Lightweight cold rolled steel construction systems Design and application for singular factory buildings. In- en uitvoer van spreadsheet.

Maat: px
Weergave met pagina beginnen:

Download "Lightweight cold rolled steel construction systems Design and application for singular factory buildings. In- en uitvoer van spreadsheet."

Transcriptie

1 Cor van Zandwijk May 006 C. van Zandwijk Studienummer: Afstudeercommissie: Prof.dipl-ing. J.N.J.A. Vambersky Dr. A. Romeijn, TU Delft Ir. A.M. Gresnigt, TU Delft Ing. L. Noordzij, KS Profiel In- en uitvoer van spreadsheet Deel I

2 Voorwoord Voor u ligt de bundel In- en uitvoer van spreadsheet deel I Deze bundel is een onderdeel van de berekeningsmethodiek zoals deze beschreven is in hoofdstuk 4 van het hoofdrapport. De drie rapporten vormen het totale afstudeeronderzoek dat gedaan is als afronding van de opleiding Civiele Techniek aan de Technische Universiteit van Delft. Dit afstudeeronderzoek is gedaan in het kader van de Mastervariant Building Engineering. Het is belangrijk het hoofdrapport Berekening van referentiehal als lijdraad te houden bij het lezen van het afstudeeronderzoek. Regelmatig wordt er naar de rapporten onderling verwezen, het is daarom belangrijk in het bezit te zijn van alle drie de delen. Cor van Zandwijk Nieuw-Beijerland, mei 006 1

3 Inhoudsopgave VOORWOORD... 1 A. INLEIDING... 3 A.1 BESCHREVEN ONDERDELEN... 3 B. BEREKENING STAAFCONSTRUCTIES... 4 B.1 EEM METHODE IN GROTE LIJNEN... 4 B. DE DIFFERENTIAALVERGELIJKINGEN... 5 B..1 MAPLE uitvoer van differentiaalvergelijkingen... 5 B.3 BEPALING ELEMENTSTIJFHEIDSMATRIX, BELASTING- EN VERPLAATSINGSVECTOR IN MAPLE... 8 B.3.1 MAPLE uitvoer voor stijfheidsmatrix, belastingvector en verplaatsingsvector... 9 B.4 CONVERTEREN VAN MAPLE UITVOER NAAR EXCEL B.4.1BEPALING ELEMENTSTIJFHEIDSMATRIX, BELASTING- EN VERPLAATSINGSVECTOR IN EXCEL B.5 Controle van de uitkomsten met raamwerkprogramma Matrixframe... 5 B.5.1 Controle van uitkomsten... 6 C. PROFIELTOETSINGEN W.G.P C.1 TOETSING OP KNIK... 7 C. TOETSING OP KIP... 9 C.3 CONCLUSIE... 3 D. INVOERGEGEVENS VAN DE SPREADSHEET D.1 INVOER VAN DE GEOMETRIE EN DE W.G.P D. INVOER VAN DE Z EN C-PROFIELEN E. BEREKENINGEN IN DE SPREADSHEET...41 E.1 BEREKENING VAN WINDSTUWDRUK E. BEREKENING VAN FACTOREN EN GEWICHTEN... 4 E.3 BEREKENING INKLEMMINGSPARAMETER E.4 KNIK EN KIP CONTROLES VAN ALLE ONDERDELEN E.5 BEREKENING VAN DE KOUDGEWALSTE PROFIELEN E.6 BEREKENING VAN STAAFKRACHTEN F. UITVOER VAN DE SPREADSHEET... 9 F.1 DE UITVOER VAN DE SPREADSHEET... 9 LITERATUURLIJST

4 A. Inleiding In hoofdstuk 4 van de bundel Berekening van referentiehal wordt verwezen naar deze bundel In- en uitvoer van spreadsheet deel I. In verband met de omvang wordt de spreadsheet methode in deze aparte bundel beschreven. A.1 Beschreven onderdelen Omdat de nadruk van het afstudeeronderzoek ligt op de koudgevormde profielen is de uitwerking hiervan opgenomen in de bundel Berekening van referentiehal en komt daarom in deze bundel niet meer aan de orde. De berekening en toetsing van de warmgewalste profielen wordt kort omschreven in deze bundel. Het relatief complexe onderdeel berekening van staafconstructie wordt summier aan de orde gesteld omdat deze materie uit gediept kan worden tot een afstudeeronderzoek op zich, dit is echter in dit onderzoek niet de bedoeling. De in- en uitvoer wordt gegeven voor de hal zoals deze gedefinieerd is in paragraaf 4. van de bundel Berekening van referentiehal. Met name de uitvoer kan gebruikt worden als vergelijkingsmateriaal voor de berekening volgens de handmatige methode. 3

5 B. Berekening staafconstructies De eindige-elementenmethode (EEM) voor staafconstructies is internationaal aanvaard als de meest geschikte aanpak voor het berekenen van sterkte- en stijfheidsproblemen met de computer. Omdat verplaatsingen de rol van onbekende spelen, spreekt men ook over de verplaatsingsmethode. De constructie wordt opgedeeld in staafelementen, die op een systematisch wijze worden geassembleerd tot een globaal systeem, de constructie. Om de gehele spreadsheet optimaal functioneel te maken is deze EEM berekening ingevoegd zodat de normaalkrachten, dwarskrachten, momenten en verplaatsingen van het hoofdspant op eenvoudige wijze kunnen worden bepaald. Dit hoofdstuk behandeld de systematiek van de bepaling van deze gegevens. B.1 EEM methode in grote lijnen Twee zaken spelen in dit geval een rol in de bepalingen volgens de EEM methode 1. In de eerste plaats de axiale belasting op de staaf, hierdoor worden alleen normaalkrachten in de staaf veroorzaakt. In de tweede plaats de gelijkmatig verdeelde belasting op de staaf, hierdoor worden buigende momenten in de staaf veroorzaakt. Voor deze twee belastingsgevallen moeten drie vrijheidsgraden in beschouwing genomen worden namelijk de horizontale verplaatsing u x, de verticale verplaatsing u z en de hoekverdraaiing ϕ y. De vrijheidsgraden van de totale constructie worden verzameld in een globale vector u en de knoopkrachten in een globale vector f. Op elementniveau worden de elementverplaatsingen en rotaties in een vector u e en de elementkrachten in een vector f e genomen. Het is belangrijk een duidelijke tekenafspraak te maken voor: De knoopverplaatsingen en de knoopkrachten, deze is positief in de x-richting De krachten in de verbindingen tussen element en knoop, deze zijn gelijk maar tegengesteld van teken. (actie - reactie). De elementkracht wordt positief beschouwd indien deze in de richting van de positieve x-as werkt. De normaalkracht in een snede door het element. De normaalkracht is positief indien de kracht op het positieve snedevlak werkt in de positieve x-richting. Fig. B.1 Definiëring van de snedekrachten In de methode treden drie basisbetrekkingen op, dit zijn: De kinematische relatie De constitutieve relatie De evenwichtsrelatie 1 Voor uitgebreide informatie over dit onderwerp zie literatuurlijst [1] [] [3] 4

6 Door deze op elementniveau toe te passen wordt de elementstijfheidsmatrix K e gevonden, deze relateert de elementverplaatsingen en de elementkrachten aan elkaar. Kort geschreven volgt dan: e e f K * u e De elementstijfheidsmatrix is het eigenschappenkaartje van het element. Als dit eigenschappenkaartje bekent is dan is het bekent hoe het element zich gedraagt onder de optredende belastingen. De elementstijfheidsmatrix kan worden berekend met: K e B T * D N * B Hierin is B de kinematische matrix en D N de constitutieve matrix. De kinematische betrekkingen zeggen dat de elementen en de knopen aansluiten, de constitutieve betrekkingen zeggen dat elementkrachten en elementverplaatsingen samenhangen en de evenwichtsbetrekkingen zeggen dat er per knoop evenwicht is tussen de uitwendige knoopkrachten en de elementkrachten in de verbinding. Uit deze drie betrekkingen volgen dan de globale vergelijkingen voor de totale constructie, deze is te schrijven als: K * u f De coëfficiënten van deze vergelijkingen vormen de globale stijfheidsmatrix K. Dit stelsel van globale vergelijkingen kan worden opgelost als voldoende verplaatsingen zijn voorgeschreven om de beweging van de constructie als star lichaam te onderdrukken. Een voorgeschreven verplaatsing met de waarde nul wordt verdisconteerd door de ermee corresponderende rij en kolom in de globale stijfheidsmatrix K weg te laten. Als het gereduceerde stelsel is opgelost, wordt uit de gevonden verplaatsingen afgeleid welke elementkrachten in de verbindingen optreden, welke normaalkracht, dwarskracht en moment in de afzonderlijke elementen heersen. In een blok schema van een EEM programma zullen altijd twee lussen over alle elementen te zien zijn. De eerste lus is nodig om alle elementstijfheidsmatrices te berekenen. Tussen de twee lussen in vindt de assemblage van de globale vergelijkingen plaats en worden de verplaatsingen berekend. In de tweede lus word ut de verplaatsingen de krachtsverdeling in alle constructieonderdelen afgeleid. B. De differentiaalvergelijkingen De differentiaalvergelijkingen worden opgesteld en opgelost met het wiskundige rekenpakket MAPLE. Omdat de exacte wijze van aanpak buiten de essentie van deze afstudeerscriptie valt, worden alleen de met MAPLE bepaalde vergelijkingen gegeven. B..1 MAPLE uitvoer van differentiaalvergelijkingen restart; TU Delft Differentiaalvergelijking voor buiging w:int(int(int(int(qz/ei,x)+c1,x)+c,x)+c3,x)+c4; phi:-diff(w,x); M:EI*diff(phi,x); Voor een uitgebreide uitleg over de aanpak en wijze van opstellen van differentiaalvergelijkingen, zie literatuurlijst [4] Version 5

7 V:diff(M,x); 1 qz x 4 1 w : EI 6 C1 1 x3 C x C3 x C4 eq1:subs(x0,w)uz1; eq:subs(x0,phi)phiy1; eq3:subs(xl,w)uz; eq4:subs(xl,phi)phiy; 1 qz x 3 1 φ : 6 EI C1 x C x C3 M : EI 1 qz x C1 x C EI V : EI qz x C1 EI eq1 : C4 uz1 eq : C3 phiy1 1 qz L 4 1 eq3 : EI 6 C1 L 3 1 C L C3 L C4 uz 1 qz L 3 1 eq4 : 6 EI C1 L C L C3 phiy sol1:solve({eq1,eq,eq3,eq4},{c1,c,c3,c4}); sol1 : { C4 uz1, C3 phiy1, 1 qz L L phiy EI + 48 phiy1 L EI 7 uz1 EI + 7 uz EI C, 1 L EI C1 1 qz L L phiy EI + 1 phiy1 L EI 4 uz1 EI + 4 uz EI } L 3 EI assign(sol1); w:collect(w,{qz,uz1,phiy1,uz,phiy}); phi:collect(phi,{qz,uz1,phiy1,uz,phiy}); M:collect(M,{qz,uz1,phiy1,uz,phiy}); V:collect(V,{qz,uz1,phiy1,uz,phiy}); 1 w 1 x 4 4 L x 1 Lx 3 3 x x 3 : + qz EI EI 1 EI L L 3 x3 3 x x 3 x + + uz + x + phiy1 + L 3 L L L 1 φ 1 x 3 4 Lx 1 L x + qz 6 x 6 x : + + uz1 + 6 EI EI 1 EI L 3 L 3 x 4 x + 1 phiy1 3 x x + + phiy L L L L uz1 x 3 x + phiy L L 6 x L 3 6 x uz L 6

8 1 M EI 1 x Lx 1 L + qz EI EI EI 1 EI 1 x 6 : + + uz1 L 3 L + EI 1 x 6 uz EI L 3 L + 6 x 4 L L phiy1 + EI 6 x L L phiy 1 V : EI x L 1 EI uz1 1 EI uz 6 EI phiy1 6 phiy EI + qz EI EI L 3 L 3 L L Differentiaalvergelijking voor extensie u:int(int(-qx/ea,x)+d1,x)+d; epsilon:diff(u,x); N:EA*epsilon; 1 qx x u : + D1 x + EA eq5:subs(x0,u)ux1; eq6:subs(xl,u)ux; qx x ε : + D1 EA D N : EA qx x + D1 EA eq5 : D ux1 1 qx L eq6 : + D1 L + D ux EA sol:solve({eq5,eq6},{d1,d}); 1 qx L ux1 EA + ux EA sol : { D ux1, D1 } LEA assign(sol); u:collect(u,{qx,ux1,ux}); epsilon:collect(epsilon,{qx,ux1,ux}); N:collect(N,{qx,ux1,ux});; 1 u : 1 x Lx + qx + x + EA EA + 1 ux1 L 1 ε : x L + + EA EA qx ux1 L 1 N : EA x L + + EA EA qx EA ux1 L ux L ux x L ux EA L 7

