De ruimte in de loop van de tijd

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "De ruimte in de loop van de tijd"

Transcriptie

1 De ruimte in de loop van de tijd Gert Vegter Instituut voor Wiskunde en Informatica (RUG) HOVO, 17 maart 2009 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

2 Overzicht 1 Inleiding 2 De klassieke ruimte 3 Klassieke mechanica 4 Hyperbolische meetkunde 5 Gekromde ruimten 6 De vierde dimensie 7 Ruimte en tijd in de moderne fysica GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

3 Inleiding Ruimte en tijd: overzicht GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

4 Inleiding Euclides (ca. 300 vc) Euclides v. Chr. Papyrus met Elementen (Grieks) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

5 Inleiding Einstein ( ) Man van de 20ste eeuw Relativiteitstheorie GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

6 Inleiding Van Euclides naar Einstein De klassieke ruimte (Euclides, ca. 300 vc) Klassieke mechanica (Newton, 1687) Niet-euclidische meetkunde (Bolyai, 1823 en Lobatchewski, 1829) De vierde dimensie Gekromde ruimten (Gauß, 1827 en Riemann, 1854) Ruimtetijd en de relativiteitstheorie (Einstein, 1905 en 1912)... en vele anderen: Kant, Beltrami, Klein, Maxwell, Minkowski, Lorentz, Poincaré, Friedman, Hubble... GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

7 De klassieke ruimte De klassieke ruimte Euclides GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

8 De klassieke ruimte Meetkunde in Babylonië, Egypte en Griekenland Egypte: vooral praktisch (landmeting, piramides, navigatie) Babylonië: praktisch (bouwkunst, astronomie), constructief (rekenmethoden) Griekenland: Praktisch, constructief (inductief) Theoretisch: meetkunde als deductief systeem Thales (ca v. Chr.) Pythagoras (ca v. Chr.) Aristoteles ( v. Chr.) Euclides ( v. Chr) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

9 De klassieke ruimte Meetkunde in Babylonië, Egypte en Griekenland Egypte: vooral praktisch (landmeting, piramides, navigatie) Babylonië: praktisch (bouwkunst, astronomie), constructief (rekenmethoden) Griekenland: Praktisch, constructief (inductief) Theoretisch: meetkunde als deductief systeem Thales (ca v. Chr.) Pythagoras (ca v. Chr.) Aristoteles ( v. Chr.) Euclides ( v. Chr) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

10 De klassieke ruimte Meetkunde in Babylonië, Egypte en Griekenland Egypte: vooral praktisch (landmeting, piramides, navigatie) Babylonië: praktisch (bouwkunst, astronomie), constructief (rekenmethoden) Griekenland: Praktisch, constructief (inductief) Theoretisch: meetkunde als deductief systeem Thales (ca v. Chr.) Pythagoras (ca v. Chr.) Aristoteles ( v. Chr.) Euclides ( v. Chr) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

11 De klassieke ruimte Eratosthenes (ca vc): omtrek aarde Bibliothecaris in Alexandrië Zomersolstitium (zonnewende 21 juni): zon staat loodrecht boven Aswan, en onder hoek van 7, 2 in Alexandrië Alexandrie 7.2 Aswan Omtrek aarde = 360 afstand Alexandrië Aswan, ongeveer 7, stadiën km Werkelijke omtrek: km GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

12 De klassieke ruimte Diameter van de maan Maansverduistering 0 min. 50 min. 200 min. Diameter maan = 1 4 diameter aarde. GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

13 De klassieke ruimte De klassieke ruimte van Euclides Drie dimensies Ingrediënten: punten (0-dimensionaal), lijnen en cirkels (1-dimensionaal), vlakken, boloppervlakken en veelvlakken (2-dimensionaal) Goed voorstelbaar Abstractie van de waarneembare ruimte Strenge opbouw in De Elementen: Definities, Axioma s (postulaten), Stellingen (theorema s) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

14 De klassieke ruimte Parallellenpostulaat Definitie (Parallelle lijnen I.23) Parallel zijn lijnen, die in hetzelfde platte vlak gelegen en naar weerszijde tot in het oneindige verlengd, naar geen van beide zijden elkaar ontmoeten Postulaat (I.5, versie van Playfair 1795 na Chr.) Door een gegeven punt buiten een lijn gaat precies één lijn evenwijdig aan die lijn GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

15 De klassieke ruimte Parallellenpostulaat Definitie (Parallelle lijnen I.23) Parallel zijn lijnen, die in hetzelfde platte vlak gelegen en naar weerszijde tot in het oneindige verlengd, naar geen van beide zijden elkaar ontmoeten Postulaat (I.5, versie van Playfair 1795 na Chr.) Door een gegeven punt buiten een lijn gaat precies één lijn evenwijdig aan die lijn GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

16 De klassieke ruimte Platonische veelvlakken tetraëder kubus octaëder dodecaëder icosaëder GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

17 De klassieke ruimte Stereografische projectie Cartografie GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

18 De klassieke ruimte Stereografische projectie van veelvlakken GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

19 Klassieke mechanica Klassieke mechanica Newton, Kepler GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

20 Klassieke mechanica Kepler ( ) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

21 Klassieke mechanica Kepler: Mysterium Cosmographicum (1596) Mercurius Octaëder Venus Icosaëder Aarde Dodecaëder Mars Tetraëder Jupiter Kubus Saturnus "Van deze veelvlakken zijn er precies vijf en vijf zijn er nodig om de zes planeten uit elkaar te houden. Zo werkt God s denken!" GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

22 Klassieke mechanica Newton ( ) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

23 Klassieke mechanica Newton s mechanica X v O O V Fysische wetten hebben dezelfde vorm in elk inertiaalframe (éénparig bewegend) Gelijktijdigheid is onafhankelijk van het frame (d.w.z., van de waarnemer) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

24 Klassieke mechanica Newton s mechanica t O O X x vt=x x+vt=0 0 O t O X x (v+v)t =x 0 x Vt =0 x x (x, t) in frame van O (x, t ) in frame van O x = x + Vt t = t Ook: v = v + V GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

25 Hyperbolische meetkunde Hyperbolische meetkunde Gauß, Bolyai en Lobatchewski GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

26 Hyperbolische meetkunde Hyperbolische meetkunde: grondleggers Karl Friedrich Nikolay Ivanovich János Gauss (Duitsland) Lobachevsky (Rusland) Bolyai (Hongarije) (nu: Roemenië) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

27 Hyperbolische meetkunde Kant s ruimte en Gauss Kant = Euclides + Newton Kant: Onze (euclidische!) ruimte is a priori en synthetisch Gauss: Ik kom meer en meer tot de overtuiging dat de noodzaak van onze meetkunde niet kan worden bewezen. (... ) moet men de Meetkunde niet dezelfde status geven als de Rekenkunde, die waarlijk a priori is, maar als de Mechanica. [Gauss in een brief aan Olbers, 1817] GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

