere informatie

Naam: Klas: Repetitie Relativiteit (versie A)

Naam: Klas: Repetitie Relativiteit (versie A) Naam: Klas: Repetitie Relativiteit (versie A) Opgave 1 Jack is verliefd op Jennifer (18) en wil graag een relatie met haar, liefst een seksuele! Het probleem is echter dat Jennifer hem te dik en te oud

Nadere informatie

Botsingen. N.G. Schultheiss

Botsingen. N.G. Schultheiss 1 Botsingen N.G. Schultheiss 1 Inleiding In de natuur oefenen voorwerpen krachten op elkaar uit. Dit kan bijvoorbeeld doordat twee voorwerpen met elkaar botsen. We kunnen hier denken aan grote samengestelde

Nadere informatie

Relativiteit. N.G. Schultheiss

Relativiteit. N.G. Schultheiss 1 Relativiteit N.G. Shultheiss 1 Inleiding In deze module wordt er uitgelegd hoe een natuurkundige gebeurtenis door vershillende waarnemers wordt waargenomen. Iedere waarnemer heeft een eigen assenstelsel

Nadere informatie

Langere vraag over de theorie

Langere vraag over de theorie Langere vraag over de theorie (a) Magnetisch dipooloent Zoals het elektrisch dipooloent is het agnetisch dipooloent een vectoriële grootheid. Het agnetisch dipooloent wordt gedefinieerd voor een gesloten

Nadere informatie

OVERAL, variatie vanuit de kern LES- BRIEF. Tweede Fase. Het neutrinomysterie. Foto: CERN

OVERAL, variatie vanuit de kern LES- BRIEF. Tweede Fase. Het neutrinomysterie. Foto: CERN OVERAL, variatie vanuit de kern LES- BRIEF Tweede Fase Het neutrinomysterie Foto: CERN 1 Het was op het nieuws, het was in de krant, iedereen had het er over: neutrino s die sneller gaan dan het licht.

Nadere informatie

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS 22 juli 1999 70 --- 13 de internationale olympiade Opgave 1. Absorptie van straling door een gas Een cilindervormig vat, met de as vertikaal,

Nadere informatie

Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet!

Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet! Einstein (6) n de voorafgaande artikelen hebben we het gehad over tijdsdilatatie en Lorenzcontractie (tijd en lengte zijn niet absoluut maar hangen af van de snelheid tussen waarnemer en waargenomene).

Nadere informatie

Stevin vwo Uitwerkingen Speciale relativiteitstheorie ( ) Pagina 1 van 8

Stevin vwo Uitwerkingen Speciale relativiteitstheorie ( ) Pagina 1 van 8 Stevin vwo Uitwerkingen Speiale relativiteitstheorie (14-09-015) Pagina 1 van 8 Opgaven 1 Het is maar hoe je het ekijkt 1 a Een inertiaalsysteem is een omgeving waarin de eerste wet van Newton geldt. a

Nadere informatie

Dimensies, eenheden en de Maxwell vergelijkingen

Dimensies, eenheden en de Maxwell vergelijkingen Dimensies, eenheden en de Maxwell vergelijkingen Alexander Sevrin 1 Inleiding De keuze van dimensies en eenheden in het elektromagnetisme is ver van eenduidig. Hoewel het SI systeem één en ander ondubbelzinnig

Nadere informatie

K4 Relativiteitstheorie

K4 Relativiteitstheorie K4 Relativiteitstheorie Ruimtetijd vwo Uitwerkingen basisboek K4. INTRODUCTIE 2 3 a De golflengte van radiostraling is groter dan die van licht. b Uit c λ f volgt dat de frequentie van de fotonen van radiostraling

Nadere informatie

Voorbeeld 1: Oneindig diepe potentiaalput

Voorbeeld 1: Oneindig diepe potentiaalput Voorbeeld : Oneindig diepe potentiaalput In de onderstaande figuren bevindt zich een deeltje in een eendimensionale ruimte tussen x 0 en x a. Binnen dat gebied is de potentiële energie van het deeltje

Nadere informatie

Speciale Relativiteitstheorie

Speciale Relativiteitstheorie NS106b/2014-2015 Versie 31/07/2014 Speciale Relativiteitstheorie Stefan Vandoren Instituut voor Theoretische Fysica Universiteit Utrecht Dictaat Dit is een collegedictaat in voorbereiding. De tekst is