9 B.3 Bepaling elementstijfheidsmatrix, belasting- en verplaatsingsvector in MAPLE Om het probleem zo algemeen mogelijk te beschrijven wordt er voor gekozen alle mogelijke windbelastingen, uiteraard alleen winddruk of windzuiging omdat beide gevallen nooit gelijktijdig op kunnen treden, en de sneeuwbelastingen in te voeren als belasting op de liggers en kolommen. De totale combinatie van belastingen inclusief lokale assenstelsels, knoop- en elementnummers wordt weergegeven in figuur B.. Fig. B. De totale combinatie van mogelijke belastingen inclusief assenstelsel en nummeringen De volgende belastingen, afmetingen en profieleigenschappen worden ingevoerd in de MAPLE file: q sn;1.36 kn/m q sn; 3.68 kn/m q wind;kolom kn/m (druk) q wind;kolom kn/m (zuiging) q wind;ligger 1.7 kn/m (druk) q wind;ligger kn/m (druk) q eg;kolom 0.4 kn/m (IPE 300) q eg;ligger,dak 1.60 kn/m (IPE 300 en dakplaten) b gebouw 18.0 m h goot 4.40 m h nok 8.00 m A IPE * 10 3 m I y-y 8.36 * 10 3 m 4 E.10 * 10 8 kn/m Met deze gegevens kunnen alle berekeningen 3 die noodzakelijk zijn, worden uitgevoerd met MAPLE. Een gedeeltelijke uitvoer hiervan wordt in de hierna volgende paragraaf gegeven. Niet alle berekende matrices en vectoren worden geplot omdat deze van dusdanige omvang en complexiteit zijn dat het geen nut heeft deze in de hierna volgende paragraaf te presenteren. 3 Voor uitgebreide informatie over stelsels oplossen zie literatuurlijst [] [5] 8

10 B.3.1 MAPLE uitvoer voor stijfheidsmatrix, belastingvector en verplaatsingsvector restart; unprotect(d); with(linearalgebra): interface(rtablesize15): Elementstijfheidsmatrix voor een prismatische staaf met lengte L onder een hoek α met de x-as Er wordt gewerkt in een x-z assenstelsel. c:cos(alpha): s:sin(alpha): B:<<-c,s/L,-s/L> <s,c/l,-c/l> <0,-1,0> <c,-s/l,s/l> <-s,- c/l,c/l> <0,0,1>>; cos( α ) sin( α ) 0 cos( α ) sin( α ) 0 sin( α ) cos( α ) sin( α ) cos( α ) B : -1 0 L L L L sin( α ) cos( α ) sin( α ) cos( α ) 0 1 L L L L D:<<EA/L,0,0> <0,4*EI/L,-*EI/L> <0,-*EI/L,4*EI/L>>; EA 0 0 L D : 0 4 EI EI L L 0 EI 4 EI L L In verband met de beschikbare breedte wordt de elementstijfheidsmatrix K e gesplitst, de delen tussen vierkante haken geven één regel weer van de matrix, splitsing van de kolommen wordt weergegeven met komma s. Ke:Transpose(B).D.B; Ke : cos( α ) EA 1 sin( α ) EI cos( α ) EA sin( α ) 1 sin( α ) EI cos( α ) +, +, L L 3 L L 3 sin( α ) EI cos( α ) EA 1 sin( α ) EI 6,, L L L 3 cos( α ) EA sin( α ) 1 sin( α ) EI cos( α ) sin( α ) EI, 6 L L 3 L cos( α ) EA sin( α ) 1 sin( α ) EI cos( α ) sin( α ) EA 1 cos( α ) EI +, +, L L 3 L L 3 cos( α ) EI cos( α ) EA sin( α ) 1 sin( α ) EI cos( α ) 6,, L L L 3 sin( α ) EA 1 cos( α ) EI cos( α ) EI, 6 L L 3 L sin( α ) EI cos( α ) EI 6, 6, 4 EI sin( α ) EI cos( α ) EI, 6, 6, EI L L L L L L 9

11 cos( α ) EA 1 sin( α ) EI cos( α ) EA sin( α ) 1 sin( α ) EI cos( α ),, L L 3 L L 3 sin( α ) EI cos( α ) EA 1 sin( α ) EI 6, +, L L L 3 cos( α ) EA sin( α ) 1 sin( α ) EI cos( α ) sin( α ) EI +, 6 L L 3 L cos( α ) EA sin( α ) 1 sin( α ) EI cos( α ) sin( α ) EA 1 cos( α ) EI,, L L 3 L L 3 cos( α ) EI cos( α ) EA sin( α ) 1 sin( α ) EI cos( α ) 6, +, L L L 3 sin( α ) EA 1 cos( α ) EI cos( α ) EI +, 6 L L 3 L sin( α ) EI cos( α ) EI 6, 6, EI sin( α ) EI cos( α ) EI, 6, 6, 4 EI L L L L L L Samenstellen elementstijfheidsmatrices Het betreft een ongeschoord spant, scharnierend ondersteund, waarvan de staven momentvast met elkaar verbonden zijn. Gebruikte parameters: - Gebouwbreedte: b - Gebouwhoogte H_totaal - Goothoogte h_kolom (dus h_nok H_totaal - h_kolom). Van links naar rechts zijn de knopen genummerd van 1 t/m 5 en de elementen daartussen van 1 t/m 4, zie figuur B.. Elementvolgorde: kolom, oplopende ligger, aflopende ligger, kolom. b:18: H_totaal:8: h_kolom:44/10: EA_kolom: *53810/ : EI_kolom: *83560/ : EA_ligger:EA_kolom: EI_ligger:EI_kolom: qg_kolom:4/100: qwind1:86/100: qg_ligger:160/100: qwind:17/100: qsneeuw:36/100: qwind3:-17/100: qsneeuw3:368/100: qwind4:430/100: h_nok:h_totaal-h_kolom: hoek:arctan(h_nok/(b/)): L_ligger:sqrt((b/)^+h_nok^): Ke1:subs({alphaPi/,Lh_kolom,EAEA_kolom,EIEI_kolom},Ke): Ke:subs({alphahoek,LL_ligger,EAEA_ligger,EIEI_ligger},Ke ): Ke3:subs({alphahoek,LL_ligger,EAEA_ligger,EIEI_ligger},Ke ): Ke4:subs({alpha-Pi/,Lh_kolom,EAEA_kolom,EIEI_kolom},Ke): 10

12 Elementstijfheidsmatrix opbouwen 5 knopen, 3 vrijheidsgraden per knoop. K:ZeroMatrix(15,outputoptions[shapesymmetric,storagesparse ]): Element 1: linkerkolom, loopt van knoop 1 naar K[1..6,1..6]:MatrixAdd(K[1..6,1..6],Ke1): Element : oplopende ligger, loopt van knoop naar 3 K[4..9,4..9]:MatrixAdd(K[4..9,4..9],Ke): Element 3: aflopende ligger, loopt van knoop 3 naar 4 K[7..1,7..1]:MatrixAdd(K[7..1,7..1],Ke3): Element 4: rechterkolom, loopt van knoop 4 naar 5 K[10..15,10..15]:MatrixAdd(K[10..15,10..15],Ke4): Belastingvector opbouwen De belastingen zijn gericht in het lokale assenstelsel (x-as loopt steeds van de laagst genummerde knoop naar de hoger genummerde knoop van het element). Er wordt per element rekening gehouden met een gelijkmatig verdeelde lijnlast in zowel de x- als de z-richting; dus niet met verlopende lasten of krachten/koppels die direct aangrijpen. r:<<c,-s> <s,c>>; R:IdentityMatrix(6,compactfalse); R[1..,1..]:r; R[4..5,4..5]:r; Rinv:MatrixInverse(R); r : cos( α ) sin( α ) sin( α ) cos( α ) R : R 1.., 1.. : cos( α ) sin( α ) sin( α ) cos( α ) R 4.. 5, : cos( α ) sin( α ) sin( α ) cos( α ) 11

13 cos( α ) sin( α ),, 0, 0, 0, 0 cos( α ) + sin( α ) cos( α ) + sin( α ) sin( α ) cos( α ),, 0, 0, 0, 0 cos( α ) + sin( α ) cos( α ) + sin( α ) Rinv : 0, 0, 1, 0, 0, 0 cos( α ) sin( α ) 0, 0, 0,,, 0 cos( α ) + sin( α ) cos( α ) + sin( α ) sin( α ) cos( α ) 0, 0, 0,,, 0 cos( α ) + sin( α ) cos( α ) + sin( α ) 0, 0, 0, 0, 0, 1 fprim:r.<-qx/*l,-qz/*l,qz/1*l^,-qx/*l,-qz/*l,- qz/1*l^>; 1 1 cos( α ) qx L sin( α ) qz L 1 1 sin( α ) qx L cos( α ) qz L 1 1 qz L fprim : 1 1 cos( α ) qx L sin( α ) qz L 1 1 sin( α ) qx L cos( α ) qz L 1 1 qz L Primaire belasting vanuit element 1: linkerkolom. Eigen gewicht qg_kolom (neerwaarts) en wind qwind1 (druk; naar rechts). N.B. Voor zuiging moet dus het teken van qwind1 worden gewijzigd! qx1:-qg_kolom: qz1:qwind1: fprim1:subs({alphapi/,qxqx1,qzqz1,lh_kolom},fprim): Primaire belasting vanuit element : linkerligger, oplopend. Eigen gewicht qg_ligger (neerwaarts), qsneeuw (neerwaarts) en wind qwind (druk, loodrecht). N.B. Voor zuiging moet dus het teken van qwind worden gewijzigd! qx:-(qg_ligger+qsneeuw*cos(hoek))*sin(hoek): qz:(qg_ligger+qsneeuw*cos(hoek))*cos(hoek)+qwind: fprim:subs({alphahoek,qxqx,qzqz,ll_ligger},fprim): Primaire belasting vanuit element 3: rechterligger, aflopend. Eigen gewicht qg_ligger (neerwaarts), qsneeuw3 (neerwaarts) en wind qwind3 (druk, loodrecht). N.B. Voor zuiging moet dus het teken van qwind3 worden gewijzigd! 1

14 qx3:-(qg_ligger+qsneeuw3*cos(-hoek))*sin(-hoek): qz3:(qg_ligger+qsneeuw3*cos(-hoek))*cos(-hoek)+qwind3: fprim3:subs({alpha-hoek,qxqx3,qzqz3,ll_ligger},fprim): Primaire belasting vanuit element 4: rechterkolom. Eigen gewicht qg_kolom (neerwaarts) en wind qwind4 (zuiging; naar rechts). N.B. Voor zuiging moet dus het teken van qwind4 worden gewijzigd! qx4:qg_kolom: qz4:-qwind4: fprim4:subs({alpha-pi/,qxqx4,qzqz4,lh_kolom},fprim): Direct aangrijpende knooplasten. Er zijn geen directe knooplasten, dus zijn alle waarden nul. f:zerovector(5*3,compactfalse): Verwerken primaire belastingen om tot de totale belastingvector te komen. f[1..6]:vectoradd(f[1..6],-fprim1): f[4..9]:vectoradd(f[4..9],-fprim): f[7..1]:vectoradd(f[7..1],-fprim3): f[10..15]:vectoradd(f[10..15],-fprim4): Verwerken bekende vrijheidsgraden Ter plaatse van de opleggingen, knoopnummers. 1 en 5, zijn de horizontale en verticale verplaatsingen verhinderd. Daarom wordt op de hoofddiagonaal voor de betreffende verplaatsing een 1 gezet (overig in de rij allemaal nullen), en in de belastingvector wordt dan de voorgeschreven verplaatsing gelijk aan 0 gezet. Het gaat over ux1, uz1, ux5 en uz5. plaatsnrs:<1,,13,14>: for i in plaatsnrs do K[i,1..15]:IdentityMatrix(15)[i,1..15]: K[1..15,i]:IdentityMatrix(15)[1..15,i]: f[i]:0: end do: Oplossen onbekende vrijheidsgraden K:simplify(K): f:simplify(f): u:linearsolve(k,f): evalf(transpose(<u[1..3] u[4..6] u[7..9] u[10..1] u[13..15]>) ): Resultaten in het globale assenstelsel. > f1:ke1.u[1..6]+fprim1: f:ke.u[4..9]+fprim: f3:ke3.u[7..1]+fprim3: f4:ke4.u[10..15]+fprim4: evalf(<f1 f f3 f4>): 13

15 Resultaten in de lokale assenstelsels. evalf(<subs(alphapi/,rinv.f1) subs(alphahoek,rinv.f) subs( alpha-hoek,rinv.f3) subs(alpha-pi/,rinv.f4)>); B.4 Converteren van MAPLE uitvoer naar Excel Om het uiteindelijke doel, het optimaal functioneel maken van de spreadsheet, te kunnen bereiken is het nog noodzakelijk de berekening volgens MAPLE te converteren naar Excel. Ook in Excel is het mogelijk matrix bewerkingen uit te voeren. De totale in- en uitvoer voor de berekening wordt weergegeven in de hierna volgende paragraaf. B.4.1Bepaling elementstijfheidsmatrix, belasting- en verplaatsingsvector in Excel Geometrie Gebouwbreedte 18,0 m Gebouwhoogte 8,0 m Goothoogte 4,4 m Nok - goothoogte 3,6 m Doorsnede-eigenschappen Profiel I y (m 4 ) A (m ) Kolommen IPE300 8,36E-05 5,38E-03 Liggers IPE300 8,36E-05 5,38E-03 Materiaal Elasticiteitsmodulus,10E+08 kn/m Belastingen Kolommen e.g. 0,4 kn/m Liggers, dakplaten e.g. 1,60 kn/m Wind kolom zijde 1 druk 0,86 kn/m Wind kolom zijde zuiging 4,30 kn/m Wind ligger zijde 1 druk 1,7 kn/m Wind ligger zijde druk 1,7 kn/m Sneeuw zijde 1 vert. proj.,36 kn/m Sneeuw zijde vert. proj. 3,68 kn/m 14

