Functies en symmetrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Functies en symmetrie"

Transcriptie

1 lesbrief Functies en symmetrie (even en oneven functies) 7N5p 013 gghm

2

3 Symmetrie Bij grafieken van functies hebben we te maken met twee soorten symmetrie: lijnsymmetrie en puntsymmetrie. In deze lesbrief gaan we kijken hoe je symmetrie ten opzichte van een punt of een lijn aan kunt tonen met behulp van het functievoorschrift. Lijnsymmetrie Bij lijnsymmetrie kun je de grafiek van een functie spiegelen ten opzichte van een verticale lijn; dus de lijn = p. Een functie kan immers nooit symmetrisch zijn ten opzichte van een horizontale lijn (waarom niet?). Ook symmetrie ten opzichte van een schuine lijn is om dezelfde reden onmogelijk. We bekijken een (algemeen) voorbeeld. Zie de figuur hiernaast. De as van symmetrie is de lijn = p Voor elk punt op een afstand a van deze lijn is de functiewaarde hetzelfde. Er geldt dus: f ( p a) = f ( p+ a) Voorbeeld Gegeven is f ( ) = 6+ 3, toon aan dat f() symmetrisch is ten opzichte van de lijn = 3 Volgens de regel moet gelden: f (3 a) = f (3 + a) f(3 a) = (3 a) 6(3 a) + 3= 9 6a+ a 18+ 6a+ 3= a 6 en f(3 + a) = (3 + a) 6(3 + a) + 3= 9+ 6a+ a 18 6a+ 3= a 6 Dus f (3 a) = f (3 + a) voor elke waarde van a en de grafiek is symmetrisch in de lijn = 3. Oefening 1 Toon aan dat de grafiek van f ( ) = symmetrisch is in de lijn = 3. Even functies Voor het speciale geval dat een grafiek van een functie symmetrisch is in de Y-as ( = 0), noemen we de functie even. Voor een even functie geldt dus: f ( a) = f ( a) (ook vaak aangegeven met f ( ) = f( ) )

4 Puntsymmetrie In de afbeelding hiernaast is een grafiek getekend van een functie die symmetrisch is ten opzichte van het punt (p, q). Dit betekent dat als je vanuit = p een stapje ter grootte van a naar links gaat en een stapje van a naar rechts, dan liggen de bijbehorende y-waarden (functiewaarden) even ver van q af; de functiewaarden f(p a) en f(p + a) liggen even ver van q af. In formulevorm geeft dit: f( p a) + f( p+ a) = q = f( p) Voorbeeld: 3 5 Toon aan dat de grafiek van f( ) = symmetrisch is ten opzichte van het punt (, 3). f( a) + f( + a) Er moet gelden: = 3 3( a) 5 1 3a 3a 1 f( a) = = = ( a) a a 3( + a) a 3a+ 1 en f( + a) = = = ( + a) a a 3a 1 3a+ 1 6a + f( a) + f( + a) 6 zodat = a a = a = = 3 en dit klopt, er moest 3 uitkomen! Oefening Gegeven is f( ) =. Bewijs dat de grafiek van f symmetrisch is t.o.v. het punt (1, 0) Oneven functies Een functie noemen we oneven als de grafiek symmetrisch is t.o.v. het punt (0, 0). Er geldt dus: f ( a) = f( a) (ook vaak aangegeven met f ( ) = f( ) ) Oefening 3 3 Gegeven is g ( ) = 3+ 3 Bewijs dat g() symmetrisch is t.o.v. het punt (1, 1).

5 Even en oneven functies nader bekeken Zoals we hiervoor gezien hebben kunnen niet alleen getallen even en oneven zijn maar functies ook! De benaming even en oneven komt bij de machtsfuncties vandaan: n - alle functies van de vorm f ( ) = zijn even functies als n even is n - alle functies van de vorm f ( ) = zijn oneven als n oneven is. Een even functie kun je aan zijn grafiek herkennen aan het feit dat de Y-as de symmetrie-as van de grafiek. Een oneven functie herken je aan de grafiek doordat de oorsprong het symmetrie-punt is. Functies optellen en aftrekken Niet alleen machtsfuncties kunnen even of oneven zijn, er zijn vele andere functies die even of oneven kunnen zijn; goniometrische functies, gebroken functies, functies met een absolute waarde erin en allerlei combinaties van verschillende functies. Algemeen geldt dat bij het optellen (of van elkaar aftrekken) van functies die allen even zijn weer een even functie ontstaat en bij het optellen (of aftrekken) van functies die allen oneven zijn een oneven functie ontstaat. Hieronder enkele voorbeelden: even even even even oneven oneven oneven oneven