Nadere informatie

RELATIVITEIT EINSTEINRINGEN. Naam: Klas: Datum:

RELATIVITEIT EINSTEINRINGEN. Naam: Klas: Datum: EINSTEINRINGEN RELATIVITEIT EINSTEINRINGEN Naam: Klas: Datum: ZWAARTEKRACHTSLENZEN EINSTEINRINGEN ZWAARTEKRACHTSLENZEN Je hebt de afgelopen weken geleerd over de relativiteitstheorie van Albert Einstein,

Nadere informatie

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS 1 24 APRIL 2013 11:00 12:45 uur MECHANICA 1 Blok en veer. (5 punten) Een blok van 3,0 kg glijdt over een wrijvingsloos tafelblad met een snelheid van 8,0 m/s

Nadere informatie

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012 - Biologie Schriftelijk examen 2e Ba Biologie 2011-2012 Naam en studierichting: Aantal afgegeven bladen, deze opgaven niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de

Nadere informatie

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud Higgs-deeltje Peter Renaud Heideheeren Inhoud 1. Onze fysische werkelijkheid 2. Newton Einstein - Bohr 3. Kwantumveldentheorie 4. Higgs-deeltjes en Higgs-veld 3 oktober 2012 Heideheeren 2 1 Plato De dingen

Nadere informatie

koper hout water Als de bovenkant van het blokje hout zich net aan het wateroppervlak bevindt, is de massa van het blokje koper gelijk aan:

koper hout water Als de bovenkant van het blokje hout zich net aan het wateroppervlak bevindt, is de massa van het blokje koper gelijk aan: Fysica Vraag 1 Een blokje koper ligt bovenop een blokje hout (massa mhout = 0,60 kg ; dichtheid ρhout = 0,60 10³ kg.m -3 ). Het blokje hout drijft in water. koper hout water Als de bovenkant van het blokje

Nadere informatie

Examenprogramma natuurkunde vwo

Examenprogramma natuurkunde vwo Examenprogramma natuurkunde vwo Ingangsdatum: schooljaar 2013-2014 (klas 4) Eerste examenjaar: 2016 Het eindexamen Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma

Nadere informatie

Theorie: Snelheid (Herhaling klas 2)

Theorie: Snelheid (Herhaling klas 2) Theorie: Snelheid (Herhaling klas 2) Snelheid en gemiddelde snelheid Met de grootheid snelheid geef je aan welke afstand een voorwerp in een bepaalde tijd aflegt. Over een langere periode is de snelheid

Nadere informatie

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren.

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren. 3.1 + 3.2 Kracht is een vectorgrootheid Kracht is een vectorgrootheid 1 : een grootheid met een grootte én een richting. Bij het tekenen van een krachtpijl geldt: De pijl begint in het aangrijpingspunt

Nadere informatie

Voorwoord. Na het ontstaan van het Heelal is de basale verhouding van de afmetingen van materie tot de afstand tussen die materie constant.

Voorwoord. Na het ontstaan van het Heelal is de basale verhouding van de afmetingen van materie tot de afstand tussen die materie constant. --------------------------------------------------------------- 13-11-2015 ( www.serverhans.nl ) ( j.eitjes@upcmail.nl) Voorwoord. In dit werkstuk wil ik uiteenzetten waarom mijn inziens het Heelal stabiel

Nadere informatie

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule:

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule: Voorbeeldmeetrapport (eenparig versnelde beweging stopwatch en meetlat) Eenparig versnelde beweging stopwatch en meetlat. Doel van de proef Een kogel die van een helling afrolt, voert een eenparig versnelde

Nadere informatie

Tentamen - uitwerkingen

Tentamen - uitwerkingen Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke

Nadere informatie

Tolpoortje RELATIVITEIT KEPLER 22B. 200 m. aket. Naam: Klas: Datum:

Tolpoortje RELATIVITEIT KEPLER 22B. 200 m. aket. Naam: Klas: Datum: KEPLER 22B RELATIVITEIT KEPLER 22B Tolpoortje chterste krachtveld de raket binnen is. aket 200 m Krachtveld. het tolsystee zet zodra he krachtveld a Naam: Klas: Datum: KEPLER 22B KEPLER 22B VERDER EN VERDER

Nadere informatie

Samenvatting in het nederlands

Samenvatting in het nederlands Samenvatting in het nederlands Wat voorkennis Stel dat van een oppervlak in de ruimte een golffront komt - het kan om licht gaan, of om geluid. Is het oppervlak een ellipsoide en breidt de golf zich uit

Nadere informatie

BEWEGING HAVO. Raaklijnmethode Hokjesmethode

BEWEGING HAVO. Raaklijnmethode Hokjesmethode BEWEGING HAVO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan op natuurkundeuitgelegd.nl/uitwerkingen

Nadere informatie

Hierin is λ de golflengte in m, v de golfsnelheid in m/s en T de trillingstijd in s.