16 Linkerkolom: elementnr. 1 Lengte 4,40 m EA kn EI knm α 1,57 rad cos 0,00 - sin 1,00 - q x -0,4 kn/m q z 0,86 kn/m Rechterligger: elementnr. 3 Lengte 9,69 m EA kn EI knm α -0,38 rad cos 0,93 - sin -0,37 - q x 1,86 kn/m q z 6,38 kn/m Linkerligger: elementnr. Lengte 9,69 m EA kn EI knm α 0,38 rad cos 0,93 - sin 0,37 - q x -1,41 kn/m q z 5,4 kn/m Rechterkolom: elementnr. 4 Lengte 4,40 m EA kn EI knm α -1,57 rad cos 0,00 - sin -1,00 - q x 0,4 kn/m q z -4,30 kn/m Element 1 B (kinematische matrix) 0,00 1,00 0 0,00-1,00 0 0,3 0, ,3 0,00 0-0,3 0,00 0 0,3 0,

17 D (constitutieve matrix) 5690, , , ,8 1595,55 B (getransformeerd) 0,00 0,3-0,3 1,00 0,00 0, ,00-0,3 0,3-1,00 0,00 0, K e 1 (elementstijfheidsmatrix) 471, ,37-471, , , , , , , ,8-471, ,37 471, , , , , ,8 5438, ,55 R (Identity matrix) 0,00 1, ,00 0, ,00 1, ,00 0, R -1 (Inverse Identity matrix) 0,00-1, ,00 0, ,00-1, ,00 0, Lokaal: f prim 1 Globaal: f prim 1 0,9-1,89-1,89-0,9 1,39 1,39 0,9-1,89-1,89-0,9-1,39-1,39 Element B (kinematische matrix) -0,93 0,37 0 0,93-0,37 0 0,04 0, ,04-0,10 0-0,04-0,10 0 0,04 0,

18 D (constitutieve matrix) 11661, ,1-360, ,61 741,1 B (getransformeerd) -0,93 0,04-0,04 0,37 0,10-0, ,93-0,04 0,04-0,37-0,10 0, K e (elementstijfheidsmatrix) , ,74-416, , ,74-416, , , , , , ,40-416, ,40 741,1 416, ,40 360, , ,74 416, , ,74 416, , , , , , ,40-416, ,40 360,61 416, ,40 741,1 R (Identity matrix) 0,93 0, ,37 0, ,93 0, ,37 0, R -1 (Inverse Identity matrix) 0,93-0, ,37 0, ,93-0, ,37 0, Lokaal: f prim Globaal: f prim 6,8-3,10-5,40-6,11 41,03 41,03 6,8-3,10-5,40-6,11-41,03-41,03 Element 3 B (kinematische matrix) -0,93-0,37 0 0,93 0,37 0-0,04 0,10-1 0,04-0,10 0 0,04-0,10 0-0,04 0,

19 D (constitutieve matrix) 11661, ,1-360, ,61 741,1 B (getransformeerd) -0,93-0,04 0,04-0,37 0,10-0, ,93 0,04-0,04 0,37-0,10 0, K e 3 (elementstijfheidsmatrix) , ,74 416, , ,74 416, , , , , , ,40 416, ,40 741,1-416, ,40 360, , ,74-416, , ,74-416, , , , , , ,40 416, ,40 360,61-416, ,40 741,1 R (Identity matrix) 0,93-0, ,37 0, ,93-0, ,37 0, R -1 (Inverse Identity matrix) 0,93 0, ,37 0, ,93 0, ,37 0, Lokaal: f prim 3 Globaal: f prim 3-9,03 3,10-30,91-3,05 49,94 49,94-9,03 3,10-30,91-3,05-49,94-49,94 Element 4 B (kinematische matrix) 0,00-1,00 0 0,00 1,00 0-0,3 0,00-1 0,3 0,00 0 0,3 0,00 0-0,3 0,

20 D (constitutieve matrix) 5690, , , ,8 1595,55 B (getransformeerd) 0,00-0,3 0,3-1,00 0,00 0, ,00 0,3-0,3 1,00 0,00 0, K e 4 (elementstijfheidsmatrix) - 471, ,37 471, , , , , , , ,8-471, ,37 471, , , , , ,8-5438, ,55 R (Identity matrix) 0,00-1, ,00 0, ,00-1, ,00 0, R -1 (Inverse Identity matrix) 0,00 1, ,00 0, ,00 1, ,00 0, Lokaal: f prim 4 Globaal: f prim 4-0,9-9,46 9,46-0,9-6,94-6,94-0,9-9,46 9,46-0,9 6,94 6,94 19

21 Samenstellen elementstijfheidsmatrix, globale krachtenvector, verwerken vrijheidsgraden in matrix en totale krachtenvector K e , ,37 0, , , , ,74 50, , ,74-416, , , , , , , , ,8 50,1-1040, ,77 416, ,40 360, , ,74 416, ,08 0,00 83, , ,74 416, , , ,40 0, ,19 0, , , , , ,40 360,61 83,3 0, ,43-416, ,40 360, , ,74-416, , ,74 50, , , , , , , , , , ,40 360,61 50,1 1040, , , ,37 0, , ,55 f prim f - f prim -1,89 0-0,9 0 1,39-1,39-4,99 4,99-7,04 7,04 39,64-39,64 0,00 0,00-58,17 58,17 8,91-8,91-6,36 6,36-3,98 3,98-56,88 56,88-9,46 0-0,9 0 6,94-6,94 Oplossing Globaal: u 0,0000 0,0000 0,0053-0,0063 0,000-0,0065 0,063 0,086 0,0011 0,0589 0,0003-0,000 0,0000 0,0000-0,004 0

22 Resultaten in globaal assenstelsel f 1 f f 3 f 4 0,16 3,946 30,138 3,946-54,73-5,443-0, ,914 0, ,0383-4, ,9871-3,946-30,138-3,946-4,866 5,443 0, ,914-65, ,0383 4, ,9871 0,0000 Resultaten in lokale assenstelsels f 1 f f 3 f 4 F x1 54,73 F x 41,7034 F x3 7,9101 F x4 63,914 F z1 0,16 F z - 39,7814 F z3-11,374 F z4-3,946 T y1 0,0000 T y 97,0383 T y3-4,397 T y4 146,9871 F x -5,443 F x3-8,0550 F x4-45,9706 F x5-65,76 F z -3,946 F z3-11,0119 F z4-50,4495 F z5 4,866 - T y -97,0383 T y3 4,397 T y4 146,9871 T y5 0,0000 u 1 u u 3 u 4 u x1 0,0000 u x -0,0059 u x3 0,0551 u x4 0,0003 u z1 0,0000 u z -0,001 u z3 0,0669 u z4-0,0589 φ y1 0,0053 φ y -0,0065 φ y3 0,0011 φ y4-0,000 u x -0,000 u x3-0,006 u x4 0,0548 u x5 0,0000 u z -0,0063 u z3 0,0864 u z4-0,016 u z5 0,0000 φ y -0,0065 φ y3 0,0011 φ y4-0,000 φ y5-0,004 1

23 Post-processing in de lokale assenstelsels, elementnr. 1 Lengte 4,40 m u x1 0,0000 m EA kn u z1 0,0000 m EI knm φ y1 0,0053 rad u x -0,000 m q x -0,4 kn/m u z -0,0063 m q z 0,86 kn/m φ y -0,0065 rad x (m) N (kn) V (kn) M (knm) w (m) 0,00-54,7-0,16 0,00 0,0000 0, -54,18-0,35-4,46-0,001 0,44-54,09-0,54-8,95-0,003 0,66-54,00-0,73-13,49-0,0034 0,88-53,90-0,9-18,08-0,0045 1,10-53,81-1,11 -,70-0,0056 1,3-53,7-1,30-7,36-0,0066 1,54-53,63-1,49-3,07-0,0075 1,76-53,53-1,68-36,8-0,0083 1,98-53,44-1,86-41,61-0,0090,0-53,35 -,05-46,44-0,0096,4-53,6 -,4-51,31-0,0101,64-53,16 -,43-56,3-0,0104,86-53,07 -,6-61,18-0,0106 3,08-5,98 -,81-66,18-0,0106 3,30-5,89-3,00-71, -0,0104 3,5-5,79-3,19-76,30-0,0100 3,74-5,70-3,38-81,4-0,0094 3,96-5,61-3,57-86,59-0,0086 4,18-5,5-3,76-91,79-0,0076 4,40-5,4-3,95-97,04-0,0063

24 Post-processing in de lokale assenstelsels, elementnr. Lengte 9,69 m u x -0,0059 m EA kn u z -0,001 m EI knm φ y -0,0065 rad u x3-0,006 m q x -1,41 kn/m u z3 0,0864 m q z 5,4 kn/m φ y3 0,0011 rad x (m) N (kn) V (kn) M (knm) w (m) 0,00-41,70 39,78-97,04-0,001 0,48-41,0 37,4-78,37 0,0016 0,97-40,34 34,70-60,94 0,0064 1,45-39,66 3,16-44,74 0,011 1,94-38,97 9,6-9,76 0,0183,4-38,9 7,08-16,0 0,049,91-37,61 4,54-3,51 0,0318 3,39-36,93,00 7,77 0,0387 3,88-36,4 19,46 17,8 0,0454 4,36-35,56 16,9 6,64 0,050 4,85-34,88 14,38 34, 0,058 5,33-34,0 11,85 40,58 0,0639 5,8-33,51 9,31 45,71 0,0691 6,30-3,83 6,77 49,60 0,0737 6,79-3,15 4,3 5,6 0,0776 7,7-31,47 1,69 53,70 0,0809 7,75-30,78-0,85 53,90 0,0834 8,4-30,10-3,39 5,87 0,085 8,7-9,4-5,93 50,61 0,0863 9,1-8,74-8,47 47,1 0,0867 9,69-8,06-11,01 4,40 0,0864 3

25 Post-processing in de lokale assenstelsels, elementnr. 3 Lengte 9,69 m u x3 0,0551 m EA kn u z3 0,0669 m EI knm φ y3 0,0011 rad u x4 0,0548 m q x 1,86 kn/m u z4-0,016 m q z 6,38 kn/m φ y4-0,000 rad x (m) N (kn) V (kn) M (knm) w (m) 0,00-7,91 11,37 4,40 0,0669 0,48-8,81 8,8 47,16 0,0661 0,97-9,7 5,19 50,43 0,0646 1,45-30,6,10 5,19 0,065 1,94-31,5-0,99 5,46 0,0597,4-3,43-4,08 51,3 0,056,91-33,33-7,17 48,51 0,050 3,39-34,3-10,6 44,8 0,047 3,88-35,13-13,36 38,56 0,0417 4,36-36,04-16,45 31,33 0,0358 4,85-36,94-19,54,61 0,094 5,33-37,84 -,63 1,40 0,07 5,8-38,75-5,7 0,68 0,0159 6,30-39,65-8,81-1,54 0,0091 6,79-40,55-31,90-7,5 0,004 7,7-41,46-34,99-43,46-0,0039 7,75-4,36-38,08-61,17-0,0096 8,4-43,6-41,18-80,38-0,0145 8,7-44,16-44,7-101,08-0,0184 9,1-45,07-47,36-13,9-0,008 9,69-45,97-50,45-146,99-0,016 4

26 Post-processing in de lokale assenstelsels, elementnr. 4 Lengte 4,40 m u x4 0,0003 m EA kn u z4-0,0589 m EI knm φ y4-0,000 rad u x5 0,0000 m qx 0,4 kn/m u z5 0,0000 m qz -4,30 kn/m φ y5-0,004 rad x (m) N (kn) V (kn) M (knm) w (m) 0,00-63,91 3,95-146,99-0,0589 0, -64,01 4,89-141,61-0,0587 0,44-64,10 5,84-136,03-0,0580 0,66-64,19 6,78-130,5-0,0570 0,88-64,8 7,73-14,5-0,0556 1,10-64,38 8,68-118,04-0,0539 1,3-64,47 9,6-111,63-0,0519 1,54-64,56 30,57-105,01-0,0495 1,76-64,65 31,51-98,18-0,0469 1,98-64,75 3,46-91,14-0,0440,0-64,84 33,41-83,90-0,0408,4-64,93 34,35-76,45-0,0374,64-65,0 35,30-68,78-0,0338,86-65,1 36,4-60,91-0,0300 3,08-65,1 37,19-5,84-0,060 3,30-65,30 38,14-44,55-0,019 3,5-65,39 39,08-36,06-0,0177 3,74-65,49 40,03-7,36-0,0134 3,96-65,58 40,97-18,44-0,0089 4,18-65,67 41,9-9,33-0,0045 4,40-65,76 4,87 0,00 0,0000 Knoopverplaatsingen X (mm) Z (mm) Knoop 1 0,00 0,00 Knoop -6,9 0,1 Knoop 3 6,33 8,57 Knoop 4 58,9 0,5 Knoop 5 0,00 0,00 B.5 Controle van de uitkomsten met raamwerkprogramma Matrixframe Om te controleren of de gevonden uitkomsten wel correct zijn is het noodzakelijk de uitkomsten van Excel te vergelijken met de resultaten die het raamwerkprogramma Matrixframe geeft. Gecontroleerd wordt op de optredende momenten, dwarskrachten, normaalkrachten en vervormingen. De uitvoer van Matrixframe in vergelijking tot Excel wordt weergegeven in de hierna volgende paragraaf. 5