6 Het optellen of aftrekken van even en oneven functies geeft echter geen eenduidig resultaat:?????? Functies vermenigvuldigen We kunnen ook functies met elkaar vermenigvuldigen. Aan de hand van een paar voorbeelden oneven even oneven oneven even even concluderen we: even even = even even oneven = oneven oneven even = oneven oneven oneven = even Dit blijkt algemeen te gelden. Het bewijs hiervoor, hoewel niet zo moeilijk, laten we buiten beschouwing. Functie van een functie Als laatste kijken we nog even ( ) naar kettingfuncties. Als je een functie toepast op een functie, wat gebeurt er dan met de ontstane functie? We kijken weer naar een paar voorbeelden: f ( ) = sin( ) g( ) = f g = ( ( )) sin( ) f ( ) = g( ) = 1 sin( ) f ( g( )) = (1 sin( )) f ( ) = g( ) = 1+ cos( ) f ( g( )) = (1+ cos( ))

7 Als e ( ) een even functie is en o ( ) is een oneven functie dan geldt: e(o()) = even o(o()) = oneven o(e()) = even e(e()) = even De laatste twee regels kunnen nog algemener gesteld worden: - Elke functie toegepast op een even functie geeft weer een even functie! dus: f ( e ( )) is even als e() even is, aan f() wordt geen eis gesteld! Zodoende zijn f( ) = 4, g ( ) = ( + cos( ), h ( ) = log(cos( )) en ga zo maar door, allemaal even functies! Overzicht van de regels Hieronder een samenvatting van de regels die we ontdekt hebben voor het combineren van even en oneven functies: 1 even + even = even oneven + oneven = oneven 3 even + oneven =??? 4 even even = even 5 even oneven = oneven (en uiteraard oneven even = oneven) 6 oneven oneven = even 7 even ( oneven ) = even 8 oneven ( oneven ) = oneven 9 oneven ( even ) = even 10 even ( even ) even Oefening 4 Geef van de volgende functies aan of ze even, oneven of geen van beide zijn, zonder de grafiek te plotten of functiewaarden uit te rekenen! a f ( ) = e f ( ) = ( + ) 4 3 b f ( ) = cos( ) f f ( ) = ( + ) c f ( ) = 4sin( )cos( ) g d f 3 ( ) sin ( ) = h f 1 f( ) = sin( ) + 4 ( ) = ( + 1)(4 5)

8 Oefening 5 Bewijs algebraïsch dat f( ) = symmetrisch is t.o.v. het punt (0, 1) 1 + e Oefening 6 3 Gegeven is f( ) = p Bepaal voor welke waarde van p de functie symmetrisch is t.o.v. het punt (, 1). Oefening 7 Ga van de volgende functies na of ze even, oneven of geen van beide zijn, doe dit algebraïsch, dus door middel van een berekening en niet door de regels te gebruiken of te plotten: a b c d f ( ) = 3 f ( ) = 3 f 3 ( ) = + 4 f( ) = Oefening 8 Onderzoek of de volgende functies even, oneven of geen van beide zijn: a f ( ) = 1 + b f ( ) = cos(3 ) c d e f ( ) = 1 f ( ) = 1 f 3 ( ) = ( 4)( + 4) Oefening 9 Onderzoek, algebraïsch, of de functie g ( ) = ln met 0 en g (0) = 0, even, oneven of geen van beide is.

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 Periodieke functies 2 1.1 Op verkenning 2 1.2 Periodieke functie 2 1.3 Periode-interval, evenwichtslijn en amplitude 4 1.4 De perioderechthoek 4 1.5 Oefeningen

Nadere informatie

denkeenheden letters vormen woorden woorden vormen zinnen zinnen vormen verhalen stenen vormen muren muren vormen huizen huizen vormen steden

denkeenheden letters vormen woorden woorden vormen zinnen zinnen vormen verhalen stenen vormen muren muren vormen huizen huizen vormen steden letters vormen woorden woorden vormen zinnen zinnen vormen verhalen stenen vormen muren muren vormen huizen huizen vormen steden denkeenheden hoe zit dat bij algebraische epressies?,,,.. maken,5,5 maken

Nadere informatie

Extra oefeningen goniometrische functies. Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. ...