28 Hyperbolische meetkunde Kant s ruimte en Gauss Kant = Euclides + Newton Kant: Onze (euclidische!) ruimte is a priori en synthetisch Gauss: Ik kom meer en meer tot de overtuiging dat de noodzaak van onze meetkunde niet kan worden bewezen. (... ) moet men de Meetkunde niet dezelfde status geven als de Rekenkunde, die waarlijk a priori is, maar als de Mechanica. [Gauss in een brief aan Olbers, 1817] GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

29 Hyperbolische meetkunde Kant s ruimte en Gauss Kant = Euclides + Newton Kant: Onze (euclidische!) ruimte is a priori en synthetisch Gauss: Ik kom meer en meer tot de overtuiging dat de noodzaak van onze meetkunde niet kan worden bewezen. (... ) moet men de Meetkunde niet dezelfde status geven als de Rekenkunde, die waarlijk a priori is, maar als de Mechanica. [Gauss in een brief aan Olbers, 1817] GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

30 Hyperbolische meetkunde Historie: Gauss De eerste (?) die een niet-euclidische meetkunde niet uitsloot Enkele resultaten op dit terrein Geen publicaties over niet-euclidische meetkunde: Ondertussen zal ik deze uitvoerige onderzoekingen vermoedelijk niet meer tijdens mijn leven publiceren, want ik vrees de schreeuw van de Boeötiers die zou opklinken als ik mijn kijk op deze zaak zou geven [Brief aan Bessel, 1929] GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

31 Hyperbolische meetkunde Historie: Gauss De eerste (?) die een niet-euclidische meetkunde niet uitsloot Enkele resultaten op dit terrein Geen publicaties over niet-euclidische meetkunde: Ondertussen zal ik deze uitvoerige onderzoekingen vermoedelijk niet meer tijdens mijn leven publiceren, want ik vrees de schreeuw van de Boeötiers die zou opklinken als ik mijn kijk op deze zaak zou geven [Brief aan Bessel, 1929] GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

32 Hyperbolische meetkunde Historie: Gauss De eerste (?) die een niet-euclidische meetkunde niet uitsloot Enkele resultaten op dit terrein Geen publicaties over niet-euclidische meetkunde: Ondertussen zal ik deze uitvoerige onderzoekingen vermoedelijk niet meer tijdens mijn leven publiceren, want ik vrees de schreeuw van de Boeötiers die zou opklinken als ik mijn kijk op deze zaak zou geven [Brief aan Bessel, 1929] GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

33 Hyperbolische meetkunde Het Poincaré-model Ultraparallel Parallel Punt: binnen de cirkel C. Lijn: cirkelboog die punten op C verbindt, en C loodrecht snijdt. Horizon: de cirkel C (het oneindige). GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

34 Hyperbolische meetkunde Het Poincaré-model Ultraparallel Parallel Punt: binnen de cirkel C. Lijn: cirkelboog die punten op C verbindt, en C loodrecht snijdt. Horizon: de cirkel C (het oneindige). GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

35 Hyperbolische meetkunde Het Poincaré-model Ultraparallel Parallel Punt: binnen de cirkel C. Lijn: cirkelboog die punten op C verbindt, en C loodrecht snijdt. Horizon: de cirkel C (het oneindige). GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

36 Hyperbolische meetkunde Het Poincaré-model Ultraparallel Parallel Punt: binnen de cirkel C. Lijn: cirkelboog die punten op C verbindt, en C loodrecht snijdt. Horizon: de cirkel C (het oneindige). GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

37 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

38 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

39 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

40 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

41 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

42 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

43 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

44 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

45 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

46 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

47 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

48 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

49 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

50 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

51 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

52 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

53 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

54 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

55 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

56 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

57 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

58 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

59 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

60 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

61 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

62 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

63 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

64 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

65 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

66 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

67 Hyperbolische meetkunde Geodeten in Poincaréschijf GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

68 Hyperbolische meetkunde Het Poincaré-schijfmodel Voldoet aan Postulaten I.1 4 van Euclides. Voldoet niet aan het Parallellenpostulaat. GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

69 Hyperbolische meetkunde Het Poincaré-schijfmodel Voldoet aan Postulaten I.1 4 van Euclides. Voldoet niet aan het Parallellenpostulaat. GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

70 Hyperbolische meetkunde Circle Limit IV (met betegeling) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

71 Hyperbolische meetkunde Regelmatige hyperbolische veelhoeken GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

72 Hyperbolische meetkunde Regelmatige betegelingen van de Poincaréschijf Zeshoeken met hoeken van 72 o (graad 5) en 60 o (graad 6). GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

73 Hyperbolische meetkunde Betegelingen van de (hyperbolische) ruimte Vier dodecaëders delen een ribbe. GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

74 Gekromde ruimten Gekromde ruimten Gauß en Riemann GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

75 Gekromde ruimten Riemann en de elliptische meetkunde Georg Friedrich Bernhard Jules Henri Poincaré Riemann ( ) Leerling van Gauss Über die Hypothesen welche die Geometrie zugrunde liegen Habilitationsschrift, 1854 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

76 Gekromde ruimten Riemann en grondslagen van de meetkunde Elliptische meetkunde Positieve kromming Hyperbolische meetkunde Negatieve kromming Som van de hoeken van een driehoek: > 180 o < 180 o Niet-euclidische meetkundes! GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

77 Gekromde ruimten Meten van kromming m.b.v. afstanden 1 Theorema Egregrium van Gauß: Kromming is alleen afhankelijk van afstanden (metriek)... en dus niet van de inbedding in de omliggende ruimte! 2 Trek cirkel met straal r om een punt. Meet de omtrek L(r). Kromming in dat punt: K = 3 π lim 2πr L(r) r 0 r 3 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

78 Gekromde ruimten Meten van kromming m.b.v. afstanden 1 Theorema Egregrium van Gauß: Kromming is alleen afhankelijk van afstanden (metriek)... en dus niet van de inbedding in de omliggende ruimte! 2 Trek cirkel met straal r om een punt. Meet de omtrek L(r). Kromming in dat punt: K = 3 π lim 2πr L(r) r 0 r 3 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

79 Gekromde ruimten Meten van kromming: boloppervlak r: straal van cirkel op boloppervlak met straal R u = R sin r R u r R Omtrek cirkel: Kromming: L(r) = 2πR sin r R = 2πR( r R r 3 6R ) K = 3 π lim 2πr L(r) r 0 r 3 = 1 R 2 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

