wisselwerking ioniserende straling met materie

Maat: px
Weergave met pagina beginnen:

Download "wisselwerking ioniserende straling met materie"

Transcriptie

1 ioniserende straling wisselwerking ioniserende straling met materie Sytze Brandenburg geladen deeltjes electronen, positronen... α-deeltjes (kern van 4 He-atoom) atoomkernen/ionen van alle elementen electro-magnetische straling Röntgen-straling γ-straling ioniserend als energieoverdracht > ionisatie-energie (~10 ev) typische energie 1 kev - 10 MeV neutronen indirect ioniserend (via kernreacties) sb/radsaf2005/1 sb/radsaf2005/2 oorsprong processen in atoomkernen radioactiviteit β + -verval: positronen, annihilatie-straling (511 kev fotonen) electronvangst: Röntgen-straling, Auger-electronen β - -verval: electronen α-verval verval van geëxciteerde kernen γ-straling conversie-electronen Röntgen-straling, Auger-electronen neutronen oorsprong atomaire processen ionisatie van atomen electronen verval van geëxciteerde atomen electro-magnetische straling: Röntgen-straling Auger-electronen toestellen electro-magnetische straling: Röntgen-straling, remstraling electronen atoomkernen & neutronen cascades wisselwerking ioniserende straling - materie produceert ioniserende straling met lagere energie electronen en fotonen sb/radsaf2005/3 sb/radsaf2005/4

2 wisselwerking met materie overdracht van energie geladen deeltjes en fotonen vooral aan electronen excitatie ionisatie neutronen via reacties met atoomkernen producten zijn geladen deeltjes en fotonen secundaire ioniserende straling electronen Röntgen-straling electrisch geladen deeltjes beschikbare energie kev - MeV ionisatie energie ev - kev energieafgifte in vele opeenvolgende botsingen vele botsingen nodig quasi-continue proces vgl. wrijving komen uiteindelijk tot stilstand sb/radsaf2005/5 sb/radsaf2005/6 eenheden massa, dikte densitolengte dichtheid materiaal ρ [g/cm 3 ] dichtheid atomen n a =ρn A /A [1/cm 3 ] dichtheid electronen n e =Zn a = ρn A Z/A [1/cm 3 ] 0.4 (zware elementen) < Z/A 0.5 (lichte elementen) ne min of meer onafhankelijk van materiaal materiaaldikte d [cm] densitolengte dρ [g/cm 2 ] aantal electronen evenredig densitolengte kans op wisselwerking evenredig met aantal electronen geladen deeltjes, fotonen kans op wisselwerking evenredig met densitolengte eenheden energieverlies lineïek energieverlies linear energy transfer (LET) stopping power de S = dx [ MeV/mm] energieverlies door wisselwerking met electronen bij gebruik densitolengte ~ onafhankelijk materiaal S de 1dE MeVcm 2 / g ρ = dρx = ρ dx sb/radsaf2005/7 sb/radsaf2005/8

3 electronen electronen: botsingen met electronen energieverlies door botsingen met electronen remstraling (Bremsstrahlung) transmissie dracht biljartballen botsing sb/radsaf2005/9 sb/radsaf2005/10 electronen: botsingen met electronen electronen: terugverstrooiing maximale energieoverdracht per botsing E max = 1/2 E veel secundaire ioniserende straling grote verandering in richting (bij E max 45 per botsing) grote kans op terugverstrooiing problemen bij metingen aan β-bronnen de ρ Z, dus min of meer onafhankelijk van element dx A sb/radsaf2005/11 sb/radsaf2005/12 uit W.R. Leo techniques for nuclear and particle physics experiments