Extra oefeningen goniometrische functies. Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. ... Extra oefeningen goniometrische functies Oefening 1: Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. a. Elke periodieke functie heeft een (kleinste) periode. b. Er bestaat

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Functies. Verdieping. 6N-3p gghm

Functies. Verdieping. 6N-3p gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk - Machtsfuncties Voorkennis: Functies en symmetrie ladzijde 9 V-a Kies als vensterinstelling voor je GR ijvooreeld X en Y en voer in Y = X X + Je krijgt: + = 0, dan D = ( ) = en = = = + = of

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5.

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5. 11 ) Oefeningen 1) Vergelijkingen van functies Welke vergelijkingen stellen een rechte voor? Welke vergelijkingen stellen een parabool voor? Welke vergelijkingen stellen noch een rechte noch een parabool

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Vak Basiswiskunde 2DL00

Vak Basiswiskunde 2DL00 Basiswiskunde_College_1.nb 1 Vak Basiswiskunde 2DL00 Cursus 2013-2014 Basis van wiskundige kennis en vaardigheden Kennismaking vooraf met wiskunde op TU/e Ook vak in allerlei schakelprogramma s Zie ook

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

Parameterkrommen met Cabri Geometry

Parameterkrommen met Cabri Geometry Parameterkrommen met Cabri Geometry 1. Inleiding Indien twee functies f en g gegeven zijn die afhangen van eenzelfde variabele (noem deze t), dan kunnen de functiewaarden daarvan gebruikt worden als x-

Nadere informatie

Basiswiskunde_Week_1_2.nb 1. Week 1_2. P.4 Functies en hun grafieken P.5 Combineren van functies

Basiswiskunde_Week_1_2.nb 1. Week 1_2. P.4 Functies en hun grafieken P.5 Combineren van functies Basiswiskunde_Week_1_2.nb 1 Week 1_2 P.4 Functies en hun grafieken P.5 Combineren van functies Basiswiskunde_Week_1_2.nb 2 P.4 Functies en grafieken Een functie f van verzameling D in verzameling S is

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus Exacte waaren ij sinus en cosinus In enkele gevallen kun je vergelijkingen met sinus en cosinus exact oplossen. Welke gevallen zijn at? Hieroven zie je grafieken van f(x) = sin x en g(x) = cos x. a Hoe

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Hoofdstuk 4 - Periodieke functies

Hoofdstuk 4 - Periodieke functies Hoofdstuk - Periodieke functies ladzijde 98 V-a Na seconden. Het hart klopt c, millivolt = slagen per minuut. V-a Ja, met periode ; nee; misschien met periode. Evenwichtsstand y = ; -; y =. Amplitude is

Nadere informatie

WISNET-HBO NHL update jan. 2009

WISNET-HBO NHL update jan. 2009 Tweedegraadsfuncties Parabolen maken WISNET-HBO NHL update jan. 2009 Inleiding In deze les leer je wat systeem brengen in het snel herkennen van tweedegraadsfuncties. Een paar handige trucjes voor het

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

7.1 De afgeleide van gebroken functies [1]

7.1 De afgeleide van gebroken functies [1] 7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

2 Basisfuncties Sinusfunctie Cosinusfunctie Tangensfunctie... 6

2 Basisfuncties Sinusfunctie Cosinusfunctie Tangensfunctie... 6 Inhoud 1 Voorbereidende opdracht. 2 2 Basisfuncties. 4 2.1 Sinusfunctie............................. 4 2.2 Cosinusfunctie........................... 5 2.3 Tangensfunctie........................... 6 3

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte.

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte. Grafieken, functies en verzamelingen Eerst enkele begrippen Grafiek In een assenstelsel teken je een grafiek. Assenstelsel Een assenstelsel bestaat uit twee assen die elkaar snijden: een horizontale en

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Hoofdstuk 11: Eerstegraadsfuncties in R

Hoofdstuk 11: Eerstegraadsfuncties in R - 229 - Hoofdstuk 11: Eerstegraadsfuncties in R Definitie: Een eerstegraadsfunctie in R is een functie met een voorschrift van de gedaante y = ax + b (met a R 0 en b R ) Voorbeeld 1: y = 2x Functiewaardetabel

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening juli 05 dr. Brenda Castelen Met dank aan: Atheneum van Veurne (http:www.natuurdigitaal.begeneeskundefsicawiskundewiskunde.htm),

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening 307 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http:users.telenet.betoelating) . Inleiding Dit oefeningenoverzicht

Nadere informatie

Vergelijkingen van cirkels en lijnen

Vergelijkingen van cirkels en lijnen Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

Bepaalde Integraal (Training) Wat reken je uit als je een functie integreert

Bepaalde Integraal (Training) Wat reken je uit als je een functie integreert Bepaalde Integraal (Training) WISNET-HBO update april 2009 Wat reken je uit als je een functie integreert De betekenis van de integraal is een optelling van uiterst kleine onderdelen. In dit voorbeeld