80 Gekromde ruimten Kromming Poincaréschijf Cirkel met straal r heeft omtrek L(r) = 2πR sinh r R Kromming: K = 3 π lim 2πr L(r) r 0 r 3 = 1 R 2 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

81 Gekromde ruimten Geodeten en kromming Positieve kromming Negatieve kromming GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

82 De vierde dimensie De vierde dimensie Gauß en Riemann GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

83 De vierde dimensie Polytopen in 4D (polychoronen) 4-simplex hyperkubus 16-cel 24-cel 120-cel 600-cel GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

84 De vierde dimensie Polytopen in 4D (polychoronen) Nm Volledig V E 2D-vlakken 3D facetten 5 Pentachoron drieh. 5 tetrah. 8 Tesseract vierk. 8 kubussen 16 Hexadecachoron drieh. 16 tetrah. 24 Icositetrachoron drieh. 24 octah. 120 Hecatonicosachoron vijfh. 120 dodecah. 600 Hexacosichoron drieh. 600 tetrah. GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

85 4-simplex (5-cel) De vierde dimensie 5 hoekpunten, ( ( 5 2) = 10 kanten, 5 3) = 10 driehoeken, ) = 5 tetraëders ( 5 4 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

86 De vierde dimensie Dodecaplex (120-cel) Dodecaëder Dodecaplex Stereografische projectie 2-sfeer R 2 3-sfeer R 3 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

87 De vierde dimensie Hypercubus (tesseract) Hyperkubus in stereografische projectie S 3 R 3 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

88 De vierde dimensie Stereografische projectie polychoronen GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

89 Ruimte en tijd in de moderne fysica Ruimte en tijd in de moderne fysica Einstein GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

90 Ruimte en tijd in de moderne fysica Speciale relativiteitstheorie (Einstein, 1905) Gebaseerd op twee principes 1 Equivalentie van (inertiaal)frames Wetten uit de natuurkunde hebben dezelfde vorm in frames die éénparig t.o.v. elkaar bewegen 2 Lichtsnelheid is constant in lege ruimte, onafhankelijk van de waarnemer (niet relatief!) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

91 Ruimte en tijd in de moderne fysica Einstein s treinexperiment A O B O V Tijd t = 0: O (in trein) passeert O (op perron) met éénparige snelheid V. Waarnemers O en O zien beiden lichtflits uit A en B. 1 O: A en B flitsten gelijktijdig 2 O : A flitste voor B (want verder weg op moment van flitsen) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

92 Ruimte en tijd in de moderne fysica Lorentz-transformatie Lichtstraal 1 Vertrekt op tijd t = 0 uit (0, 0, 0) 2 Positie (x, y, z) ten tijde t in rust-frame F, correspondeert met positie (x, y, z ) ten tijde t in frame F dat (relatief) éénparig beweegt met snelheid V in de x-richting Dus x 2 + y 2 + z 2 c 2 t 2 = x 2 + y 2 + z 2 c 2 t 2 Lorentz transformatie beeldt voorvallen (x, y, z, t) in F af op voorvallen (x, y, z, t ) in F volgens x = γ (x V t) y = y, z = z γ = 1 1 V 2 /c 2 t = γ(t V c 2 x) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

93 Ruimte en tijd in de moderne fysica Lorentz-transformatie ct ct x x Plaats-as van F in frame F: t = 0, dus ct = V c x Tijd-as van F in frame F : x = 0, dus x = V c (ct) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

94 Ruimte en tijd in de moderne fysica Lorentz-transformatie ct ct x x Plaats-as van F in frame F: t = 0, dus ct = V c x Tijd-as van F in frame F : x = 0, dus x = V c (ct) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

95 Ruimte en tijd in de moderne fysica Relativiteit van de gelijktijdigheid Voorval B is gelijktijdig met voorval A in het groene frame gaat vooraf aan A in het blauwe frame volgt op A in het rode frame GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

96 Ruimte en tijd in de moderne fysica Einstein s treinexperiment (vervolg) Relativiteit van de gelijktijdigheid ct O x A B Gelijktijdigheid alleen vast te stellen in frame van de waarnemer! GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

97 Ruimte en tijd in de moderne fysica Tijddilatatie Bewegende klok ct ct t A t A A x x F: frame waarnemer; F : frame van bewegende klok t A < t A: volgens waarnemer loopt klok te traag (tijddilatatie) t A = t A 1 V 2 /c 2 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

98 Ruimte en tijd in de moderne fysica Riemann, Einstein en de relativiteitstheorie Gauß/Riemann: afstand en kromming zijn intrinsiek voor het oppervlak (ook voor bolbewoners merkbaar) Einstein: lichtstralen zijn geodeten ( kortste paden ) in een gekromde ruimte-tijd (Algemene relativiteitstheorie, 1915) Ik werk nu alleen nog maar aan het gravitatieprobleem... Eén ding is zeker, dat ik mijzelf nooit eerder in mijn leven zo gekweld heb... Vergeleken met dit probleem is de originele (Speciale) Relativiteitstheorie kinderspel. Albert Einstein Zonsverduistering 1919 (West Afrika): lichte afbuiging van sterrenlicht langs de zon. Bevestiging van Einstein s Algemene Relativiteitstheorie. Paradigmawisseling: de ruimte-tijd is gekromd (gravitatie)! GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

99 Ruimte en tijd in de moderne fysica Riemann, Einstein en de relativiteitstheorie Gauß/Riemann: afstand en kromming zijn intrinsiek voor het oppervlak (ook voor bolbewoners merkbaar) Einstein: lichtstralen zijn geodeten ( kortste paden ) in een gekromde ruimte-tijd (Algemene relativiteitstheorie, 1915) Ik werk nu alleen nog maar aan het gravitatieprobleem... Eén ding is zeker, dat ik mijzelf nooit eerder in mijn leven zo gekweld heb... Vergeleken met dit probleem is de originele (Speciale) Relativiteitstheorie kinderspel. Albert Einstein Zonsverduistering 1919 (West Afrika): lichte afbuiging van sterrenlicht langs de zon. Bevestiging van Einstein s Algemene Relativiteitstheorie. Paradigmawisseling: de ruimte-tijd is gekromd (gravitatie)! GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

100 Ruimte en tijd in de moderne fysica Riemann, Einstein en de relativiteitstheorie Gauß/Riemann: afstand en kromming zijn intrinsiek voor het oppervlak (ook voor bolbewoners merkbaar) Einstein: lichtstralen zijn geodeten ( kortste paden ) in een gekromde ruimte-tijd (Algemene relativiteitstheorie, 1915) Ik werk nu alleen nog maar aan het gravitatieprobleem... Eén ding is zeker, dat ik mijzelf nooit eerder in mijn leven zo gekweld heb... Vergeleken met dit probleem is de originele (Speciale) Relativiteitstheorie kinderspel. Albert Einstein Zonsverduistering 1919 (West Afrika): lichte afbuiging van sterrenlicht langs de zon. Bevestiging van Einstein s Algemene Relativiteitstheorie. Paradigmawisseling: de ruimte-tijd is gekromd (gravitatie)! GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