4 electronen: terugverstrooiing electronen: remstraling afbuiging in electrisch veld atoomkern en electron kracht op electron emissie van fotonen vgl. synchrotronstraling electron afgebogen in magneetveld versneller foton E f sb/radsaf2005/13 uit W.R. Leo techniques for nuclear and particle physics experiments sb/radsaf2005/14 electronen: remstraling electronen: botsingen vs. remstraling foton energie 0 < E f < E e per interactie kans P(E f ) 1/E f 2 Z Srem ρ A EZ e Srem Sbots 800 fractie energie in fotonen f = 6 x10-4 Z E e integreren over afremproces remstraling dominant (> 50 %) bij zware elementen en hoge energie lood E > 10 MeV ijzer E > 32 MeV lucht E > 107 MeV sb/radsaf2005/15 sb/radsaf2005/16 uit W.R. Leo techniques for nuclear and particle physics experiments

5 electronen: transmissie electronen: dracht doordringdiepte in materiaal slecht gedefinieerd grillige baan transmissie neemt langzaam af als functie laagdikte verliezen door terugverstrooiing β-deeltjes uit radioactief verval exponentiële afname bepaald door energieverdeling dracht: diepte in materiaal waar alle deeltjes gestopt zijn 2 ( ) lage energie ρ R = E 1 (Flammersfeld) S 2 hoge energie = 2 MeVcm g ρ R = 0.5E ρ β-deeltjes uit radioactief verval: bepaald door E max 10 1 ρr = 1/2E ρr [g/cm 2 ] Flammersfeld formula aluminium sb/radsaf2005/17 sb/radsaf2005/ E e [MeV] dracht electronen: voorbeelden α-deeltjes 1 MeV in lucht R = 3 m ρr = 0.4 g/cm 2 1 MeV in water R = 4 mm ρr = 0.4 g/cm 2 1 MeV in lood R = 0.3 mm ρr = 0.38 g/cm 2 10 MeV in lucht R = 40 m ρr = 5.0 g/cm 2 10 MeV in water R = 48 mm ρr = 4.8 g/cm 2 10 MeV in lood R = 4.4 mm ρr = 5.0 g/cm 2 effect van remstraling verwaarloosd, wordt belangrijk bij hoge energie in zware elementen energieverlies botsingen met electronen botsingen met atoomkernen transmissie en dracht remstraling bij zware deeltjes verwaarloosbaar evenredig met 1/m 2 m α = 7350 m e factor 1.9 x 10-8 bij gelijke snelheid sb/radsaf2005/19 sb/radsaf2005/20

6 α-deeltjes: botsingen met electronen α-deeltjes: botsingen met electronen α-deeltje veel zwaarder dan electron geringe energie overdracht per botsing E max = 4 m e /m α E α = 5.5 x 10-4 E α richting α-deeltje verandert nauwelijks alle α-deeltjes stoppen op vrijwel dezelfde diepte gemiddelde energieoverdracht ~30 ev per botsing nauwelijks secundaire ioniserende straling 6 MeV α-deeltje 2 x10 5 botsingen zwaardere elementen binnenschil electronen doen niet mee (te sterk gebonden) grotere dracht α sb/radsaf2005/21 sb/radsaf2005/22 α-deeltjes: Bragg-piek α-deeltjes: botsingen met atoomkernen aan einde baan is effectieve lading kleiner dan Z ion heeft een deel van de tijd electronen bij zich S/ρ 1 MeV electronen 2 MeV cm 2 /g bij lage energie bijdrage ~ 5 % in lage-z materialen evenredig met 1/A S/ρ [MeV cm 2 /g] sb/radsaf2005/ α-energy MeV] koolstof lood S/ρ [MeV cm 2 /g] sb/radsaf2005/ α in koolstof α-energy MeV] electronen atoomkernen