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1 Herhalingsoefeningen Tweedegraadsfuncties Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

F3 Formules: Formule rechte lijn opstellen 1/3

F3 Formules: Formule rechte lijn opstellen 1/3 F3 Formules: Formule rechte lijn opstellen 1/3 Inleiding Bij Module F1 heb je geleerd dat Formule, Verhaal, Tabel, Grafiek en Vergelijking altijd bij elkaar horen. Bij Module F2 heb je geleerd wat een

Nadere informatie

EERSTE AFGELEIDE TWEEDE AFGELEIDE

EERSTE AFGELEIDE TWEEDE AFGELEIDE Lesrief EERSTE AFGELEIDE etreme waarden raaklijn normaal TWEEDE AFGELEIDE uigpunten 6/7Np GGHM03 Inleiding Met ehulp van de grafische rekenmachine kun je snel zien of de grafiek daalt of stijgt. Het horizontaal

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2009

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2009 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 009 VK : WISKUNE TUM : VRIJG 0 JULI 009 TIJ : 09.45.45 UUR ------------------------------------------------------------------------------------------------------------------------

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

SOM- en PRODUCTGRAFIEK van twee RECHTEN

SOM- en PRODUCTGRAFIEK van twee RECHTEN SOM- en PRODUCTGRAFIEK van twee RECHTEN 1. SOMGRAFIEK Walter De Volder Breng onder Y 1 en Y 2 de vergelijking van een rechte in. Stel Y 3 = Y 1 + Y 2. Construeer de drie grafieken. Onderzoek verschillende

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Werk met de applet. Bedenk steeds welke parameter a, b, c en/of d je moet aanpassen. Experimenteer tot je de regelmaat kunt formuleren!

Werk met de applet. Bedenk steeds welke parameter a, b, c en/of d je moet aanpassen. Experimenteer tot je de regelmaat kunt formuleren! 5 Transformaties Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Functies en grafieken Transformaties Inleiding Verkennen Werk met de applet. Bedenk steeds welke parameter a, b, c en/of

Nadere informatie

6. Goniometrische functies.

6. Goniometrische functies. Uitwerkingen R-vragen hodstuk 6 6. Goniometrische functies. R1 Wat heeft een cirkelomwenteling te maken met een sinus cosinus? ls een punt met constante snelheid een cirkelbeweging uitvoert en je zet hoogte

Nadere informatie

VIDEO 4 4. MODULUSVERGELIJKINGEN

VIDEO 4 4. MODULUSVERGELIJKINGEN VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Wiskunde D voor HAVO. Periodieke functies Gert Treurniet

Wiskunde D voor HAVO. Periodieke functies Gert Treurniet Wiskunde D voor HAVO Periodieke functies Gert Treurniet . Inleiding Een toon is een trilling. De trilling van lucht brengt ons trommelvlies in beweging. De beweging van ons trommelvlies nemen we waar als

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

Hoofdstuk 2 - Kwadratische functies

Hoofdstuk 2 - Kwadratische functies Hoofdstuk - Kwadratische functies Hoofdstuk - Kwadratische functies Voorkennis V-1a y = 3(x ) 3 x 3 6x 1 y = 6x 1 b y = 9( 4x 4) 3 4x 4 9 36x 36 y = 36x 36 c y = x( x 7) 3 x 7 x x 7x y = x 7x V-a y = (

Nadere informatie

Lineaire formules.

Lineaire formules. www.betales.nl In de wiskunde horen bij grafieken bepaalde formules waarmee deze grafiek getekend kan worden. Lineaire formules zijn formules die in een grafiek een reeks van punten oplevert die op een

Nadere informatie

Functies. Verdieping. 6N-3p 2010-2011 gghm

Functies. Verdieping. 6N-3p 2010-2011 gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de ijehorende grafiek. Je mag de GRM hierij geruiken. Y f ( x) x X

Nadere informatie

Appendix: Zwaartepunten

Appendix: Zwaartepunten Appendi: Zwaartepunten Enkele opmerkingen vooraf: Maak altijd eerst een schets van het betreffende gebied (en dat hoeft heus niet zo precies te zijn als de grafieken die ik hier door de computer kan laten

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Praktische opdracht: modelleren met Coach

Praktische opdracht: modelleren met Coach Praktische opdracht: modelleren met Coach VWO 5 wiskunde B Mei 00 Hieronder zie je een ketting waaraan vijf gelijke gewichten hangen. Daarnaast een schematische tekening van ketting en gewichten. Aan de