Hierin is λ de golflengte in m, v de golfsnelheid in m/s en T de trillingstijd in s. Inhoud... 2 Opgave: Golf in koord... 3 Interferentie... 4 Antigeluid... 5 Staande golven... 5 Snaarinstrumenten... 6 Blaasinstrumenten... 7 Opgaven... 8 Opgave: Gitaar... 8 Opgave: Kerkorgel... 9 1/10

Nadere informatie

Speciale Relativiteitstheorie. Oefeningen. Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer

Speciale Relativiteitstheorie. Oefeningen. Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer Speciale Relativiteitstheorie Oefeningen Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer Inhoudsopgave 1 Galileitransformatie 2 1.1 Een paraboolbaan...................................

Nadere informatie

NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica PROEFEXAME VA 3 OVEMBER 2009

NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica PROEFEXAME VA 3 OVEMBER 2009 NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica Prof. J. Danckaert PROEFEXAME VA 3 OVEMBER 2009 Bij meerkeuzevragen wordt giscorrectie toegepast: voor elk fout verlies je 0.25 punten.

Nadere informatie

Lichtsnelheid Eigenschappen

Lichtsnelheid Eigenschappen Sterrenstelsels Lichtsnelheid Eigenschappen! Sinds eind 19 e eeuw is bekend dat de lichtsnelheid:! In vacuüm 300.000km/s bedraagt! Gemeten met proeven! Berekend door Maxwell in zijn theorie over EM golven!

Nadere informatie

Elektro-magnetisme Q B Q A

Elektro-magnetisme Q B Q A Elektro-magnetisme 1. Een lading QA =4Q bevindt zich in de buurt van een tweede lading QB = Q. In welk punt zal de resulterende kracht op een kleine positieve lading QC gelijk zijn aan nul? X O P Y

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Sterrenkundig Practicum 2 3 maart Proef 3, deel1: De massa van het zwarte gat in M87

Sterrenkundig Practicum 2 3 maart Proef 3, deel1: De massa van het zwarte gat in M87 Proef 3, deel1: De massa van het zwarte gat in M87 Sterrenkundig Practicum 2 3 maart 2005 Vele sterrenstelsels vertonen zogenaamde nucleaire activiteit: grote hoeveelheden straling komen uit het centrum.

Nadere informatie

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd Samenvatting Inleiding De kern Een atoom bestaat uit een kern en aan de kern gebonden elektronen, die om de kern cirkelen. Dat de elektronen aan de kern gebonden zijn, komt doordat er een kracht werkt

Nadere informatie

Examen Algemene natuurkunde 1, oplossing

Examen Algemene natuurkunde 1, oplossing Examen Algemene natuurkunde 1, oplossing Vraag 1 (6 ptn) De deeltjes m 1 en m 2 bewegen zich op eenzelfde rechte zoals in de figuur. Ze zitten op ramkoers want v 1 > v 2. v w m n Figuur 1: Twee puntmassa

Nadere informatie

RELATIVITEIT. Sander Bais, Bart Rijkenberg Rob Ouwerkerk (tekentool en clips), Onne Slooten, Loran de Vries

RELATIVITEIT. Sander Bais, Bart Rijkenberg Rob Ouwerkerk (tekentool en clips), Onne Slooten, Loran de Vries Relativiteit VWO 6 RELATIVITEIT Deze module is gebaseerd op het boek De sublieme eenvoud van relativiteit van professor Sander Bais van het Instituut voor Theoretische Fysica van de Universiteit van Amsterdam.