101 Ruimte en tijd in de moderne fysica Riemann, Einstein en de relativiteitstheorie Gauß/Riemann: afstand en kromming zijn intrinsiek voor het oppervlak (ook voor bolbewoners merkbaar) Einstein: lichtstralen zijn geodeten ( kortste paden ) in een gekromde ruimte-tijd (Algemene relativiteitstheorie, 1915) Ik werk nu alleen nog maar aan het gravitatieprobleem... Eén ding is zeker, dat ik mijzelf nooit eerder in mijn leven zo gekweld heb... Vergeleken met dit probleem is de originele (Speciale) Relativiteitstheorie kinderspel. Albert Einstein Zonsverduistering 1919 (West Afrika): lichte afbuiging van sterrenlicht langs de zon. Bevestiging van Einstein s Algemene Relativiteitstheorie. Paradigmawisseling: de ruimte-tijd is gekromd (gravitatie)! GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

102 Ruimte en tijd in de moderne fysica Riemann, Einstein en de relativiteitstheorie Gauß/Riemann: afstand en kromming zijn intrinsiek voor het oppervlak (ook voor bolbewoners merkbaar) Einstein: lichtstralen zijn geodeten ( kortste paden ) in een gekromde ruimte-tijd (Algemene relativiteitstheorie, 1915) Ik werk nu alleen nog maar aan het gravitatieprobleem... Eén ding is zeker, dat ik mijzelf nooit eerder in mijn leven zo gekweld heb... Vergeleken met dit probleem is de originele (Speciale) Relativiteitstheorie kinderspel. Albert Einstein Zonsverduistering 1919 (West Afrika): lichte afbuiging van sterrenlicht langs de zon. Bevestiging van Einstein s Algemene Relativiteitstheorie. Paradigmawisseling: de ruimte-tijd is gekromd (gravitatie)! GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

103 Ruimte en tijd in de moderne fysica Kromming Ruimtetijd GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

104 Ruimte en tijd in de moderne fysica Kromming Ruimtetijd GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

105 Ruimte en tijd in de moderne fysica Kromming Ruimtetijd GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

106 Ruimte en tijd in de moderne fysica Kromming Ruimtetijd GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

107 Ruimte en tijd in de moderne fysica Kromming Ruimtetijd GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

108 Ruimte en tijd in de moderne fysica Kromming Ruimtetijd GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

109 Ruimte en tijd in de moderne fysica Kromming Ruimtetijd Mass grips space by telling it how to curve, space grips mass by telling it how to move John Wheeler, 1998 GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

110 Ruimte en tijd in de moderne fysica Hoe ziet de ruimte(tijd) eruit? Euclidische periodiciteit (kromming nul)? GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

111 Ruimte en tijd in de moderne fysica Hoe ziet de ruimte(tijd) eruit? Hyperbolische periodiciteit (negatieve kromming)? GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

112 Ruimte en tijd in de moderne fysica Kromming van het universum? ϱ: gemiddelde dichtheid van het universum H: constante van Hubble (expansie-fractie van het universum; 7% per miljard jaar) G: gravitatieconstante (Newton) ϱ > 3H2 : Elliptisch universum 8πG ϱ = 3H2 : Plat universum 8πG ϱ < 3H2 : Hyperbolisch universum 8πG Echter: gewone materie draagt slechts 30% bij aan ϱ. Zoektocht naar donkere materie en donkere energie duurt voort! GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

113 Ruimte en tijd in de moderne fysica Samenvatting: paradigmawisselingen in ruimtebegrip Euclides: (oneindige) platte ruimte Newton: klassieke mechanica in Euclidische ruimte Lobatchevski/Bolyai: niet-euclidische meetkunde mogelijk Gauß/Riemann: gekromde ruimten Einstein: gekromde ruimte-tijd (Relativiteitstheorie) GV () De ruimte in de loop van de tijd HOVO, 17/03/ / 62

Ruimte en tijd: overzicht

Ruimte en tijd: overzicht Overzicht Contents 1 Inleiding 1 2 De klassieke ruimte 2 3 Klassieke mechanica 5 4 Hyperbolische meetkunde 7 5 Gekromde ruimten 11 6 De vierde dimensie 13 7 Ruimte en tijd in de moderne fysica 16 1 Inleiding

Nadere informatie

Een Nieuwe Wereld uit het Niets

Een Nieuwe Wereld uit het Niets Een Nieuwe Wereld uit het Niets Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@math.rug.nl www.math.rug.nl/~gert Masterclass, 16 april 2009 GV () Werelden uit het niets Masterclass,

Nadere informatie

Een nieuwe wereld uit het niets

Een nieuwe wereld uit het niets Een nieuwe wereld uit het niets Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@math.rug.nl HOVO, 17 april 2007 1 Overzicht ontents 1 Inleiding 1 2 Het parallellenpostulaat en de Elementen

Nadere informatie

Meetkunde en Fysica. Henk Broer. Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen. Meetkunde en Fysica p.1/22

Meetkunde en Fysica. Henk Broer. Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen. Meetkunde en Fysica p.1/22 Meetkunde en Fysica Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Meetkunde en Fysica p.1/22 Overzicht Meetkundige aspecten van natuurkunde: - Newton en schalingswetten

Nadere informatie

Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen. Geschiedenis van de niet-euclidische meetkunde

Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen. Geschiedenis van de niet-euclidische meetkunde Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen Geschiedenis van de niet-euclidische meetkunde Aan de hand van inhoud zebra-boekje Ideeën voor onderzoeksopdrachten

Nadere informatie

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Albert Einstein en Euclides Geboren te Ulm op 14 maart 1879 Als kind geinteresseerd in Wiskunde en wetenschappen:magneten,electromotoren, wiskundige

Nadere informatie

relativiteitstheorie

relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 3: 19 november 2015 Copyright (C) Vrije Universiteit 2015 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Oneindigheid

Escher in Het Paleis. Wiskundepakket. Oneindigheid Escher in Het Paleis Wiskundepakket Oneindigheid Oneindigheid Wiskundigen hebben weinig moeite met het begrip oneindigheid. Er zijn bijvoorbeeld oneindig veel getallen, een lijn is oneindig lang en oneindig

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 3 en 4: Covariant differentiëren en kromming Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1.

Nadere informatie

De Cantitruncated 600 cel

De Cantitruncated 600 cel De Cantitruncated 600 cel Afgeknotte icosahedrische prismatohexacosihecatonicosachoron Paul van de Veen info@vandeveen.nl januari 2013 I. De 5 Platonische lichamen In één dimensie bestaan alleen maar lijnen.