27 B.5.1 Controle van uitkomsten De momenten, dwarskrachten en normaalkrachten volgens Matrixframe. Bel.Comb. Staaf Positie Nx Vz My U.C.1 S1 0,000-54,7-0,16-0,00 L -5,4-3,95-97,04 S 0,000-41,70 39,78-97,04 L -8,06-11,01 4,40 S3 0,000-7,91 11,37 4,40 L -45,97-50,45-146,99 S4 0,000-63,91 3,95-146,99 L -65,76 4,87 0,00 De momenten, dwarskrachten en normaalkrachten volgens Excel. X (m) N (kn) V (kn) M (knm) S1 0-54,7-0,16 0,00 L -5,4-3,95-97,04 S 0-41,70 39,78-97,04 L -8,06-11,01 4,40 S3 0-7,91 11,37 4,40 L -45,97-50,45-146,99 S4 0-63,91 3,95-146,99 L -65,76 4,87 0,00 De knoopverplaatsingen volgens Matrixframe. Knoop X Z K1-0,0000 0,0000 K -0,0063 0,000 K3 0,063 0,086 K4 0,0589 0,0003 K5 0,0000 0,0000 De knoopverplaatsingen volgens Excel. Knoop X (mm) Z (mm) Knoop 1 0,00 0,00 Knoop -6,9 0,1 Knoop 3 6,33 8,57 Knoop 4 58,9 0,5 Knoop 5 0,00 0,00 Uit de bovenstaande tabellen blijkt dat de uitvoer zoals deze met Excel bepaald wordt identiek is aan de uitvoer van Matrixframe. Geconcludeerd wordt dat de berekeningen goed uitgevoerd worden zodat de afzonderlijke belastingsgevallen, zoals deze in het afstudeeronderzoek gedefinieerd zijn, berekend kunnen worden. De uitvoer zoals deze in dit onderdeel beschreven is, is niet relevant voor de constructieberekening omdat alle belastingen gelijktijdig op de constructie zijn aangebracht, dit komt in de praktijk niet voor. 6

28 C. Profieltoetsingen w.g.p. In dit hoofdstuk wordt de toetsing van warmgewalste profielen kort toegelicht. De twee aspecten van toetsing die van belang zijn, zijn de knikcontrole en de kipcontrole. Deze twee toetsingen worden gedaan aan de hand van de NEN 6770 en de NEN Nadere toelichting waarom voor deze wijze van toetsing gekozen is wordt ook beschreven. C.1 Toetsing op knik Knikstabiliteit is de mate waarin een op druk belaste staaf weerstand biedt aan instabiliteit als gevolg van een doorgaande uitbuiging van de staaf in een van de beide hoofdrichtingen. De NEN 6770 en de NEN 6771 geven beide in art toetsingsregels voor knikstabiliteit. Deze regels gelden voor centrisch gedrukte, enkelvoudige staven. Voor de staven met doorsneden van klasse 1 tot en met 3 gelden de toetsingsregels uit NEN 6770, voor doorsneden van klasse 4 gelden de toetsingsregels volgens NEN In feite bestaat er geen verschil tussen de beide normen. Het onderscheid heeft alleen betrekking op de doorsnedecapaciteit van de staaf. Voor doorsneden van klasse 1 tot en met 3 bepaalt de vloeigrens de capaciteit terwijl de capaciteit van doorsneden van klasse 4 bepaalt wordt door lokale instabiliteit, dat wil zeggen plooi. Voor centrisch gedrukte, enkelvoudige, rechte, prismatische staven moet zijn voldaan aan de volgende voorwaarden. ω ω N c; s; d y; buc * N c; u; d N c; s; d z; buc * N c; u; d 1 1 In de berekening wordt uitgegaan van plastische doorsneden zodat een plastisch scharnier kan ontstaan (M M pl ), volgens art mag dan gerekend worden met doorsneden klasse 1. Er kan dus getoetst worden volgens art van de NEN Als gerekend wordt met IPE of HE profielen moeten de knikfactoren bepaald worden met instabiliteitskromme a voor de y-y richting en instabiliteitskromme b voor de z-z richting. Indien gerekend wordt met warmgewalste koker moet om elke as gerekend worden met instabiliteitskromme a. De bepaling van de knikfactoren is afhankelijk van de relatieve slankheid die bepaald kan worden met de volgende formule: λ y λ rel λ Met: l λ y i y e buc i TU Delft y I y A Version λ e π E f d y; d 7

29 De kniklengte (l buc ) is te bepalen met art b. Omdat de constructie als ongeschoord wordt geconstrueerd moet de kniklengte van de kolommen wel langer zijn dan de systeemlengte. Door de verende inklemming van de dakligger en de scharnierende oplegging aan de voet van de kolom moet de kniklengte bepaald worden met: l l ef sys π λ De waarde van λ kan bepaald worden met de nomogram in figuur 41 van de NEN Omdat aflezen uit een nomogram niet voldoet aan de wens van het volledig automatiseren van de spreadsheet, wordt gewerkt met de volgende iteratieve formule: C * C * λ *sin λ ( C + C ) * λ * cosλ + sin λ 0 λ π A B A B Omdat een scharnier nooit een zuiver scharnier is moet volgens art gerekend worden met C A 5. De waarde van C B kan worden berekend met: C B I l I μ l c ln c ln bm bm met μ 3 Deze formule geldt echter alleen voor portaalconstructie waarbij de kolommen en de ligger loodrecht op elkaar aansluiten. Omdat de dakhelling gering is (0 ) wordt verwacht dat het verschil met de exacte berekening slechts klein is. Voor C B volgt bij benadering: C B * *10 3* Voor de exacte bepaling moet C B bepaald worden met de formule: C B I E * l k φ c ln c ln De waarde k φ moet worden bepaald met: k M φ ϕ Hierin is M het moment in de knie ten gevolge van een horizontale puntlast. Deze puntlast is gelijk genomen aan de gemiddelde windbelasting op de linker- en rechterkolom. Het moment en de hoekverdraaiing ϕ ter plaatse van de knie kan eenvoudig met Excel bepaal worden. Er volgt: M 4.97 knm ϕ radversion TU Delft 8

30 Nu volgt voor de rotatie-veerstijfheid: k 4.97 φ kNm / rad Met de exacte formule kan nu de waarde voor C B bepaalde worden: C B *10.1*10 * * Hieruit blijkt dat het verschil tussen de exacte methode en de benadering volgens de NEN 6770 gering is. De exacte methode wordt gebruikt om de effectieve kniklengten van zowel kolommen als dakliggers te bepalen. Met deze gegevens kunnen de knikfactoren ω y en ω z bepaald worden volgens de volgende formule: ω buc 1+ α k ( λrel λ0 ) + λ rel 1 * [1 + α( λ 0 ) + rel ] 4 * rel rel λ λ λ * λ rel * λ rel De waarde voor λ 0 is voor alle instabiliteitskromme gelijk aan 0., de waarde α k is echter verschillende voor de diverse instabiliteitskromme, de waarden hiervan worden gegeven in tabel 5 van de NEN De totale toetsing kan in een klein stukje van een spreadsheet geschreven worden. Het resultaat wordt weergegeven in figuur C.1, de getallen hierin zijn indicatief. Knikcontrole voor centrisch belaste staven NEN 6770 art. 1.1 Staalkwaliteit 1 f y 35 N/mm Profiel 11 IPE λ e 93,9 l y;buc mm A 5380,0 mm l z;buc mm i y 14,7 mm kromme a N c;s 30, kn i z 33,5 mm kromme b N c;u 164 kn u.c. N c;s /(ω buc;y *N c;u ) 0,05 < 1 (1.1-1a) u.c. N c;s /(ω buc;z *N c;u ) 0,06 < 1 (1.1-1b) Fig. C. 3 Tabel met toetsing op knikinstabiliteit C. Toetsing op kip 1 De stabiliteit van op buiging belaste liggers, kipstabiliteit, is de mate waarin dergelijke liggers weerstand bieden aan instabiliteit als gevolg van een doorgaande buiging en torsie van een op buiging belaste ligger. De NEN 6770 en de NEN 6771 behandelen beide dit onderwerp in art. 1.. De toetsingsregel voor de kipstabiliteit heeft in principe dezelfde gedaante als die voor de knikstabiliteit. 9

31 4 Zie literatuurlijst [6] Version Lightweight cold rolled steel construction systems ω M y;max; s; d kip * M y; u; d 1 De grootheid ω kip moet hierin bepaald worden alsof het een knikfactor is behorende bij knikkromme a in geval van wals- en buisprofielen en behorende bij knikkromme c in geval van gelaste profielen. De kipfactor hangt even als de knikfactor af van de relatieve slankheid λ rel. De toetsingsregels van de NEN 6770 zijn aan de conservatieve kant 4 in vergelijking met de toetsingsregels van de NEN Hoewel het toepassinggebied minder groot is voor de toetsingsregels van de NEN 6771 wordt er voor gekozen de minder conservatieve maar meer bewerkelijke toetsingsprocedure volgens de NEN 6771 te volgen. Om de kipfactor te kunnen bepalen is het noodzakelijk eerst de relatieve slankheid te bepalen, dit kan met de formule: λ rel M y ; u ; d M ke Hierin is M y;u;d de rekenwaarde van het buigend moment om de y-as en M ke het elastisch kipmoment. Dit elastisch kipmoment moet worden bepaald met de volgende formule: C M ke kred * * Ed * I z * Gd * I l g t De waarde k red is een reductiefactor, deze is volgens art van de NEN 6771 gelijk aan 1 voor walsprofielen. De waarde C is een coëfficiënt, deze is afhankelijk van de liggerlengte, doorsnede afmeting, aard en aangrijpingspunt van de belasting. De waarde C kan worden bepaald met de algemene formule: π C Met: h S * * C * l 1 g π * S π * C 1+ * ( C + 1) + lkip l l kip kip E G d d * I * I z t * S TU Delft De waarde C 1 is afhankelijk van de aard van de belasting De waarde C is afhankelijk van de plaats van de belasting ten opzichte van de neutrale lijn. C 0 indien de belasting aangrijpt in het zwaartepunt van de doorsnede C positief indien de belasting aangrijpt in het zwaartepunt van de onderflens C negatief indien de belasting aangrijpt in het zwaartepunt van de bovenflens Voor tussen liggende aangrijpingspunten moet lineair worden geïnterpoleerd. 30

32 De waarde l kip is de ongesteunde kiplengte, deze is in dit geval altijd gelijk aan l sys. Om de waarde van C 1 en van C te kunnen bepalen is het noodzakelijk de volgende waarden te bepalen: β B * M M y;1; s; d y;; s; d 8* M 8* M + q * l st Met deze waarden kunnen de waarden van C 1 en C afgelezen worden uit de grafiek van tabel 10 uit de NEN 6771, deze grafieken worden weergegeven in figuur C.. tabel 10,4, 1,8 1,6 1,4 1, ,8-0,6-0,4-0, 0 0, 0,4 0,6 0,8 1 tabel 10 1,8 1,6 1,4 1, 1 0,8 0,6 0,4 0, C1 C ,8-0,6-0,4-0, 0 0, 0,4 0,6 0,8 1 B* B* Fig. C. 4 Grafieken om de waarden van C 1 en C te bepalen 31

33 Omdat voor deze grafieken geen directe formules bestaan is het niet mogelijk de waarden van C 1 en C eenvoudig numeriek te bepalen. Omdat er gestreefd wordt naar een gebruiksvriendelijke spreadsheet, worden de waarden vanuit een databases automatisch bepaald 5. De totale toetsing kan, evenals de toetsing op knik, in een klein stukje van een spreadsheet geschreven worden. Het resultaat wordt weergegeven in figuur C.3, de getallen hierin zijn indicatief. Kipcontrole voor op buiging belaste staven NEN 6771 art. 1. Staalkwaliteit 1 f y 35 N/mm Profiel 11 IPE λ e 93,9 Lengte mm h profiel 300,0 mm Afst. Kipstn mm b profiel 150,0 mm Afst. NL. 0,0 mm t fl 10,7 mm Stpt. Moment 1 0,0 knm t w 7,1 mm Veldmoment -44,0 knm I y *10 4 mm 4 Stpt. Moment -88,0 knm I z 604 *10 4 mm 4 Σ Moment (q*l ) 0 knm I t 0 *10 4 mm 4 W y;pl 64 *10 3 mm 3 β 0,00 M y;u 146,6 knm B* 1,00 M ke 54,4 knm k red 1,00 λ rel 0,76 C 1 1,80 ω kip 0,8 kromme a C 0,00 M kip 10,0 knm S profiel 135, v C 7,80 v u.c. M y;max;s /(ω kip;y *M y;u ) 0,733 < 1 (1.-3) Fig. C. 5 Tabel met toetsing op kipstabiliteit C.3 Conclusie De bewerkelijke toetsing van de profielen op knik en kip is op deze wijze te automatiseren zodat voor elke willekeurige afmeting van een hal, en elke willekeurige profieltoepassing (gegevens van de profielen worden even eens uit een databases uit gelezen) getoetst kunnen worden. De interactie tussen knik en kip kan eenvoudig gedaan worden met de formule van de NEN 6770: 1.1* ω N c; s; d * N y; buc c; u; d M y;max; + 1.1* ω * M kip s; d y; u; d 1 Hiermee is de toetsing van de warmgewalst profielen volledig geautomatiseerd in de spreadsheet. 5 Deze database met 1000 waarden is beschikbaar gesteld door Bouwen met Staal, tussenliggende waarden worden met lineaire interpolatie bepaald 3