7 α-deeltjes: transmissie en dracht rechtlijnige baan weinig variatie in doordringdiepte simulatie 5 MeV α in lucht sb/radsaf2005/25 dracht α-deeltjes empirische Bragg-Kleemann regel ρ 1R1 =ρ2r2 A1 A 2 20 als materiaal 2 lucht (STP) 15 4 ρ 1R1 = A1Rlucht 10 Rincm 3 ρ in g / cm 5 mengsels 0 1 fi = Aeff i Ai f = 1 i sb/radsaf2005/26 i A = 14.3 eff,lucht ρr [mg/cm 2 ] dracht 5 MeV α-deeltje A data Bragg-Kleemann dracht α-deeltjes : getallen 5 MeV α-deeltje in lucht R = 35 mm ionisatiedichtheid 4700 mm -1 5 MeV α-deeltje in water R = 40 µm ionisatiedichtheid 4.1 x 10 6 mm -1 α-deeltje in lucht benadering R = 0.3 E 1.5 (R in cm; E in MeV) electro-magnetische straling drie mogelijke processen foto-electrisch effect Compton-verstrooiing paarvorming kans op overleven > 0 oorspronkelijke foton verlaat materiaal specifiek voor fotonen en neutronen afhankelijk van dikte materiaal sb/radsaf2005/27 sb/radsaf2005/28

8 foto-electrisch effect foto-electrisch effect foton staat volledige energie af aan electron hoofdzakelijk K-schil electronen E f > E b,electron E e = E f - E b,electron afremming vrijgemaakt electron: ionisatie en excitatie opvullen gat K-schil: secundaire ioniserende straling Röntgen-straling Auger-electronen kans per atoom evenredig met Z 5 E f -3.5 vooral zware elementen en lage foton-energie foton E f sb/radsaf2005/29 sb/radsaf2005/30 Compton verstrooiing Compton verstrooiing botsing foton met electron fotonenergie verdeeld tussen electron en nieuw foton foton E f ' θ als E f >> E b,electron : lijkt op biljartballen botsing uit behoud van energie en impuls volgt dan ' Ef Ef = Ef 1+ 2 ( 1 cosθ) mc e kans per atoom evenredig met Z (aantal electronen) afremming vrijgemaakt electron: ionisatie en excitatie hoofdzakelijk buitenschil-electronen grootste aantal (n K = 2; n L = 8; n M = 18, etc.) laagste bindingsenergie foton E f sb/radsaf2005/31 sb/radsaf2005/32

9 Compton verstrooing Compton verstrooing verhouding tussen energie invallend foton en Compton verstrooid foton als functie van de hoek en de foton energie lengte pijl: / hoek pijl met de X-as: richting verstrooide foton t.o.v. invallend foton verhouding tussen energie invallend foton en Compton verstrooid foton als functie van de hoek en de foton energie lengte pijl: hoek pijl met de X-as: richting verstrooide foton t.o.v. invallend foton Eγ '/ E5 γ ' [MeV ] sb/radsaf2005/33 = 0.5 MeV = 1 MeV = 2 MeV = 5 MeV sb/radsaf2005/34 = 0.5 MeV = 1 MeV = 2 MeV = 5 MeV paarvorming paarvorming botsing foton met atoomkern E f > 2 m e c 2 = 1022 kev vorming van electron ( ) en positron (e + ) energie electron en positron niet gelijk 20 % - 80 % 80 % - 20 % kern neemt ook wat energie op kans per atoom evenredig met Z 2 ln(e f kev) vooral bij zware elementen en hoge fotonenergie annihilatie positron met electron uit materiaal na afremmen twee fotonen met E f = 511 kev hoek tussen fotonen 180 basis voor PET (PositronEmissieTomographie) e + foton E f sb/radsaf2005/35 sb/radsaf2005/36