Nadere informatie

Een hecatonicosachoron op het Kottenpark

Een hecatonicosachoron op het Kottenpark Een hecatonicosachoron op het Kottenpark Afgeknotte Hecatonicosachoron Deze schaduw van deze 4-dimensionale polytoop bestaat uit 120 afgeknotte dodecaëders en 600 tetraëders Gebouwd op 30 januari 2010

Nadere informatie

Een Rombicosidodecahedrische diprismatohexacosihecatonicosachoron op het Kottenpark

Een Rombicosidodecahedrische diprismatohexacosihecatonicosachoron op het Kottenpark Een Rombicosidodecahedrische diprismatohexacosihecatonicosachoron op het Kottenpark Deze Rombicosidodecahedrische diprismatohexacosihecatonicosachoron werd op 5 februari 2011 gebouwd door: Ninouk Akkerman,

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 30 september 013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Analyse met infinitesimalen

Analyse met infinitesimalen Analyse met infinitesimalen Hans Vernaeve Universiteit Gent (Hans Vernaeve) 1 / 15 Infinitesimalen in de 17de en 18de eeuw Infinitesimalen = oneindig kleine getallen. Fysisch hulpmiddel om eigenschappen

Nadere informatie

27 Macro s voor de schijf van Poincaré

27 Macro s voor de schijf van Poincaré 27 Macro s voor de schijf van Poincaré 27.1 Inleiding In het secundair onderwijs zijn leerlingen vertrouwd met de Euclidische meetkunde. In het Euclidisch vlak geldt het beroemde 5 de parallellen postulaat:

Nadere informatie

Relativiteit. Relativistische Mechanica 1

Relativiteit. Relativistische Mechanica 1 Relativiteit University Physics Hoofdstuk 37 Relativistische Mechanica 1 Relativiteit beweging voorwerp in 2 verschillende inertiaal stelsels l relateren Galileo Galileïsche transformatie 2 Transformatie

Nadere informatie

Waarom bij de Grieken?

Waarom bij de Grieken? Waarom bij de Grieken? Geografische, staatkundige omstandigheden Handel, contact met volkeren Rijkdom en slavernij, tijd om na te denken 1 Drie perioden 600 voj 400 Oud-Griekse periode (600 323 voj): (Thales,

Nadere informatie

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Kepler III p.1 Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen De Principia Philosophiæ Naturalis Principia Mathematica

Nadere informatie

Het Quantum Universum. Cygnus Gymnasium

Het Quantum Universum. Cygnus Gymnasium Het Quantum Universum Cygnus Gymnasium 2014-2015 Wat gaan we doen? Fundamentele natuurkunde op de allerkleinste en de allergrootste schaal. Groepsproject als eindopdracht: 1) Bedenk een fundamentele wetenschappelijk

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie De drie vragen van Einstein Wat is licht? Wat is massa? Wat is tijd? In 1905, Einstein was toen 26 jaar! Klassiek: wat is licht? Licht is een golf, die naar alle kanten door

Nadere informatie

Escher en de wiskunde van betegelingen

Escher en de wiskunde van betegelingen Escher en de wiskunde van betegelingen Gert Heckman IMAPP, Radboud Universiteit, Nijmegen G.Heckman@math.ru.nl 12 november 2012 1 Euclidische meetkunde De Euclidische meetkunde bestudeert configuraties

Nadere informatie

Wiskunde door de Eeuwen Heen

Wiskunde door de Eeuwen Heen Wiskunde door de Eeuwen Heen Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Wiskunde door de Eeuwen Heen p.1 Overzicht Wiskunde door de Eeuwen Heen - Wiskunde in de Oudheid

Nadere informatie

Wat is wiskunde? college door Jan Hogendijk, 12 september 2016

Wat is wiskunde? college door Jan Hogendijk, 12 september 2016 Wat is wiskunde? college door Jan Hogendijk, 12 september 2016 Wiskunde is een wetenschap waarin precies geredeneerd wordt over getallen, figuren in de ruimte, of formele structuren in het algemeen. In

Nadere informatie

Niet-euclidische meetkunde. Les 3 Meetkunde op de bol

Niet-euclidische meetkunde. Les 3 Meetkunde op de bol Niet-euclidische meetkunde Les 3 Meetkunde op de bol (Deze les sluit aan bij de paragrafen 2.1 en 2.2 van de tekst Niet-Euclidische meetkunde van de Wageningse Methode) Kun je het vijfde postulaat afleiden

Nadere informatie

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Kepler III p.1 Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen De Principia Philosophiæ Naturalis Principia Mathematica

Nadere informatie

Relativiteitstheorie met de computer

Relativiteitstheorie met de computer Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!

Nadere informatie

Tweede Bijeenkomst: Zoektocht naar het Verborgen Hemelbeeld. Rond de Waterput donderdag 31 oktober 2013 Allan R. de Monchy

Tweede Bijeenkomst: Zoektocht naar het Verborgen Hemelbeeld. Rond de Waterput donderdag 31 oktober 2013 Allan R. de Monchy Tweede Bijeenkomst: Zoektocht naar het Verborgen Hemelbeeld Rond de Waterput donderdag 31 oktober 2013 Allan R. de Monchy Twee bijeenkomsten: Donderdag 17 oktober 2013: Historische ontwikkelingen van Astrologie.

Nadere informatie

Dimensies. een ruimtelijke tocht langs onbekende assen. Anne Lotte van der Kooi Jesse Krijthe Roderik Vogels Onder begeleiding van Aad Goddijn

Dimensies. een ruimtelijke tocht langs onbekende assen. Anne Lotte van der Kooi Jesse Krijthe Roderik Vogels Onder begeleiding van Aad Goddijn Dimensies een ruimtelijke tocht langs onbekende assen Anne Lotte van der Kooi Jesse Krijthe Roderik Vogels Onder begeleiding van Aad Goddijn Junior College Utrecht, Januari 7 Inhoud. Abstract.... Inleiding...5.

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Inleiding in de Filosofie & de Ethiek

Inleiding in de Filosofie & de Ethiek Inleiding in de Filosofie & de Ethiek 1e Bijeenkomst 5 september 2006 Prof. Dr. Hub Zwart Afdeling Filosofie & Wetenschapstudies h.zwart@science.ru.nl http://www.filosofie.science.ru.nl Wat is filosofie?