34 D. Invoergegevens van de spreadsheet In dit hoofdstuk wordt een omschrijving en weergave van de benodigde invoer voor de berekening van een hal gegeven. De invoer is in twee hoofdcategorieën te splitsen namelijk de invoer van de geometrie en de warmgewalste profielen, en de invoer c.q. dimensionering van de koudgevormde profielen. Om de totale invoer zo gebruiksvriendelijk mogelijk te maken, en om foutieve invoer te voorkomen is er voor gekozen zoveel mogelijk scroll-down menu s toe te passen. De benodigde geometrie afmetingen kunnen numeriek ingevoerd worden in de velden met blauwe nummers. De toetsingsresultaten, en de algehele controle of aan alle voorwaarden wordt voldaan wordt aan het einde van de invoer gegeven. D.1 Invoer van de geometrie en de w.g.p. De invoer van de hal wordt onder gesplitst in enkele hoofdpunten: Bij algemene gegevens kan de veiligheidsklasse 1, of 3 worden geselecteerd, afhankelijk van de gestelde eisen. Indien de gebruiker de normtekst hierover wenst te lezen kan geklikt worden op de hyperlink info. Hetzelfde geldt voor de referentieperiode, deze kan 1, 15 of 50 jaar zijn, ook hier wordt de van belang zijnde normtekst als extra informatie gegeven. Bij de terreingegevens kan gekozen worden voor een onbebouwd terrein of een bebouwd terrein. Het windgebied kan 1, of 3 zijn, afhankelijk van de locatie van het gebouw. Nadere informatie hierover wordt gegeven achter de hyperlink info. Bij de gebouwgegevens kunnen diverse geometrie gegevens ingevoerd worden. De meeste invoervelden spreken hierbij voor zich. De geometriematen worden ingevoerd als hartmaten, de buitenmaten van de hal zullen dus groter worden als in het volgende stadium een profiel gekozen wordt die groter is dan de eerste invoer, daarom is het verstandig de invoer nog eens terug te lezen. De keuze tussen wel of geen dakranden heeft te maken met de sneeuwbelasting. Indien er geen grote randen aanwezig zijn, mag de sneeuwbelasting worden gereduceerd, informatie hierover wordt gegeven in de normtekst achter de hyperlink info. De afbouwgegevens zijn direct gekoppeld aan een databases met productgegevens. De keuze van de afbouwconstructie is van belang bij de berekening in verband met het eigengewicht. Door de hyperlink te activeren wordt informatie hierover gegeven, hier vandaan is het ook mogelijk direct door gelinkt te worden naar de databases zodat de eigengewichten kunnen worden aangepast naar wens. De beplatingsruwheid is van belang bij de berekening van de windwrijving lang het dak respectievelijk de gevel. De indeling van de beplatingsruwheden is volgens de voorschriften in de NEN 670. Bij constructiegegevens moeten de eerste schattingen gemaakt worden voor de constructie. Het geschatte gewicht van gordingen en verbanden zijn echte ervaringsgetallen, enige informatie hierover wordt gegeven bij de invoer. Het aantal gordingen en wandregels heeft grote invloed bij de dimensionering van de gordingen respectievelijk de wandregels. Door een dakgording extra toe te passen zullen de dimensies van de gordingen afnemen maar kunnen de uiteindelijke kilo s k.g.p. toenemen, hier is het dus mogelijk wat te optimaliseren. In acht moet genomen worden dat de afbouwconstructie de gekozen overspanning kan maken. 33

35 Algemene gegevens Veiligheidsklasse info Referentieperiode info Terreingegevens Terrein Onbebouwd Onbebouinfo Windgebied info Gebouwgegevens Gebouwhoogte (hartmaat) 7,68 m info Gebouwhoogte (uitw.maat) 8,09 Goothoogte (hartmaat) 4,40 m Goothoogte (uitw.maat) 4,57 m Gebouwbreedte (hartmaat) 18,00 m Gebouwbreedte (uitw.maat) 18,33 m Gebouwlengte (hartmaat) 40,00 m Gebouwlengte (uitw.maat) 40,60 m Aantal spanten 9 -- Spantafstand 5,00 m Gebouwtype Open 1 Open info Grote dakranden Geen Geen info Grote van overstek 0, m Zadeldakhelling 0,0 º info Afst. hartlijn spant tot b.k. nok 0,41 m Aantal kolommen in kopgevel 3 -- Afbouwgegevens Dakbeplating Wandbeplating Sandwichpaneel Sandwichpaneel Sandwic info Binnend info Beplatingsruwheid alg. Uitsteeksels 40mm Uitsteek info Beplatingsdikte dak 50 mm Beplatingsdikte wand 50 mm Constructiegegevens Gewicht gordingen, verbanden 0,05 kn/m {Advies voor deze schatting 0,05 kn/m²} Gewicht regels, verbanden 0,06 kn/m {Advies voor deze schatting 0,06 kn/m²} Aantal gordingen per dakzijde 5 -- Afstand tussen dakgordingen,39 m Aantal wandregels per gevel 4 -- Afstand tussen wandregels 1,47 m 34

36 Het eerste toetsingsoverzicht is de toetsing van de hoofddraagconstructie. Er kan gekozen worden uit diverse staalkwaliteiten en profielen. Met de button Berekenen worden de kniklengtes via de iteratieve methode, zoals deze beschreven staat in paragraaf C.1, gemaakt. Indien de kniklengtes niet juist zijn wordt aangegeven dat er een berekening moet plaats vinden, in alle andere gevallen is het niet nodig de button Berekenen te gebruiken. Tenslotte worden voor alle belastingsgevallen de unity checks gedaan en wordt aangegeven of aan de vervormingseisen wordt voldaan. Indien nergens een rode balk verschijnt, wordt voldaan aan alle eisen. Ook hier is het mogelijk te optimaliseren, een profiel lichter of zwaarder of misschien een ander profieltype kan een behoorlijke reductie van het aantal kilo s staal opleveren. Dimensionering en toetsing van de hoofddraagconstructie Staalkwaliteit S35 1 Profiel IPE IPE Start berekening Berekenen Unity-Checks Vervormingen (mm) v u.c. y-y 0,039 < 1 u.c. z-z 0,037 < 1 u.c. y-y 0,571 < 1 u.c. interactie 0,670 < 1 u.c. y-y 0,03 < 1 u.c. z-z 0,03 < 1 u.c. y-y 0,493 < 1 u.c. interactie 0,578 < 1 u.c. y-y 0,049 < 1 u.c. z-z 0,104 < 1 u.c. y-y 0,593 < 1 u.c. interactie 0,767 < 1 u.c. y-y 0,074 < 1 u.c. z-z 0,050 < 1 u.c. y-y 0,533 < 1 u.c. interactie 0,668 < 1 u.c. y-y 0,448 < 1 u nok;vert 33,6 < 7,0 u knie;hor 10,6 < 9,3 u nok;vert 5,8 < 7,0 u knie;hor 7,9 < 9,3 u nok;vert 13,6 < 7,0 u knie;hor 17,7 < 9,3 35

37 Een zelfde systeem is er voor de dimensionering en toetsing van het kopgevelspant. Het kopgevelspant is bij de referentiehal als een geschoord portaal uitgevoerd omdat dit minder staal vereist. De kolommen en dakliggers kunnen met eenvoudige mechanicaformules berekend worden. Tenslotte worden de unity checks en vervormingseisen gegeven. Ook hier geldt weer, de optimale constructie wordt gevonden door met het lichtste profiel aan alle eisen te voldoen. Dimensionering en toetsing van het kopgevelspant Staalkwaliteit S35 1 Profiel IPE IPE Unity-Checks u.c. y-y 0,475 < 1 u.c. y-y 0,05 < 1 u.c. z-z 0,056 < 1 u.c. y-y 0,53 < 1 u.c. y-y 0,05 < 1 u.c. z-z 0,056 < 1 u.c. y-y 0,637 < 1 u.c. interactie 0,763 < 1 Vervormingen (mm) u veld 16,3 < 19, u veld 9, < 19, u veld 16,5 < 19, Het kopgevel spant wordt opgedeeld door drie gevelstijlen, deze stijlen moeten de windbelasting op de kopgevel afdragen naar de achterliggende constructie. Omdat er drie stijlen worden ingebracht is de onderverdeling tweeledig namelijk een middenkolom en twee tussenkolommen. De dimensionering en toetsing gaat op gelijke wijze als de andere constructie onderdelen. Dimensionering en toetsing van de tussenkolom in het kopgevelspant Staalkwaliteit S35 1 Profiel IPE IPE Unity-Checks u.c. y-y 0,076 < 1 u.c. z-z 0,074 < 1 u.c. y-y 0,808 < 1 u.c. interactie 0,97 < 1 Vervormingen (mm) u veld 31, < 40,3 36

38 Dimensionering en toetsing van de middenkolom in het kopgevelspant Staalkwaliteit S35 1 Profiel IPE 00 7 IPE Unity-Checks u.c. y-y 0,09 < 1 u.c. z-z 0,05 < 1 u.c. y-y 0,698 < 1 u.c. interactie 0,799 < 1 Vervormingen (mm) u veld 36,6 < 51, Tussen de hoofdspanten onderling en tussen de kopgevelspant en het eerste volgende hoofdspant worden drukstaven toegepast om de horizontale drukkrachten van de kopgevels af te dragen naar de windverbanden in de langsgevels. De drukstaven worden alleen belast op druk, en behoeven daarmee alleen getoetst te worden op knik. Ook hier kunnen diverse profielen en staalkwaliteiten gekozen worden. De toetsing wordt op dezelfde wijze gepresenteerd als bij de voorgaande onderdelen. Dimensionering en toetsing van de drukstaven Staalkwaliteit S35 1 Profiel RHS 70x70x3110 RHS Unity-Checks u.c. y-y 0,817 < 1 u.c. z-z 0,817 < 1 Als laatste controle worden de eindresultaten van de unity checks van de koudgevormde profielen gegeven. Deze checks geven de eindresultaten van de maximale die optreden. Dimensionering en toetsing van gordingen en wandregels Z-gording dakvlak Wandregel langsgevel Wandregel kopgevel Aan alle spanningscontroles wordt voldaan (σ 38,3 < 355 N/mm²) Aan alle unity checks wordt voldaan (u.c. 0,98) Er wordt aan de vervormingseis voldaan (δ 7,07 < 0 mm) Voor herdimensionering klik hier v Aan alle spanningscontroles wordt voldaan (σ 44,1 < 355 N/mm²) Aan alle unity checks wordt voldaan (u.c. 0,993) Er wordt aan de vervormingseis voldaan (δ 15,45 < 0 mm) Voor herdimensionering klik hier v Aan alle spanningscontroles wordt voldaan (σ 46,6 < 355 N/mm²) Aan alle unity checks wordt voldaan (u.c. 0,989) Er wordt aan de vervormingseis voldaan (δ 9,44 < 18 mm) Voor herdimensionering klik hier 37

Lightweight cold rolled steel construction systems Design and application for singular factory buildings

Lightweight cold rolled steel construction systems Design and application for singular factory buildings Berekening van referentiehal Lightweight cold rolled steel construction systems Cor van Zandwijk Februari 2006 Delft, University of Technology Faculty of Civil Engineering Lightweight cold rolled steel

Nadere informatie

Lightweight cold rolled steel construction systems Design and application for singular factory buildings

Lightweight cold rolled steel construction systems Design and application for singular factory buildings Berekening van referentiehal Deel II Lightweight cold rolled steel construction systems Mei 2006 Delft, University of Technology Faculty of Civil Engineering Lightweight cold rolled steel construction

Nadere informatie

Stalen hallen, Ontwerpgrafieken voor portalen met scharnierende en flexibele verbindingen. Voorbeeldberekening. ICCS bv ir. R. Korn en ir. F.