10 transmissie en absorptie fotonen lineïeke kans op wisselwerking µ [cm -1 ] aantal door dikte d doorgelaten fotonen N t (d) aantal door dikte d geabsorbeerde fotonen N a (d) analoog aan radioactief verval tijd t materiaaldikte d vervalkans λ lineïeke kans op wisselwerking µ transmissie fotonen d t ( x) ( x) ( d) ( ) d 0 t 0 t t ( x) ( x) dn dnt ( x) = µ Nt ( x) dx = µ dx N dn ( d) ( ) t ln Nt d ln Nt 0 ln d Nt 0 t N = µ dx ( ) ( ) = N = µ Nt = exp( µ d) Nt ( d) = Nt( 0) exp( µ d) N 0 smalle bundelgeometrie detector ziet alleen fotonen die geen interactie hebben ondergaan sb/radsaf2005/37 sb/radsaf2005/38 smalle bundel geometrie smalle bundel geometrie detector detector gecollimeerde bron gecollimeerde bron afscherming Compton annihilatie sb/radsaf2005/39 sb/radsaf2005/40

11 brede bundel geometrie brede bundel geometrie Compton annihilatie detector detector niet-gecollimeerde bron niet-gecollimeerde bron afscherming detector ziet ook fotonen die in afscherming gecreërd zijn (Röntgen-straling, annihilatie fotonen) van richting veranderd zijn (Compton verstrooiing) hogere intensiteit dan in smalle bundel geometrie: build-up sb/radsaf2005/41 sb/radsaf2005/42 absorptie fotonen werkzame doorsnede d a ( ) =µ ( ) dn x N x dx d ( ) = µ t( ) dn x N x dx a 0 0 a a a ( ) t( ) ( ) ( ) t N d =µ N 0 exp( µ x) dx N d N 0 ( ) = ( )[ µ ] 0 d =µ t µ 0 t exp( µ x) N d N 0 1 exp( d) d kans op wisselwerking µ [cm -1 ] dichtheid atomen n a = ρ/a N A [cm -3 ] dichtheid electronen n e = Z n a =Z ρ/a N A [cm -3 ] werkzame doorsnede atoom/electron σ a,i ; σ e,i [cm 2 ] effectief oppervlak voor wisselwerking type i µ = Σ i (n a σ a,i + n e σ e,i ) ( ) + ( ) = ( )[ µ ] + ( ) µ = ( ) N d N d N 0 1 exp( d) N 0 exp( d) N 0 a t t t t sb/radsaf2005/43 sb/radsaf2005/44

12 werkzame doorsnede eenheden numeriek voorbeeld: lood ρ = g/cm 3 ; A = 208; Z = 82 n a = 3.3 x10 22 cm -3 ; n e = 2.7 x cm -3 = 1 MeV; µ = cm -1 Compton-effect dominant, alleen electronen doen mee σ e,c = µ/n e = 2.8 x cm 2 lineïeke kans op wisselwerking µ [1/cm] massieke kans op wisselwerking µ/ρ [cm 2 /g] als electronen bepalende factor voor µ n electron = Z n atoom ; n atoom = ρn A /A n electron = ρn A Z/A; Z/A ~ µ/ρ ~ materiaalonafhankelijk gassen: dichtheidsonafhankelijk numeriek voorbeeld: µ/ρ = 0.1 cm 2 /g ( 1MeV bij lood) laag met 10 g/cm 2 : 37 % van fotonen geen interactie sb/radsaf2005/45 sb/radsaf2005/46 wisselwerking fotonen log(µ/ρ) [cm /g] M-kant K-kant foto-electrisch effect L-kant K-kant Compton effect stikstof stikstof Z = 7 ijzer ijzer Z = 26 lood Z = 82 paarvorming E f [MeV] wisselwerking fotonen Z foto-electrisch effect Compton verstrooiing paarvorming E f [MeV] curves geven relatie tussen Z en E f waarbij processen even waarschijnlijk zijn sb/radsaf2005/47 sb/radsaf2005/48