Nadere informatie

Inleiding Astrofysica College 2 15 september 2014 13.45 15.30. Ignas Snellen

Inleiding Astrofysica College 2 15 september 2014 13.45 15.30. Ignas Snellen Inleiding Astrofysica College 2 15 september 2014 13.45 15.30 Ignas Snellen Samenvatting College 1 Behandelde onderwerpen: Sterrenbeelden; dierenriem; planeten; prehistorische sterrenkunde; geocentrische

Nadere informatie

Fractale dimensie. Eline Sommereyns 6wwIi nr.9

Fractale dimensie. Eline Sommereyns 6wwIi nr.9 Fractale dimensie Eline Sommereyns 6wwIi nr.9 Inhoudstabel Inleiding... 3 Gehele dimensie... 4 Begrip dimensie... 4 Lengte, breedte, hoogte... 4 Tijd-ruimte... 4 Fractale dimensie... 5 Fractalen... 5 Wat?...

Nadere informatie

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. STAATSCOURANT Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. Nr. 11699 8 juni 2012 Rectificatie Examenprogramma natuurkunde vwo van 28 april 2012, kenmerk VO2012/389632 In de regeling

Nadere informatie

Speciale Relativiteitstheorie

Speciale Relativiteitstheorie Speciale Relativiteitstheorie Prof S. Bentvelsen NIKHEF / Onderzoeksinstituut HEF gebaseerd op de syllabus van Prof. dr. J.J. Engelen met medewerking van drs. B. Mooij versie 3.0, September 2005 2 Voorwoord

Nadere informatie

jaar: 1989 nummer: 25

jaar: 1989 nummer: 25 jaar: 1989 nummer: 25 Op een hoogte h 1 = 3 m heeft een verticaal vallend voorwerp, met een massa m = 0,200 kg, een snelheid v = 12 m/s. Dit voorwerp botst op een horizontale vloer en bereikt daarna een

Nadere informatie

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen.

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. Bereken de spankracht in het koord. ATWOOD Over een katrol hangt

Nadere informatie

jaar: 1994 nummer: 12

jaar: 1994 nummer: 12 jaar: 1994 nummer: 12 Een vrouw staat vóór een spiegel en kijkt met behulp van een handspiegel naar de bloem achter op haar hoofd.de afstanden van de bloem tot de spiegels zijn op de figuur aangegeven.

Nadere informatie

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft.

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft. Opgave 1 Een auto Met een auto worden enkele proeven gedaan. De wrijvingskracht F w op de auto is daarbij gelijk aan de som van de rolwrijving F w,rol en de luchtwrijving F w,lucht. F w,rol heeft bij elke

Nadere informatie

Honderd jaar algemene relativiteitstheorie

Honderd jaar algemene relativiteitstheorie Honderd jaar algemene relativiteitstheorie Chris Van Den Broeck Nikhef open dag, 04/10/2015 Proloog: speciale relativiteitstheorie 1887: Een experiment van Michelson en Morley toont aan dat snelheid van

Nadere informatie

Bijlage 9 5. TESTEN VAN HET VOERTUIG OP DE TESTBAAN, DE WEG OF DE ROLLENBANK

Bijlage 9 5. TESTEN VAN HET VOERTUIG OP DE TESTBAAN, DE WEG OF DE ROLLENBANK Bijlage 9 E/ECE/324 Rev.1/Add.82/Rev.3 bladzijde 229 Bijlage 4 Aanhangsel 1 TEST VAN TYPE V (beschrijving van de uithoudingstest ter controle van de duurzaamheid van de voorzieningen tegen verontreiniging)

Nadere informatie

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Opgave 1 Botsend blokje (5p) Een blok met een massa van 10 kg glijdt over een glad oppervlak. Hoek D botst tegen een klein vastzittend blokje S

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Richting van een Extended Air Shower

Richting van een Extended Air Shower Richting van een Extended Air Shower www.space.com Door Paulien Zheng en Sam Ritchie (15 april 2016) Inhoudsopgave Inleiding 2 Over ons 2 Profielwerkstuk en stage 2 Stage-onderzoek 2 Theoretisch kader

Nadere informatie

Speciale Relativiteitstheorie

Speciale Relativiteitstheorie Faculteit der Natuurwetenschappen, Wiskunde en Informatica Speciale Relativiteitstheorie Prof S. Bentvelsen UvA / NIKHEF Onderzoeksinstituut Hoge Energie Fysica (IHEF) Speciale Relativiteitstheorie Prof