Stalen hallen, Ontwerpgrafieken voor portalen met scharnierende en flexibele verbindingen. Voorbeeldberekening. ICCS bv ir. R. Korn en ir. F. Stalen hallen, Ontwerpgrafieken voor portalen met scharnierende en flexibele verbindingen Voorbeeldberekening ICCS bv ir. R. Korn en ir. F.Maatje maart 2007 Inleiding In opdracht van Bouwen met Staal ontwikkelde

Nadere informatie

HE200A. prismatische op buiging en druk belaste staven volgens art S235

HE200A. prismatische op buiging en druk belaste staven volgens art S235 Gebruikslicentie COMMERCIELE-versie tot 1-5-2013 printdatum : 06-12-2011 prismatische op buiging en druk belaste staven volgens art. 6.3.3 HE200A werk = werk werknummer = werknummer materiaal S235 onderdeel

Nadere informatie

Goudstikker - de Vries B.V. Blad: 1 Dimensies: kn;m;rad (tenzij anders aangegeven) Datum...: 07/07/2014 Bestand..: L:\Projecten\gdv\2014\4087\Ber\2-hal\tussenspant 6 meter.rww Belastingbreedte.: 6.000

Nadere informatie

Draagconstructies in staal, hout en beton Module ribbc024z Opleiding: Bouwkunde / Civiele techniek 5 e semester deeltijd. Week 05

Draagconstructies in staal, hout en beton Module ribbc024z Opleiding: Bouwkunde / Civiele techniek 5 e semester deeltijd. Week 05 Week 05 Theorie: Staal - liggers 1 van 24 M.J.Roos 7-1-2007 Voorbeeld 2 knik 2 van 24 M.J.Roos 7-1-2007 3 van 24 M.J.Roos 7-1-2007 4 van 24 M.J.Roos 7-1-2007 5 van 24 M.J.Roos 7-1-2007 6 van 24 M.J.Roos

Nadere informatie

belastingen en combinaties

belastingen en combinaties Gebruikslicentie COMMERCIELE-versie tot 1-5-2013 printdatum : 06-12-2011 stalen ligger op 3 steunpunten met 2 q-lasten 1xprofiel 1: HE140A werk werk werknummer werknummer materiaal S235 klasse 3 flensdikte

Nadere informatie

Module 5 Uitwerkingen van de opdrachten

Module 5 Uitwerkingen van de opdrachten Module 5 Uitwerkingen van de opdrachten Opdracht 1 Deze oefening heeft als doel vertrouwd te raken met het integreren van de diverse betrekkingen die er bestaan tussen de belasting en uiteindelijk de verplaatsing:

Nadere informatie

M-V-N-lijnen Nadruk op de differentiaalvergelijking. Hans Welleman 1

M-V-N-lijnen Nadruk op de differentiaalvergelijking. Hans Welleman 1 M-V-N-lijnen Nadruk op de differentiaalvergelijking Hans Welleman 1 Uitwendige krachten 50 kn 120 kn 98,49 kn 40 kn 40 kn 30 kn 90 kn 4,0 m 2,0 m 2,0 m werklijnen van de reactiekrachten Hans Welleman 2

Nadere informatie

Ontwerp van koudgevormde stalen gordingen volgens EN 1993-1-3. met Scia Engineer 2010

Ontwerp van koudgevormde stalen gordingen volgens EN 1993-1-3. met Scia Engineer 2010 Apollo Bridge Apollo Bridge Architect: Architect: Ing. Miroslav Ing. Miroslav Maťaščík Maťaščík - Alfa 04 -a.s., Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Nadere informatie

SBV draagarmstellingen_nl Haarlem. Versie : 1.1.5 ; NDP : NL Gebruikslicentie COMMERCIELE-versie tot 1-11-2015 printdatum : 23-01-2013

SBV draagarmstellingen_nl Haarlem. Versie : 1.1.5 ; NDP : NL Gebruikslicentie COMMERCIELE-versie tot 1-11-2015 printdatum : 23-01-2013 berekening van SBV draagarmstellingen volgens Eurocode h.o.h. staanders a4= 1000 project projectnummer omschrijving project projectnummer omschrijving algemeen veiligheidsklasse = CC1 - ontwerplevensduur

Nadere informatie

Module 6 Uitwerkingen van de opdrachten

Module 6 Uitwerkingen van de opdrachten 1 Module 6 Uitwerkingen van de opdrachten Opdracht 1 De in figuur 6.1 gegeven constructie heeft vier punten waar deze is ondersteund. A B C D Figuur 6.1 De onbekende oplegreacties zijn: Moment in punt

Nadere informatie

Draagconstructies in staal, hout en beton Module ribbc024z Opleiding: Bouwkunde / Civiele techniek 5 e semester deeltijd

Draagconstructies in staal, hout en beton Module ribbc024z Opleiding: Bouwkunde / Civiele techniek 5 e semester deeltijd Week 04 Theorie: Staal - liggers Toetsing doorbuiging, dwarskracht en combinatie 1 van 22 M.J.Roos 17-12-2006 2 van 22 M.J.Roos 17-12-2006 3 van 22 M.J.Roos 17-12-2006 4 van 22 M.J.Roos 17-12-2006 5 van

Nadere informatie

Module 7 Uitwerkingen van de opdrachten

Module 7 Uitwerkingen van de opdrachten 1 Module 7 Uitwerkingen van de opdrachten Opdracht 1 Het verschil in aanpak betreft het evenwicht in de verplaatste vervormde toestand. Tot nu toe werd bij een evenwichtsbeschouwing van een constructie

Nadere informatie

STERKTEBEREKENING. DATUM : wijz. 0 : wijz. A : wijz. B : wijz. C : wijz. D : : Ir. N. van der Zanden - Schouwenaars

STERKTEBEREKENING. DATUM : wijz. 0 : wijz. A : wijz. B : wijz. C : wijz. D : : Ir. N. van der Zanden - Schouwenaars STERKTEBEREKENING WERKNUMMER : 08.086 ONDERDEEL OMSCHRIJVING : SB-01 : PIAZZA TERRASOVERKAPPING AVZ ALUMINIUM TOEPASSINGEN ARCHITECT : OPDRACHTGEVER : AVZ ALUMINIUM TOEPASSINGEN TE BEST DATUM : wijz. 0

Nadere informatie

Stappenplan knik. Grafiek 1

Stappenplan knik. Grafiek 1 Stappenplan knik Bepaal de waarden voor A, L buc, i y, i z, λ e (afhankelijk van materiaalsoort) en f y,d (=rekgrens) Kniklengte Instabiliteit tabel 1.1 Slankheid λ y = L buc /i y Rel slankheid λ rel =

Nadere informatie

Hoofdberekeningen van staalconstructies

Hoofdberekeningen van staalconstructies Hoofdberekeningen van staalconstructies Bedrijfsbrede automatisering voor staalconstructiebedrijven Matrix CAE Nijmegen Delft Vilnius MatrixFrame MatrixFrame is de verzamelnaam voor een aantal programma's

Nadere informatie

belastingen en combinaties

belastingen en combinaties stalen ligger op 2 steunpunten met een overstek 1xprofiel 1: HE160A werk werk werknummer werknummer materiaal S235 klasse 3 flensdikte

Nadere informatie

Controle: Bekijk nu of aan het evenwicht wordt voldaan voor het deel BC, daarvoor zijn immers alle scharnierkracten bekend

Controle: Bekijk nu of aan het evenwicht wordt voldaan voor het deel BC, daarvoor zijn immers alle scharnierkracten bekend Hints/procedures voor het examen 4Q130 dd 25-11-99 ( Aan het einde van dit document staan antwoorden) Opgave 1 Beschouwing vooraf: De constructie bestaat uit twee delen; elk deel afzonderlijk vrijgemaakt

Nadere informatie

belastingen en combinaties

belastingen en combinaties stalen ligger op 2 steunpunten met twee F-lasten 1xprofiel 1: HE140A en een q-last over de gehele lengte werk werk werknummer werknummer materiaal S235 klasse 3 flensdikte

Nadere informatie

Module 8 Uitwerkingen van de opdrachten

Module 8 Uitwerkingen van de opdrachten Module 8 Uitwerkingen van de opdrachten Opdracht 1 Analyse De constructie bestaat uit een drie keer geknikte staaf die bij A is ingeklemd en bij B in verticale richting is gesteund. De staafdelen waarvan

Nadere informatie

CONSTRUCTIEBEREKENING OPBOUW (ACHTER- EN LINKERZIJDE) OP BESTAANDE AANBOUW WONING

CONSTRUCTIEBEREKENING OPBOUW (ACHTER- EN LINKERZIJDE) OP BESTAANDE AANBOUW WONING CONSTRUCTIEBEREKENING OPBOUW (ACHTER- EN LINKERZIJDE) OP BESTAANDE AANBOUW WONING Werk: Kloosterkampweg 7 Renkum Opdrachtgever: Fam. Temmink-Berkhout Ontwerper: H.E. Hoekzema Constructeur: H.H.M. Diesvelt

Nadere informatie

BK1043 - Rekenvoorbeeld

BK1043 - Rekenvoorbeeld BK1043 - Rekenvoorbeeld Inhoud 1. Algemeen berekeningschema... 2 2. Belasting omrekenen van kn/m 2 naar kn/m 1 ligger... 3 2.1. Gegeven... 3 2.2. Gevraagd... 3 2.3. Uitwerking... 3 3. Ligger op 2 steunpunten

Nadere informatie

Constructief Ontwerpen met Materialen B 7P118 KOLOM- BEREKENING

Constructief Ontwerpen met Materialen B 7P118 KOLOM- BEREKENING KOLOM- BEREKENING We onderscheiden 3 soorten constructies: 1. Geschoorde constructies (pendelstaven) Com B 2. Schorende constructies (schijven, kernen) Beton 2 3. Ongeschoorde constructies (raamwerken

Nadere informatie

CIBIS bouwadviseurs Bijlage A: 1 TS/Raamwerken Rel: 6.05 16 mrt 2016 Project..: 150118 Onderdeel: kolom tbv trapgat Dimensies: kn;m;rad (tenzij anders aangegeven) Datum...: 16/03/2016 Bestand..: f:\projecten\2015\150118

Nadere informatie

EUREKA Engineering & Projects bv. Kroftman Structures B.V. Postbus 158 6900 AD Zevenaar Nederland Telefoon +31 854 010 064 E-mail info@kroftman.

EUREKA Engineering & Projects bv. Kroftman Structures B.V. Postbus 158 6900 AD Zevenaar Nederland Telefoon +31 854 010 064 E-mail info@kroftman. Projectnummer: 1185-021 Uitdraaidatum: 15-9-2010 Rapport Sterkteberekening Stalen loodsen H700 Opdrachtgever: Kroftman Structures B.V. Postbus 158 6900 AD Zevenaar Nederland Telefoon +31 854 010 064 E-mail

Nadere informatie

Statische berekening Betreft: stalen portaal i.m.v. doorbraak muur woning Oppenheimstraat 35 Leiden

Statische berekening Betreft: stalen portaal i.m.v. doorbraak muur woning Oppenheimstraat 35 Leiden Statische berekening Betreft: stalen portaal i.m.v. doorbraak muur woning Oppenheimstraat 35 Leiden Behoort bij beschikking van Burgemeester en Wethouders van Leiden Wabo 142539 / 1579545 Solid (mob. 0636166266)

Nadere informatie

uitkragende stalen ligger met een variabele EI 1xprofiel 1: HE140A een trapeziumbelasting en een puntlast

uitkragende stalen ligger met een variabele EI 1xprofiel 1: HE140A een trapeziumbelasting en een puntlast uitkragende stalen ligger met een variabele EI 1xprofiel 1: HE140A een trapeziumbelasting en een puntlast werk werk werknummer werknummer materiaal S235 klasse 3 flensdikte

Nadere informatie

4 Gordingen. Algemene informatie. Materialen. Gordingsystemen

4 Gordingen. Algemene informatie. Materialen. Gordingsystemen 4 In dit hoofdstuk vindt u de informatie die u nodig heeft voor het kiezen van de meest geschikte gording. Met koudgewalste gordingen kunt u, bijvoorbeeld in combinatie met kouddakplaten of sandwichpanelen,

Nadere informatie

Project Hangar 12 Schiphol

Project Hangar 12 Schiphol Knüwer Bouwadvies Postbus 113, 2000 AC Haarlem Wateringweg 107 tel: 023-5404977 fax: 023-5404978 K.v.K. Amsterdam 34122934 Project 160070 Hangar 12 Schiphol Opdrachtgever Rodeca Systems BV Koperweg 11N

Nadere informatie

Stabiliteit met FERMACELL

Stabiliteit met FERMACELL Stabiliteit met FERMACELL STABILITEITSWANDEN Versie 2 VDH Konstruktieburo, Postbus 1, 7873 ZG Odoorn, Tel. (0591) 513 109 STABILITEITSWANDEN Versie 2 Overzicht: BEREKENINGSVOORBEELD WINDBELASTINGEN 4 Inleiding:

Nadere informatie

Nieuwbouw paardenstal dhr. M. Wouters Wissengrachtweg 25 te Hulsberg Gewichts-, sterkte- en stabiliteitsberekening. 13 mei 2014

Nieuwbouw paardenstal dhr. M. Wouters Wissengrachtweg 25 te Hulsberg Gewichts-, sterkte- en stabiliteitsberekening. 13 mei 2014 Hulsberg Pagina 2 / 12 Inhoudsopgave 1 Uitgangspunten 3 1.1 Normen & Voorschriften 3 1.2 Materialen 4 1.3 Ontwerpcriteria 4 1.4 Betondekking 4 1.5 Belastingen 5 1.6 Stabiliteit 6 1.7 Vervormingseisen 6

Nadere informatie

belastingen en combinaties

belastingen en combinaties stalen ligger 2 steunpunten, twee q-lasten en één F-last 1xprofiel 1: HE160A werk werk werknummer werknummer materiaal S235 klasse 3 flensdikte

Nadere informatie

Referentie Knoop. Coördinaat Systeem. 1.2 LIJNEN Lijn Nr. Lijntype Knoopno. E-modulus E [N/mm 2 ] Rotatie [ ] rond Y 1 1, ,4 0.