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Einsteinvergelijkingen: 7 oktober 009 Traagheid van gasdruk SRT: hoe hoger de gasdruk, des te moeilijker is het om het gas te versnellen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

Een les wiskunde: hoe Kepler naar de wereld keek (voorbeeldles voortgezet onderwijs)

Een les wiskunde: hoe Kepler naar de wereld keek (voorbeeldles voortgezet onderwijs) Een les wiskunde: hoe Kepler naar de wereld keek (voorbeeldles voortgezet onderwijs) Ab van der Roest Dit materiaal is onderdeel van het compendium christelijk leraarschap dat samengesteld is door het

Nadere informatie

experimenteren met Zwarte Gaten Eigenschappen van Zwarte Gaten tot nu HOVO2016, Utrecht 15 Juli 2016 Speciale RelativiteitsTheorie

experimenteren met Zwarte Gaten Eigenschappen van Zwarte Gaten tot nu HOVO2016, Utrecht 15 Juli 2016 Speciale RelativiteitsTheorie experimenteren met Zwarte Gaten II Zwarte Gaten en de Algemene RelativiteitsTheorie Eigenschappen van Zwarte Gaten tot nu massa-concentratie, gekenmerkt vanaf afstand door een horizon waar ontsnappingsnelheid

Nadere informatie

12 Bewijzen in de vlakke meetkunde

12 Bewijzen in de vlakke meetkunde ewijzen in de vlakke meetkunde bladzijde 54 a ' b Gegeven: e gelijkzijdige driehoek met zijn omgeschreven cirkel. unt ligt op de kortste boog en ligt op het verlengde van zo, dat =. riehoek is gelijkzijdig.

Nadere informatie

Een vergelijking tussen boldriehoeksmeetkunde en hyperbolische driehoeksmeetkunde

Een vergelijking tussen boldriehoeksmeetkunde en hyperbolische driehoeksmeetkunde Een vergelijking tussen boldriehoeksmeetkunde en hyperbolische driehoeksmeetkunde A. Vervuurt, P.F. de Haan, W.J. van Krieken Begeleider: Prof. dr. J.P. Hogendijk juni 010 Samenvatting We trekken een vergelijking

Nadere informatie

Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S.

Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S. Speciale relativiteit Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S. Bentvelsen 1 Even voorstellen S. Bentvelsen

Nadere informatie

Honderd jaar algemene relativiteitstheorie

Honderd jaar algemene relativiteitstheorie Honderd jaar algemene relativiteitstheorie Chris Van Den Broeck Nikhef open dag, 04/10/2015 Proloog: speciale relativiteitstheorie 1887: Een experiment van Michelson en Morley toont aan dat snelheid van

Nadere informatie

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel

Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Kepler s Derde Wet en de Stabiliteit van het Zonnestelsel Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Summary i. Stability of solar system ii. Chaos versus

Nadere informatie

De Codes van da Vinci, Bach, pi, en Co

De Codes van da Vinci, Bach, pi, en Co 1 De Codes van da Vinci, Bach, pi, en Co wiskunde Personalia: naam 3. 141 Stelling D. G. A. Huylebrouck Bewijs 3 voornamen, voor de punt cijfer 3 en "." a1, b, c3, Huylebrouck 141. D. G. A. Huylebrouck

Nadere informatie

Speciale relativiteitstheorie: de basisconcepten in een notedop

Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie:... 1 de basisconcepten in een notedop... 1 1. Klassieke Relativiteit... 1 1.1 Twee waarnemers zien een verschillende

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

2 Wiskunde. 2.1 Bolmeetkunde

2 Wiskunde. 2.1 Bolmeetkunde 1 Inleiding Een centraal probleem in de moderne theoretische natuurkunde is het verenigen van quantumtheorie en zwaartekracht. Een mogelijke aanpak is holografie, bedacht door onze Nobelprijswinnaar Gerard

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Tweede Ronde e tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem werkt (opnieuw) als volgt : een deelnemer start met 0 punten Per goed antwoord

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Jeroen Meidam Speciale relativiteitstheorie: 1 en 8 oktober 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Stelling van Pythagoras

Stelling van Pythagoras 1 of 6 Stelling van Pythagoras Uit Wikipedia, de vrije encyclopedie De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen ART: 3 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange

Nadere informatie

15-12-2015 ONS VERANDERENDE WERELDBEELD

15-12-2015 ONS VERANDERENDE WERELDBEELD 15-12-2015 ONS VERANDERENDE WERELDBEELD 1 15-12-2015 ONS VERANDERENDE WERELDBEELD 2 MENSEN WILLEN STRUCTUREN ZIEN 15-12-2015 ONS VERANDERENDE WERELDBEELD 3 DE MENS BEGON TE BESCHRIJVEN WAT HIJ AAN DE HEMEL

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber Tijd in de fysica Paul Koerber Postdoctoraal Onderzoeker FWO Instituut voor Theoretische Fysica, K.U.Leuven Kunsthumaniora Brussel, 2 maart 2011 1 / 16 Wat is tijd? Een coördinaat om de positie van een

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Ruimtelijke figuren

Escher in Het Paleis. Wiskundepakket. Ruimtelijke figuren Escher in Het Paleis Wiskundepakket Ruimtelijke figuren Ruimtelijke figuren Escher maakt in EEN AANTAL prenten gebruik van wiskundig interessante ruimtelijke vormen, zoals Platonische lichamen en Möbiusbanden.

Nadere informatie

Einstein (2) op aardoppervlak. versnelling van 10m/s 2. waar het foton zich bevindt a) t = 0 b) t = 1 s c) t = 2 s op t=0,t=1s en t=2s A B C A B

Einstein (2) op aardoppervlak. versnelling van 10m/s 2. waar het foton zich bevindt a) t = 0 b) t = 1 s c) t = 2 s op t=0,t=1s en t=2s A B C A B Einstein (2) In het vorig artikeltje zijn helaas de tekeningen, behorende bij bijlage 4,"weggevallen".Omdat het de illustratie betrof van de "eenvoudige" bewijsvoering van de kromming der lichtstralen

Nadere informatie

de Leuke En Uitdagende Wiskunde VEELVLAKKEN SAMENSTELLING: H. de Leuw

de Leuke En Uitdagende Wiskunde VEELVLAKKEN SAMENSTELLING: H. de Leuw SAMENSTELLING: H. de Leuw 1. VEELHOEKEN. Een veelvlak is een lichaam dat wordt begrensd door vlakke veelhoeken. Zo zijn balken en piramides wel veelvlakken, maar cilinders en bollen niet. Een veelhoek

Nadere informatie

Bewijzen en toegiften

Bewijzen en toegiften Bewijzen en toegiften 1 Het bewijs van Mermin voor het optellen van snelheden W op een perron ziet W in een treinwagon passeren met snelheid v. W schiet een kogel af met snelheid u en stuurt tegelijkertijd

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Docentencursus relativiteitstheorie

Docentencursus relativiteitstheorie Docentencursus relativiteitstheorie Uitwerkingen opgaven bijeenkomst 1, "Waarom relativiteit?" 18 september 2013 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven

Nadere informatie

Henk meet: A. Coördinaattijd in het stelsel van de trein. B. Coördinaattijd in het stelsel van het perron. C. Eigentijd. D.