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. 7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback IJkingstoets 5 september 04 - reeks - p. /0 Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 5 september 04: algemene feedback In totaal namen 5 studenten deel aan deze ijkingstoets industrieel

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage. amen VWO 2009 tijdvak dinsdag 2 juni 3.30-6.30 uur wiskunde B,2 Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 9 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Calculus I, 19/10/2015

Calculus I, 19/10/2015 Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 19 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 19 juni uur Eamen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B (pilot) Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

y = 25 x y = 25 x y = 25 x 2 is het functievoorschrift dat bij de bovenste

y = 25 x y = 25 x y = 25 x 2 is het functievoorschrift dat bij de bovenste Hoofdstuk A: Integralen. I-. Hiernaast is een cirkel getekend met de oorsrong als middelunt en met een straal 5. Als je in de getekende driehoek de stelling van Pythagoras toeast, krijg je: + y = 5. Kwadrateren

Nadere informatie

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1},

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1}, Hoofdstuk II Calculus Les Differentiatie van functies Waarscijnlijk eeft iedereen wel een idee ervan wat een functie is, maar voor de duidelijkeid zal et andig zijn om de meest belangrijke begrippen na

Nadere informatie

Grafieken van veeltermfuncties

Grafieken van veeltermfuncties (HOOFDSTUK 43, uit College Mathematics, door Frank Ayres, Jr. and Philip A. Schmidt, Schaum s Series, McGraw-Hill, New York; dit is de voorbereiding voor een uit te geven Nederlandse vertaling). Grafieken

Nadere informatie

Uitwerkingen goniometrische functies Hst. 11 deel B3

Uitwerkingen goniometrische functies Hst. 11 deel B3 Uitwerkingen goniometrische functies Hst. deel B. f() = sin(-) = -sin() g() = cos(-) = cos () h() = sin( + ) = cos() j() = cos( + ) = -sin() k() = sin ( + ) = -sin () l() = cos ( + ) = -cos (). Zie ook

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1 Eindexamen wiskunde B havo 0 - II Beoordelingsmodel Tonregel van Kepler maximumscore 6 G = B = π 9 ( 64) (cm ) Voor de cirkel op halve hoogte geldt: πr = (met r de straal van de cirkel in cm) Hieruit volgt

Nadere informatie

HANDREIKINGEN VANUIT WISKUNDIG- DIDACTISCH ONDERZOEK: LOGARITMEN EN HET INPRODUCT TOM COENEN EN MARK TIMMER

HANDREIKINGEN VANUIT WISKUNDIG- DIDACTISCH ONDERZOEK: LOGARITMEN EN HET INPRODUCT TOM COENEN EN MARK TIMMER HANDREIKINGEN VANUIT WISKUNDIG- DIDACTISCH ONDERZOEK: LOGARITMEN EN HET INPRODUCT TOM COENEN EN MARK TIMMER INHOUDSOPGAVE WAT GAAN WE VANDAAG ALLEMAAL DOEN? Logaritmen De setting Geschiedenis van de logaritme

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2009 - I

Eindexamen wiskunde B1-2 vwo 2009 - I en benadering van een nulpunt Voor elke positieve startwaarde 0 is een rij 0,, 2, gegeven door de volgende recursievergelijking: n+ = 2 n +. n Deze recursievergelijking kunnen we ook schrijven als n+ =

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functies 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding Dit

Nadere informatie

Zomercursus Wiskunde. Grafieken van functies en krommen (versie 14 augustus 2008)

Zomercursus Wiskunde. Grafieken van functies en krommen (versie 14 augustus 2008) Katholieke Universiteit Leuven September 8 Grafieken van functies en krommen (versie 4 augustus 8) Grafieken van functies en krommen Inleiding In deze module bestuderen we grafieken van functies van reële

Nadere informatie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie Wiskunde 2 september 2008 versie 1-1 - Op hoeveel verschillende manieren kun je drie zwarte pionnen verdelen over de 32 zwarte velden van een schaakbord? (Neem aan dat op elk veld hooguit één pion staat.)

Nadere informatie

Eenvoud bij tekenen en rekenen

Eenvoud bij tekenen en rekenen Eenvoud bij tekenen en rekenen Jan van de Craats In het decembernummer 2005 van Euclides doen Paul Drijvers, Swier Garst, Peter Kop en Jenneke Krüger verslag van een experimenteel project in vwo-5 wiskunde-b

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 23 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 23 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 016 tijdvak donderdag 3 juni 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor

Nadere informatie