Referentie Knoop. Coördinaat Systeem. 1.2 LIJNEN Lijn Nr. Lijntype Knoopno. E-modulus E [N/mm 2 ] Rotatie [ ] rond Y 1 1, ,4 0. Pagina: 1/13 NSTRUCTIE INHOUD INHOUD Constructie 1 Graf. Staven - Snedekrachten, Beeld, +Y, 4 1.1 Knopen 1 BGT (V-z) 4 1.2 Lijnen 1 Graf. Staven - Snedekrachten, Beeld, +Y, 5 1.3 Materialen 1 BGT (M-y)

Nadere informatie

Veemarkthal - Voordorphal Haalbaarheidsadvies

Veemarkthal - Voordorphal Haalbaarheidsadvies BIJLAGE 3 Veemarkthal - Voordorphal Haalbaarheidsadvies IBU Stadsingenieurs Postadres: Postbus 8375, 3503 RJ Utrecht Bezoekadres: Ravellaan 96, Utrecht Telefoon: 030-286 43 23 Fax: 030-286 43 48 Projectnummer:

Nadere informatie

Studentenhandleiding MatrixFrame versie 4.3

Studentenhandleiding MatrixFrame versie 4.3 Studentenhandleiding MatrixFrame versie 4. november 00 ir. J.M. Gerrits TU Delft, Faculteit Bouwkunde, Leerstoelen Ontwerpen van Draagconstructies. Begrippen Onderstatusbalk: LEES AANDACHTIG DE BEGRIPPEN

Nadere informatie

Renovatie en aanpassing van woongebouwen, de analyse van de draagconstructie

Renovatie en aanpassing van woongebouwen, de analyse van de draagconstructie Renovatie en aanpassing van woongebouwen, de analyse van de draagconstructie 15-02-2015 ir. M.W. Kamerling, m.m.v. ir.j.c. Daane Renovatie van een winkelpand in Woerden 1 Inhoud Inleiding 3 1 Fasering

Nadere informatie

Adviesbureau ing. A. de Lange Blad: 101 TS/Raamwerken Rel: 6.00a 2 jun 2015 Project..: Raveling kelderdek gebouw 540 KLM Schiphol Onderdeel: Raveelconstructie Dimensies: kn;m;rad (tenzij anders aangegeven)

Nadere informatie

Statische berekening kolom Project: Entresolvloer Multi Profiel

Statische berekening kolom Project: Entresolvloer Multi Profiel Korenmaat 7 9405 TL Assen T 0592 37 11 77 F 0592 37 11 72 Statische berekening kolom Project: Entresolvloer Multi Profiel Inhoudsopgave Kontrole van een geschoorde kolom volgens NEN 6771 2 Algemene gegevens

Nadere informatie

STATISCHE BEREKENING

STATISCHE BEREKENING STATISCHE BEREKENING Berekening spanten, gordingen en fundatie Uitgevoerd door : Bouwadviesburo Pi Goorsestraat 245 7482 CH Haaksbergen 06 20 54 54 05 Project : nieuwbouw trainingshal paarden Opdrachtgever

Nadere informatie

STATISCHE BEREKENING

STATISCHE BEREKENING STATISCHE BEREKENING Werknummer: 13115 Omschrijving: Plan voor het uitbreiden van bedrijfsruimte aan de Zeelandsedijk 28 / 28a 5408 SM te Volkel. Opdrachtgever: Houthandel van Engeland-de Groot Zeelandsedijk

Nadere informatie

BIJLAGE CONSTRUCTIEF ONTWERP

BIJLAGE CONSTRUCTIEF ONTWERP HOF TE OXE BIJLAGE CONSTRUCTIEF ONTWERP VEERLE VAN WESTEN Hof te Oxe BIjlage afstudeerverslag Veerle van Westen master: Architecture, Building and Planning tracks: Architectuur en Constructief Ontwerpen

Nadere informatie

Brons Constructeurs & Ingenieurs Blad: 100 Brons Constructeurs & Ingenieurs Blad: 101 Project...: 14.15.32 Onderdeel.: Dimensies.: [kn] [knm] [mm] [graden] [N/mm2] [knm/rad] Datum...: 16-02-2015 Bestand...:

Nadere informatie

Constructie Adviesbureau Booms HOGE WOERD 162 LEIDEN DAKBALKLAAG CONSTRUCTIEBEREKENING

Constructie Adviesbureau Booms HOGE WOERD 162 LEIDEN DAKBALKLAAG CONSTRUCTIEBEREKENING Constructie Adviesbureau Booms Maerten Trompstraat 2G 2628 RD Delft 06-24887629 HOGE WOERD 162 LEIDEN DAKBALKLAAG CONSTRUCTIEBEREKENING 26-sep-12 Pieter Booms 06-24887629 pieterbooms@xs4all.nl Voor de

Nadere informatie

Bug fixes: MatrixFrame versie 5.0 SP6 - Release notes >Download SP6. Rapporten. Betoncontrole. Staalcontrole FEM. 3D Raamwerk.

Bug fixes: MatrixFrame versie 5.0 SP6 - Release notes >Download SP6. Rapporten. Betoncontrole. Staalcontrole FEM. 3D Raamwerk. MatrixFrame versie 5.0 SP6 - Release notes >Download SP6 Verwerkt in versie 5.0 SP6 (september 2012): Bug fixes: Rapporten De sortering van de Gewichtsberekening was niet correct. In de gewichtsberekening

Nadere informatie

STIJFHEIDSMATRIX VAN ASYMMETRISCHE

STIJFHEIDSMATRIX VAN ASYMMETRISCHE STIJFHEIDSMATRIX VAN ASYMMETRISCHE PROFIELEN Eindrapport Bachelor Eindwerk Naam J.R.van Noort Studienummer 1274082 Begeleiders dr. ir. P.C.J. Hoogenboom ir. R. Abspoel Datum 21-10-2009 VOORWOORD Dit rapport

Nadere informatie

MatrixCAE versie 4.3 Sp1- Release note. Algemeen: MatrixFrame Toolbox: Verwerkt in versie 4.3 SP1 (juli 2010):

MatrixCAE versie 4.3 Sp1- Release note. Algemeen: MatrixFrame Toolbox: Verwerkt in versie 4.3 SP1 (juli 2010): MatrixCAE versie 4.3 Sp1- Release note Verwerkt in versie 4.3 SP1 (juli 2010): Algemeen: 1. Let op: Na het starten van de update file (MxF43SP1.exe) kan het enkele minuten duren voor dat de InstallShield

Nadere informatie

Beginnen met Construeren Module ribbmc01c Opleiding: Bouwkunde / Civiele techniek / ROP Propadeuse, kernprogramma 1 e kwartaal

Beginnen met Construeren Module ribbmc01c Opleiding: Bouwkunde / Civiele techniek / ROP Propadeuse, kernprogramma 1 e kwartaal Week 01 Theorie: Beginnen met Construeren Samenstellen en ontbinden van krachten Vectormeetkunde Onderwerp: Kracht en Massa Opdracht: Schematiseer de constructie van de windverbanden Bereken de krachten

Nadere informatie

project projectnummer onderdeel versie datum berekend advies Zeilbergsestraat 43 5751 LH Deurne Postbus 213 5750 AE Deurne telefoon 0493-315438

project projectnummer onderdeel versie datum berekend advies Zeilbergsestraat 43 5751 LH Deurne Postbus 213 5750 AE Deurne telefoon 0493-315438 Zeilbergsestraat 43 5751 LH Deurne Postbus 213 5750 AE Deurne telefoon 0493-315438 info@bolwerkweekers.nl www.bolwerkweekers.nl project plaatsen dakkapel Donge 30 te Deurne projectnummer 16084 onderdeel

Nadere informatie

1 Inleiding 3. 2 Brandwerendheid. 10. 3 Algemeen 11

1 Inleiding 3. 2 Brandwerendheid. 10. 3 Algemeen 11 inhoud 1 Inleiding 3 1.1 Bestaande situatie. 3 1.2 Nieuwe situatie. 5 1.2.1 Winkeluitbreiding zuidzijde. 5 1.2.2 Winkeluitbreiding hoofdentree. 7 1.2.3 Betonnen stabiliteitswand. 9 2 Brandwerendheid. 10

Nadere informatie

Verbouwing woning aan De Sitterlaan 121 te Leiden.

Verbouwing woning aan De Sitterlaan 121 te Leiden. Werk Verbouwing woning aan De Sitterlaan 121 te Leiden. Opdr.gever dhr. J. Karssen; Leiden Betreft Statische berekening 1 Werknummer 5731 Plaats Sassenheim Datum 22-05-2017 Constructeur ing. J.W. Faas

Nadere informatie

4 Gordingen. Algemene informatie. Materialen. Gordingsystemen Overlapsysteem van Z-gordingen met 5 of meer velden.

4 Gordingen. Algemene informatie. Materialen. Gordingsystemen Overlapsysteem van Z-gordingen met 5 of meer velden. 4 Gordingen Algemene informatie In dit hoofdstuk vindt u de informatie die u nodig heeft voor het kiezen van de meest geschikte gording. Met koudgewalste gordingen kunt u, bijvoorbeeld in combinatie met

Nadere informatie

UITWERKING MET ANTWOORDEN

UITWERKING MET ANTWOORDEN Tentamen T0 onstructieechanica Januari 0 UITWERKING ET ANTWOORDEN Opgave a) Drie rekstrookjes b) Onder hoeken van 45 graden c) Tussen 0,5l en 0,7l (basisgevallen van Euler) d) () : Nee de vergrotingsfactor

Nadere informatie

RFEM Nederland Postbus 22 6865 ZG DOORWERTH

RFEM Nederland Postbus 22 6865 ZG DOORWERTH Pagina: 1/12 CONSTRUCTIE INHOUD INHOUD Constructie 1 Graf. Staven - Snedekrachten, Beeld, -Y, 6 1.3 Materialen 1 qp (M-y) 6 1.7 Knoopondersteuningen 1 Graf. Staven - Snedekrachten, Beeld, -Y, 7 1.13 Doorsnedes

Nadere informatie

Module 4 Uitwerkingen van de opdrachten

Module 4 Uitwerkingen van de opdrachten Module 4 Uitwerkingen van de opdrachten Opdracht 1 Analyse Constructie bestaat uit scharnierend aan elkaar verbonden staven, rust op twee scharnieropleggingen: r 4, s 11 en k 8. 2k 3 13 11, dus niet vormvast.

Nadere informatie

ONGESCHOORDE RAAMWERKEN

ONGESCHOORDE RAAMWERKEN ONGESCHOORDE RAAMWERKEN Géén stabiliserende elementen aanwezig. De ongeschoorde constructie moet zelf de stabiliteit verzorgen en weerstand bieden tegen de erop werkende horizontale krachten. Dit resulteert

Nadere informatie

Elk vermoeden van fraude wordt gemeld bij de examencommissie.

Elk vermoeden van fraude wordt gemeld bij de examencommissie. Faculteit Civiele Techniek en Geowetenschappen Schriftelijk tentamen CTB1110 ConstructieMEchanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 5 pagina s excl voorblad 02-11-2015 van

Nadere informatie

Kapspanten-uitgangspunten

Kapspanten-uitgangspunten Kapspanten-uitgangspunten Spant 1 Spant 2 Spant 3 Spant 4 Spant 5 Spant 6 ir J.P. den Hollander januari 2008 Kapspanten: uitgangspunten 1 Inhoudsopgave 1 Inleiding & disclaimer...3 2 Geometrie & profielen...4

Nadere informatie

NIETJE NIET VERWIJDEREN

NIETJE NIET VERWIJDEREN NIETJE NIET VERWIJDEREN Faculteit Civiele Techniek en Geowetenschappen NAAM : Schriftelijk tentamen CTB1110 ConstructieMEchanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 21 pagina

Nadere informatie

Lto. 0fis.vi. sj^u*. -l(a I r> au (,

Lto. 0fis.vi. sj^u*. -l(a I r> au (, Lto 0fis.vi sj^u*. -l(a I r> au (, STICHTING BOOGBRUG VIANEN Walkade 15 3401 DR IJsselstein tel/fax 030 687 29 34 Berekening sterkte boogbrug Vianen Vergelijking sterkte hoofddraagconstructie van de boogbrug

Nadere informatie

Belastingcombinaties Constructieberekening.doc

Belastingcombinaties Constructieberekening.doc 16 2005-008 Constructieberekening.doc Berekening middenbalk dakconstructie In de bestaande toestand rusten de houten balken aan twee zijden op het metselwerk. De balken zijn ingemetseld waardoor een momentvaste

Nadere informatie

ConstructieMechanica 3

ConstructieMechanica 3 CTB10 COLLEGE 9 ConstructieMechanica 3 7-17 Stabiliteit van het evenwicht Inleiding Starre staaf (systeem met één vrijheidsgraad) Systemen met meer dan één vrijheidsgraad Buigzame staaf (oneindig veel

Nadere informatie

Bouwkundig advies- en ingenieursbureau. Nijmegen, 18 juni 2011 Werknummer: 2011-033

Bouwkundig advies- en ingenieursbureau. Nijmegen, 18 juni 2011 Werknummer: 2011-033 PastoorsBouw Bouwkundig advies- en ingenieursbureau Heeskesacker 11-27 6546 JB Nijmegen +31 (0)6 21807483 info@pastoorsbouw.nl www.pastoorsbouw.nl Nijmegen, 18 juni 2011 Werknummer: 2011-033 STATISCHE

Nadere informatie

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m Vraag 1 Beschouw onderstaande pickup truck met de afmetingen in mm zoals gegeven. F G is de massa van de wagen en bedraagt 18,5 kn. De volledige combinatie van wielen, banden en vering vooraan wordt voorgesteld

Nadere informatie

Draagconstructies in staal, hout en beton Module ribbc01 3z Opleiding: Bouwkunde / Civiele techniek 5 e semester deeltijd