Nadere informatie

snelheid in de ruimte

snelheid in de ruimte snelheid in de ruimte Dit is mijn vierde publicatie. De derde gaf extra toelichting op de tweede, maar ook reeds op dit artikel, waarin ik dus wil aangeven hoe de absolute snelheid van, bijvoorbeeld, een

Nadere informatie

Het ongrijpbare Higgs-deeltje gegrepen

Het ongrijpbare Higgs-deeltje gegrepen Het Standaardmodel Het ongrijpbare Higgs-deeltje gegrepen Lezing 13 februari 2015 - Koksijde Christian Rulmonde Er zijn 18 elementaire deeltjes waaruit de materie is opgebouwd. Ook de deeltjes die de natuurkrachten

Nadere informatie

Ingrid meet: Henk meet: A. Coördinaattijd. A. Coördinaattijd. B. Eigentijd. B. Eigentijd. C. Ruimtetijd. C. Ruimtetijd

Ingrid meet: Henk meet: A. Coördinaattijd. A. Coördinaattijd. B. Eigentijd. B. Eigentijd. C. Ruimtetijd. C. Ruimtetijd Henk en Ingrid zitten in een trein die met constante snelheid een station passeert. an de uiteinden an het perron staan twee gesynchroniseerde stationsklokken. Bij passage an de klokken leest Henk de stationsklokken

Nadere informatie

Algemeen. Cosmic air showers J.M.C. Montanus. HiSPARC. 1 Kosmische deeltjes. 2 De energie van een deeltje

Algemeen. Cosmic air showers J.M.C. Montanus. HiSPARC. 1 Kosmische deeltjes. 2 De energie van een deeltje Algemeen HiSPARC Cosmic air showers J.M.C. Montanus 1 Kosmische deeltjes De aarde wordt continu gebombardeerd door deeltjes vanuit de ruimte. Als zo n deeltje de dampkring binnendringt zal het op een gegeven

Nadere informatie

TENTAMEN DYNAMICA ( )

TENTAMEN DYNAMICA ( ) TENTAMEN DYNAMICA (1914001) 8 januari 011, 08:45 1:15 Verzoek: Begin de beantwoording van een nieuwe opgave op een nieuwe pagina. Alleen leesbaar en verzorgd werk kan worden beoordeeld. Opgave 1 (norm:

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Jeroen Meidam Speciale relativiteitstheorie: 1 en 8 oktober 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Eindexamen wiskunde B1-2 havo 2005-I

Eindexamen wiskunde B1-2 havo 2005-I Modderstroom Er zijn vulkanen die geen lava uitspuwen, maar een constante stroom modder geven. De koude modder stroomt als een rivier langzaam de helling af (zie foto 1). Aan de rand van deze stroom droogt

Nadere informatie

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts Introductieweek Faculteit Bewegings- en Revalidatiewetenschappen 25 29 Augustus 2014 Topic: Fysica Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik Lambrechts

Nadere informatie

Lichtsnelheid Introductie

Lichtsnelheid Introductie De Lichtsnelheid Introductie Hoe is de lichtsnelheid gemeten Wat is dan de lichtsnelheid De lichtsnelheid als kosmologische meetlat en hoe meten we afstanden in het heelal Hoe ver kunnen wij kijken en

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica Tentamen Fysica in de Fysiologie (8N7) deel A1, blad 1/4 maandag 1 oktober 27, 9.-1.3 uur Het tentamen

Nadere informatie

Mooie samenvatting: http://members.ziggo.nl/mmm.bessems/kinematica%20 Stencil%20V4%20samenvatting.doc.

Mooie samenvatting: http://members.ziggo.nl/mmm.bessems/kinematica%20 Stencil%20V4%20samenvatting.doc. studiewijzer : natuurkunde leerjaar : 010-011 klas :6 periode : stof : (Sub)domeinen C1 en A 6 s() t vt s v t gem v a t s() t at 1 Boek klas 5 H5 Domein C: Mechanica; Subdomein: Rechtlijnige beweging De

Nadere informatie

Equivalentie en tijddilatatie bij plaatsbepaling met het Global Positioning System

Equivalentie en tijddilatatie bij plaatsbepaling met het Global Positioning System Equivalentie en tijddilatatie bij plaatsbepaling met het Global Positioning System Jiri Oen (5814685) Jacinta Moons (5743206) 1 juli 2009 Samenvatting Om de positie van een ontvanger op aarde te bepalen

Nadere informatie