Henk meet: A. Coördinaattijd in het stelsel van de trein. B. Coördinaattijd in het stelsel van het perron. C. Eigentijd. D. Henk en Ingrid zitten in een trein die met constante snelheid een station passeert. Aan de uiteinden van het perron staan twee gesynchroniseerde stationsklokken. Bij passage van de klokken leest Henk de

Nadere informatie

Regelmatige en halfregelmatige veelvlakken

Regelmatige en halfregelmatige veelvlakken Regelmatige en halfregelmatige veelvlakken Wiskunde & Cultuur 2-3 W.v.Ravenstein 2010-2011 aangepast Vandaag Platonische lichamen Regelmatig, halfregelmatig en andere naamgeving Waarom zijn er maar 5 Platonische

Nadere informatie

Afstanden in de sterrenkunde

Afstanden in de sterrenkunde Afstanden in de sterrenkunde Inleiding. In de sterrenkunde bestaat een fundamenteel probleem; we kunnen misschien wel heel precies waarnemen waar een object aan de hemel staat, maar hoe kunnen we achterhalen

Nadere informatie

Geschiedenis van de wetenschap

Geschiedenis van de wetenschap Geschiedenis van de wetenschap Hans Vanlanduyt Geschiedenis van de wetenschap Academia Press P. Van Duyseplein 8 9000 Gent Tel. 09 233 80 88 Info@academiapress.be www.academiapress.be Uitgeverij Academia

Nadere informatie

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud Higgs-deeltje Peter Renaud Heideheeren Inhoud 1. Onze fysische werkelijkheid 2. Newton Einstein - Bohr 3. Kwantumveldentheorie 4. Higgs-deeltjes en Higgs-veld 3 oktober 2012 Heideheeren 2 1 Plato De dingen

Nadere informatie

Extra oefenmateriaal H10 Kegelsneden

Extra oefenmateriaal H10 Kegelsneden Deel 1 Extra oefenmateriaal H10 Kegelsneden 1. Bereken de inhoud van de volgende twee afgeknotte figuren. 2. Hiernaast zie je een afgeknot zeszijdig prisma. Het grondvlak is een regelmatige zeshoek met

Nadere informatie

Een Overzicht. KA Koekelberg - VUB wiskak@yahoo.com. Geschiedenis van de Wiskunde: Een Overzicht. Dr Didier Deses. Inleiding.

Een Overzicht. KA Koekelberg - VUB wiskak@yahoo.com. Geschiedenis van de Wiskunde: Een Overzicht. Dr Didier Deses. Inleiding. Geschiedenis KA Koekelberg - VUB wiskak@yahoo.com Oorspronkelijke bedoeling: 5de GL/HUW Vandaag: geschiedenis Niet objectief : eigen nadrukken geschiedenis mythologie Wiskunde in het ASO: Toepassingen

Nadere informatie

Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober

Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober Deeltjes en velden HOVO Cursus Jo van den Brand 3 oktober 013 jo@nikhef.nl Docent informatie Overzicht Jo van den Brand & Gideon Koekoek Email: jo@nikhef.nl en gkoekoek@gmail.com 060 539 484 / 00 59 000

Nadere informatie

Meetkundige constructies Leerlingmateriaal

Meetkundige constructies Leerlingmateriaal Meetkundige constructies Leerlingmateriaal Nynke Koopmans Roeland Hiele Historical Aspects of Classroom Mathematics Universiteit Utrecht, juni 2013 Inleiding Inleiding Een meetkundige constructie is een

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Jeroen Meidam Les 1: 3 september 2012 Overzicht Docent informatie Jo van den Brand, Jeroen Meidam Email: jo@nikhef.nl, j.meidam@nikhef.nl 0620 539

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

Veelvlak. Begrippenlijst

Veelvlak. Begrippenlijst Veelvlakken Tijdens dit project Veelvlakken ga je vooral veel zelf onderzoeken. Je zult veel aan het bouwen zijn met Polydron materiaal. Waarschijnlijk zul je naar aanleiding van je bevindingen zelf vragen

Nadere informatie

Inleiding Astrofysica Tentamen 2009/2010: antwoorden

Inleiding Astrofysica Tentamen 2009/2010: antwoorden Inleiding Astrofysica Tentamen 2009/200: antwoorden December 2, 2009. Begrippen, vergelijkingen, astronomische getallen a. Zie Kutner 0.3 b. Zie Kutner 23.5 c. Zie Kutner 4.2.6 d. Zie Kutner 6.5 e. Zie

Nadere informatie

Relativiteitstheorie van Einstein: Differentiaal Meetkunde

Relativiteitstheorie van Einstein: Differentiaal Meetkunde Relativiteitstheorie van Einstein: Differentiaal Meetkunde Relativiteitstheorie van Einstein: Differentiaal Meetkunde... 1 1. Inleiding.... Meetkunde en gekromde oppervlakken....1 Gekromde oppervlakken

Nadere informatie

Werkcollege III Het Heelal

Werkcollege III Het Heelal Werkcollege III Het Heelal Opgave 1: De Hubble Expansie Sinds 1929 weten we dat we ons in een expanderend Heelal bevinden. Het was Edwin Hubble die in 1929 de recessie snelheid van sterrenstelsels in ons

Nadere informatie

12 Vlaamse Wiskunde Olympiade : Eerste ronde.

12 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1999-000: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Ruimtemeetkunde deel II. Cursus voor Latijn-Wiskunde, Wetenschappen-Wiskunde en Economie-Wiskunde

Ruimtemeetkunde deel II. Cursus voor Latijn-Wiskunde, Wetenschappen-Wiskunde en Economie-Wiskunde Ruimtemeetkunde deel II Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor Latijn-Wiskunde, Wetenschappen-Wiskunde en Economie-Wiskunde 2 Hoofdstuk 1 De reële euclidische ruimte 1.1 De euclidische

Nadere informatie

Sterrenkunde in de prehistorie: Lascaux : COLLEGE II : RECAPITULATIE COLLEGE I. Ontzag voor hemelverschijnselen.