Draagconstructies in staal, hout en beton Module ribbc01 3z Opleiding: Bouwkunde / Civiele techniek 5 e semester deeltijd Week 03 Theorie: Inleiding sterkteberekeningen: Wat zijn unity checks Stabiliteit gebouwen Windverbanden berekenen Normaalkrachten Een normaalkracht is een inwendige kracht, druk- of trekkracht, die loodrecht

Nadere informatie

Staalberekening dakopbouw bouwdeel C, E en L

Staalberekening dakopbouw bouwdeel C, E en L Nieuwbouw Amphia Ziekenhuis Breda Staalberekening dakopbouw bouwdeel C, E en L code: 11714K Nieuwbouw Amphia ziekenhuis Breda Staalberekening Dakopbouw bouwdeel C, E en L Berekening deel S-CEL - Concept

Nadere informatie

7.3 Grenstoestand met betrekking tot de dragende functie 7.3.1 Kanaalplaatvloeren Buiging

7.3 Grenstoestand met betrekking tot de dragende functie 7.3.1 Kanaalplaatvloeren Buiging Tabel 4 Brandwerendheidseisen met betrekking tot bezwijken (zie Bouwbesluit tabellen V) bouwconstructie brandwerendheidseis (min.) bouwconstructie waarvan bet bezwijken l~idt tot bet onbruikbaar worden

Nadere informatie

AFIX Durmelaan 20 B-9880 Aalter Tel: 0(032) 9 / Fax: 0(032) 9 /

AFIX Durmelaan 20 B-9880 Aalter Tel: 0(032) 9 / Fax: 0(032) 9 / AFIX Durmelaan 20 B-9880 Aalter Tel: 0(032) 9 / 381.61.01 Fax: 0(032) 9 / 381.61.00 http://www.afixgroup.com BEREKENIINGSNOTA STEIGER EN 12810 2N SW12 / 257 H2 A - LA WERKHOOGTE = 38,,50 M Berekeningsnota

Nadere informatie

Statische berekening: Groepsaccomodatie a.d. Kasteelweg 5 Swolgen. Projekt nr: M Jan Ligeriusstraat AR Swolgen

Statische berekening: Groepsaccomodatie a.d. Kasteelweg 5 Swolgen. Projekt nr: M Jan Ligeriusstraat AR Swolgen Statische berekening: Projekt: Groepsaccomodatie a.d. Kasteelweg 5 Swolgen Projekt nr: M12-333 Principaal: De Gun Beheer BV Jan Ligeriusstraat 5 5866 AR Swolgen Architect: Arvalis Postbus 5043 5800 GA

Nadere informatie

STATISCHE BEREKENING. AZC Maastricht kp160 hoh 3 wd 3m_v4. deel 1: hoofdberekening. datum: 29 juni 2016 Behoort bij besluit van B&W d.d.

STATISCHE BEREKENING. AZC Maastricht kp160 hoh 3 wd 3m_v4. deel 1: hoofdberekening. datum: 29 juni 2016 Behoort bij besluit van B&W d.d. STATISCHE BEREKENING AZC Maastricht kp160 hoh 3 wd 3m_v4 deel 1: hoofdberekening Gemeente Maastricht Veiligheid en Leefbaarheid Ontvangen op : 29-06-2016 Zaaknummer : 16-1556WB datum: 29 juni 2016 Behoort

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets 07-0 versie C Mechanica - Sterkteleer - HWTK PROEFTOETS- 07-0-versie C - OPGAVEN en UITWERKINGEN.doc 1/16 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER!

Nadere informatie

= onderdeel. materiaalgegevens, balkafmeting, diverse factoren en belastingen

= onderdeel. materiaalgegevens, balkafmeting, diverse factoren en belastingen Gebruikslicentie COMMERCIELE-versie tot 1-5-2013 printdatum : 12-12-2011 houten hoekkeper piramidedak belast door eg+sneeuw werk = werk werknummer = werknummer = 71 x 271 naaldhout C18 toegepaste norm

Nadere informatie

Sterkte-eisen aan een vloerafscheiding

Sterkte-eisen aan een vloerafscheiding Sterkte-eisen aan een vloerafscheiding Probleem Aan de hand van het Bouwbesluit vaststellen aan welke sterkte-eisen een vloerafscheiding moet voldoen en op welke wijze deze sterkte wordt bepaald. Oplossingsrichtingen

Nadere informatie

Schöck Isokorb type QS 10

Schöck Isokorb type QS 10 Schöck Isokorb type Schöck Isokorb type 10 Inhoud Pagina Bouwkundige aansluitsituaties 152 Afmetingen 153 Kopplaat staalconstructie/bijlegwapening 154 Capaciteiten/Voegafstanden/Inbouwtoleranties 155 Inbouwhandleiding

Nadere informatie

XFrame2d. de Hof LA Almen

XFrame2d. de Hof LA Almen XFrame2d XFrame2d is het gereedschap voor elke constructeur. Met XFrame2d bepaalt u in een handomdraai en zeer eenvoudig de geometrisch lineaire of geometrisch niet-lineaire krachtsverdeling in uw constructie.

Nadere informatie

Voorwoord. Khalid Saleh. Delft, juni 2012 DE EFFECTIEVE KIPLENGTE VAN HOUTEN LIGGERS 2

Voorwoord. Khalid Saleh. Delft, juni 2012 DE EFFECTIEVE KIPLENGTE VAN HOUTEN LIGGERS 2 Voorwoord Dit rapport is geschreven in het kader van het Bachelor eindwerk ter afsluiting van de bachelorfase van mijn studie Civiele Techniek aan de Technische Universiteit Delft. Tijdens dit eindwerk

Nadere informatie

Notitie + constructieve onderbouwing m.b.t. het realiseren van een houten trap en opslagruimten d.m.v. een houtconstructie.

Notitie + constructieve onderbouwing m.b.t. het realiseren van een houten trap en opslagruimten d.m.v. een houtconstructie. Notitie + constructieve onderbouwing m.b.t. het realiseren van een houten trap en opslagruimten d.m.v. een houtconstructie preparation/storage nieuwe trap 1500-1500- 2500- opslag 0.00+ opslag 0.00+ nieuwe

Nadere informatie

Cursus Brandveilig Constructief Ontwerp

Cursus Brandveilig Constructief Ontwerp Cursus Brandveilig Constructief Ontwerp Toelichting van de mogelijkheden met BuildSoft software PowerFrame Programma Korte uiteenzetting scenario berekening in PowerFrame Software toelichten aan de hand

Nadere informatie

4 -paalspoer met staafwerkmodellen inclusief controle scheurwijdte,dekking verankeringslengte, ombuigen wapening en dwarskracht.

4 -paalspoer met staafwerkmodellen inclusief controle scheurwijdte,dekking verankeringslengte, ombuigen wapening en dwarskracht. Gebruikslicentie COMMERCIELE-versie tot 1-5-2013 printdatum : 05-12-2011 4 -paalspoer met staafwerkmodellen inclusief controle scheurwijdte,dekking verankeringslengte, ombuigen wapening en dwarskracht

Nadere informatie

Datum Rev. Omschrijving Paraaf ter goedkeuring RN

Datum Rev. Omschrijving Paraaf ter goedkeuring RN PROJECTGEGEVENS Ordernummer 66173 Trap Atrium Amsterdam 7 e - 8 e verdieping Deelberekening - Opdrachtgever Vistra Corporate Services B.V. Projectnummer - STATISCHE BEREKENING Datum Rev. Omschrijving Paraaf

Nadere informatie

REC Harlingen LUCO. Pieters Bouwtechniek Almere B.V. Flevostraat 8 1315 CC Almere. REC Harlingen projectleider : ing. M.D Hulter

REC Harlingen LUCO. Pieters Bouwtechniek Almere B.V. Flevostraat 8 1315 CC Almere. REC Harlingen projectleider : ing. M.D Hulter Pieters Bouwtechniek Almere B.V. Flevostraat 8 1315 CC Almere Tel.: 036 530 52 99 Fax: 036 540 35 49 E-mail: pbt.almere@pieters.net Internet: www.pietersbouwtechniek.nl REC Harlingen LUCO paraaf : project

Nadere informatie

Piekresultaten aanpakken op platen in Scia Engineer

Piekresultaten aanpakken op platen in Scia Engineer Piekresultaten aanpakken op platen in Scia Engineer Gestelde vragen en antwoorden 1. Kan er ook een webinar gegeven worden op het gebruik van een plaat met ribben. Dit voorstel is doorgegeven, en al intern

Nadere informatie

Hoofddorp - Advies vervanging scherm, A4 Constructie berekening. Kenmerk / 1 Datum: 16 maart Versie: 1

Hoofddorp - Advies vervanging scherm, A4 Constructie berekening. Kenmerk / 1 Datum: 16 maart Versie: 1 Hoofddorp - Advies vervanging scherm, A4 Constructie berekening Kenmerk 19449 / 1 Datum: 16 maart 2017 Status: Definitief Versie: 1 Constructie berekening Postbus 40159 8004 DD Zwolle Tesselschadestraat

Nadere informatie

Verbouwen woning aan de Domburgseweg 57 te Oostkapelle. J.W. Schuurmanstraat EM Domburg

Verbouwen woning aan de Domburgseweg 57 te Oostkapelle. J.W. Schuurmanstraat EM Domburg Verbouwen woning aan de Domburgseweg 57 te Oostkapelle Architect: V.r.v.: Tekton Ingenieursbureau J.W. Schuurmanstraat 86 4357 EM Domburg J.W. Kallewaard Berekening Constructie Berekend door : R. M. Koets

Nadere informatie

A wind EC_NL Haarlem. Versie : 1.1.5 ; NDP : NL Gebruikslicentie COMMERCIELE-versie tot 1-1-2020 printdatum : 23-09-2012

A wind EC_NL Haarlem. Versie : 1.1.5 ; NDP : NL Gebruikslicentie COMMERCIELE-versie tot 1-1-2020 printdatum : 23-09-2012 Eurocode 1991-1-4 windbelastingen werk werknummer onderdeel algemeen geen test invoergegevens gebouwbreedte loodrecht op de windrichting b gem = 10 m gebouwdiepte in de windrichting d max = 10 m gebouwhoogte

Nadere informatie

HET RAADGEVEND INGENIEURSBUREAU Expertise in gevels en daken

HET RAADGEVEND INGENIEURSBUREAU Expertise in gevels en daken HET RAADGEVEND INGENIEURSBUREAU Expertise in gevels en daken IsoniQ B.V. T.a.v. de heer H.F. Coenen Sluisweg 11 8321 DX URK BDA Dak- en Geveladvies B.V. Avelingen West 33 Postbus 389 NL-4200 AJ Gorinchem

Nadere informatie

Legalisatie garage dhr. M. Wouters Wissengrachtweg 25 te Hulsberg Controleberekening sterkte en stabiliteit. 9 juni 2014 Revisie: 0

Legalisatie garage dhr. M. Wouters Wissengrachtweg 25 te Hulsberg Controleberekening sterkte en stabiliteit. 9 juni 2014 Revisie: 0 Hulsberg Revisie: 0 Pagina 2 / 10 Inhoudsopgave 1 Uitgangspunten 3 1.1 Normen & Voorschriften 3 1.2 Materialen 4 1.3 Ontwerpcriteria 4 1.4 Belastingen 4 1.5 Stabiliteit 5 1.6 Vervormingseisen 5 1.7 Referentiedocumenten

Nadere informatie

STATISCHE BEREKENING STAALCONSTRUCTIE EINDFASE

STATISCHE BEREKENING STAALCONSTRUCTIE EINDFASE Werknr.: 2311 Blad: S-E- 1 Reigersberg 11 T: 0118-58 33 54 4363 BN Aagtekerke www.woestijne-bouwadvies.nl info@woestijnebouwadvies.nl STATISCHE BEREKENING STAALCONSTRUCTIE Uitbreiden van loods Oude Zandweg

Nadere informatie

Constructieberekening

Constructieberekening Constructieberekening Ten behoeve van: Nieuwbouw losstation Fundering Koeltorens Fundering Silo s OPDRACHTGEVER: Tata Steel BV Postbus 10000 1970 CA IJMUIDEN Nederland Document nr. : r-01-00 Revisie :

Nadere informatie

σ SIGMA Engineering BV

σ SIGMA Engineering BV σ SIGMA Engineering BV Bouwkundig adviesbureau Bezoekadres: Postadres: Sigma Engineering BV Groot Loo 2d Postbus 159 k.v.k. Tilburg nr. 18052811 Hilvarenbeek 5080 AD Hilvarenbeek rabobank 1223.73.634 tel.

Nadere informatie

EINDIGE-ELEMENTENMETHODE

EINDIGE-ELEMENTENMETHODE EINDIGE-ELEMENTENMETHODE EINDIGE-ELEMENTENMETHODE voor STAAFCONSTRUCTIES JOHAN BLAAUWENDRAAD Emeritus-hoogleraar Toegepaste Mechanica faculteit Civiele Techniek, Technische Universiteit Delft VSSD De bezitter

Nadere informatie

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking 5. Vergelijkingen 5.1. Vergelijkingen met één variabele 5.1.1. Oplossen van een lineaire vergelijking Probleem : We willen x oplossen uit de lineaire vergelijking p x+q=r met p. Maxima biedt daartoe in

Nadere informatie