Sterrenkunde in de prehistorie: Lascaux : COLLEGE II : RECAPITULATIE COLLEGE I. Ontzag voor hemelverschijnselen. RECAPITULATIE COLLEGE I Eerste kennismaking - planeten! clusters van sterrenstelsels - leegte, grootte, ruimte-tijd Simpele waarnemingen - sterren, & sterrenbeelden, - Zon, Maan, planeten, kometen - verduisteringen,

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 4

Uitwerkingen oefeningen hoofdstuk 4 Uitwerkingen oefeningen hoofdstuk 4 4.4.1 Basis Lijnen en hoeken 1 Het assenstelsel met genoemde lijnen ziet er als volgt uit: 4 3 2 1 l k -4-3 -2-1 0 1 2 3 4-1 -2-3 n m -4 - Hieruit volgt: a Lijn k en

Nadere informatie

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale

Nadere informatie

Gravitatie en Kosmologie

Gravitatie en Kosmologie Gravitatie en Kosmologie FEW cursus Jo van den Brand & Jeroen Meidam Les 1: 3 september 2012 Parallax Meten van afstand Meet positie van object ten opzichte van achtergrond De parallaxhoek q, de afstand

Nadere informatie

Niet-euclidische meetkunde

Niet-euclidische meetkunde Keuzeonderdeel Wiskunde D Hans van Ballegooij Maaslandcollege, Oss Dictaat Versie: 15 februari 2013 Een Wiskunde D-module voor HAVO/VWO 5 leerlingen die: Meer willen weten over Niet-euclidische meetkunde

Nadere informatie

Hyperbolische versies in het schijfmodel van Poincaré van klassieke stellingen in de vlakke meetkunde.

Hyperbolische versies in het schijfmodel van Poincaré van klassieke stellingen in de vlakke meetkunde. Faculteit Wetenschappen Vakgroep Wiskunde Hyperbolische versies in het schijfmodel van Poincaré van klassieke stellingen in de vlakke meetkunde. Bachelor Project I Lobke Van Impe Promotor: Prof. Rudger

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

Het vermoeden van Poincaré

Het vermoeden van Poincaré Het vermoeden van Poincaré Joseph Steenbrink IMAPP, Radboud University Nijmegen 6 februari 2010 Outline 1 Poincaré 2 Het vermoeden 3 Topologie versus meetkunde Henri Poincaré Nancy 1854 - Parijs 1912 Achtergrond

Nadere informatie

Wetenschapsweek Benadert wetenschap de waarheid?

Wetenschapsweek Benadert wetenschap de waarheid? Wetenschapsweek Benadert wetenschap de waarheid? Deel 1: Prof. dr. Sylvia Wenmackers Het antwoord van een wetenschapper: Isaac Asimov Maandag 24 oktober 2016 Boek: 1988 The Skeptical Inquirer Fall 1989

Nadere informatie

Relativiteitstheorie. Wat zijn de eigenschappen van ruimte en tijd?

Relativiteitstheorie. Wat zijn de eigenschappen van ruimte en tijd? Relativiteitstheorie D. G.B.J. Dieks Wat zijn de eigenschappen van ruimte en tijd? In 1905 publiceerde Albert Einstein een artikel over `De elektrodynamica van bewegende lichamen'. De titel suggereert

Nadere informatie

Einsteins heilige graal. Jeroen van Dongen, U. Amsterdam

Einsteins heilige graal. Jeroen van Dongen, U. Amsterdam Einsteins heilige graal Jeroen van Dongen, U. Amsterdam Thema: De Algemene Relativiteitstheorie: Kwam tot stand door een samenspel van wis- en natuurkunde Motiveerde Einsteins zoektocht naar een geünificeerde

Nadere informatie

College Fysisch Wereldbeeld 2

College Fysisch Wereldbeeld 2 College Fysisch Wereldbeeld 2 Inhoud Coordinaten Gekromde coordinaten Wat is Zwaartekracht Zwarte gaten Het heelal Cosmologische constante Donkere materie, donkere energie Zwaartekrachtstraling y Coördinaten

Nadere informatie

B136. BIJLAGE H De verbinding met het 'On-eindige' vanuit het twaalf-, het ruitendertig- en het twintig-vlak. Het twaalfvlak of dodecaëder

B136. BIJLAGE H De verbinding met het 'On-eindige' vanuit het twaalf-, het ruitendertig- en het twintig-vlak. Het twaalfvlak of dodecaëder B136 De verbinding met het 'On-eindige' vanuit het twaalf-, het ruitendertig- en het twintig-vlak Het twaalfvlak of dodecaëder Een dodecaëder ligt besloten tussen 6 paren van evenwijdige vlakken. Als die

Nadere informatie

[Deze tekst komt ongeveer overeen met hoofdstukken 1 en 2 van het boekje Regelmaat in de Ruimte door A. K. van der Vegt]

[Deze tekst komt ongeveer overeen met hoofdstukken 1 en 2 van het boekje Regelmaat in de Ruimte door A. K. van der Vegt] [Deze tekst komt ongeveer overeen met hoofdstukken 1 en 2 van het boekje Regelmaat in de Ruimte door A. K. van der Vegt] Inleiding 1.1. Waar gaat het over? Vraag je aan iemand om een veelvlak te noemen,

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

1. Overzicht Hemelmechanica 2. Elektromagnetische straling 3. Zonnestelsel(s) 4. Sterren: fysische eigenschappen 5. Sterren: struktuur + evolutie 6.

1. Overzicht Hemelmechanica 2. Elektromagnetische straling 3. Zonnestelsel(s) 4. Sterren: fysische eigenschappen 5. Sterren: struktuur + evolutie 6. Inleiding Astrofysica 1. Overzicht Hemelmechanica 2. Elektromagnetische straling 3. Zonnestelsel(s) 4. Sterren: fysische eigenschappen 5. Sterren: struktuur + evolutie 6. Sterren: stervorming, sterdood

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

1 Het vormen van ruimte: van Poincaré tot Perelman

1 Het vormen van ruimte: van Poincaré tot Perelman 1 Het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen, Universiteit van Amsterdam Voorwoord In deze bijdrage geven we een kort overzicht van recente ontwikkelingen in het vakgebied van

Nadere informatie

Wat waren de sterren? Gaatjes in het hemelgewelf waardoor het hemelse vuur scheen? Kwade demonen die s nachts naar de mensen keken?

Wat waren de sterren? Gaatjes in het hemelgewelf waardoor het hemelse vuur scheen? Kwade demonen die s nachts naar de mensen keken? Wereldbeeld, geschiedenis. Stel je voor dat je als oude Griek probeert te begrijpen hoe de wereld er uit ziet. Daarbij moeten dus ook zon, maan, sterren, seizoenen, e.d. verklaard worden. Zou het uitmaken

Nadere informatie

FLRW of Lambda-CDM versus Kwantum Relativiteit

FLRW of Lambda-CDM versus Kwantum Relativiteit FLRW of Lambda-CDM versus Kwantum Relativiteit Lambda-CDM (FLRW): Lambda (λ): Dark Energy CDM: Cold Dark Matter Kwantum Relativiteit: donkere energie: 0% donkere materie: < 4% Robertson-Walker: natuurkunde

Nadere informatie