13 neutronen neutronen: afremming bronnen van neutronen kernreactoren bronnen spontane splijting van bijv. 252 Cf α-emitter + 9 Be versnellers (d,t)-generator E n < 5 MeV E n < 5 MeV E n < 10 MeV E n = 14 MeV neutronen ongeladen geen wisselwerking met electronen wisselwerking met atoomkernen via sterke kern-kracht biljartbal botsingen met atoomkernen neutron verliest deel energie effectiefst met waterstof (proton even zwaar als neutron) stopt als neutron thermisch is energie = energie atomen in medium kamertemperatuur E 3/2 kt = 40 mev snelheid ~ 2700 m/s sb/radsaf2005/49 sb/radsaf2005/50 neutronen: absorptie, kernreacties neutron activatie neutron ongeladen sterke kern-kracht aantrekkend neutron dringt gemakkelijk in atoomkern door neutron-geïnduceerde kernreacties protonen, α-deeltjes fotonen splijtingsfragmenten (actiniden zoals Th en U) transmissie neutronen neemt exponentieel af met dikte vgl. fotonen materiaalanalyse sample bevat M stabiele atomen neutronflux Φ i [1/cm 2 s] werkzame doorsnede per atoom σ [cm 2 ] productie radioactieve atomen N(t) () dn t dt () = MΦσ λn t i i MΦσ Nt () = 1 exp( λ t) λ i A() t = MΦσ 1 exp( λt) sb/radsaf2005/51 sb/radsaf2005/52

14 informatie m.b.t. een aantal onderwerpen uit de cursus: kern- en atoomfysica wisselwerking ioniserende straling en materie afscherming natuurlijke radioactiviteit moeder-dochter relaties sb/radsaf2005/53

wisselwerking ioniserende straling met materie

wisselwerking ioniserende straling met materie wisselwerking ioniserende straling met materie Sytze Brandenburg sb/radsaf2005/1 ioniserende straling geladen deeltjes electronen, positronen... α-deeltjes (kern van 4 He-atoom) atoomkernen/ionen van alle

Nadere informatie

wisselwerking ioniserende straling met materie

wisselwerking ioniserende straling met materie wisselwerking ioniserende straling met materie Sytze Brandenburg sb/radsaf4_mz2006/1 wat is ioniserende straling wat zijn de bronnen van ioniserende straling hoe verloopt de wisselwerking tussen ioniserende

Nadere informatie

samenvatting interactie ioniserende straling materie

samenvatting interactie ioniserende straling materie samenvatting interactie ioniserende straling materie Sytze Brandenburg sb/radsaf2005/1 ioniserende straling geladen deeltjes α-deeltjes electronen en positronen electromagnetische straling Röntgenstaling

Nadere informatie

1 Wisselwerking en afscherming TS VRS-D/MR vj Mieke Blaauw

1 Wisselwerking en afscherming TS VRS-D/MR vj Mieke Blaauw 1 Wisselwerking en afscherming TS VRS-D/MR vj 2018 2 Wisselwerking en afscherming TS VRS-D/MR vj 2018 1-3 Atoombouw en verval 4,5 Wisselwerking van straling met materie en afscherming 6-9 Röntgentoestellen,

Nadere informatie

Wisselwerking. van ioniserende straling met materie

Wisselwerking. van ioniserende straling met materie Wisselwerking van ioniserende straling met materie Wisselwerkingsprocessen Energie afgifte en structuurverandering in ontvangende materie Aard van wisselwerking bepaalt het juiste afschermingsmateriaal

Nadere informatie

samenvatting interactie ioniserende straling materie ioniserende straling geladen deeltjes electromagnetische straling

samenvatting interactie ioniserende straling materie ioniserende straling geladen deeltjes electromagnetische straling ioniserende sraling samenvaing ineracie ioniserende sraling maerie geladen deeljes α-deeljes elecronen en posironen elecromagneische sraling Röngensaling (afkomsig ui aoom; E < 100 kev) γ-sraling (afkomsig

Nadere informatie

Inleiding stralingsfysica

Inleiding stralingsfysica Inleiding stralingsfysica Historie 1896: Henri Becquerel ontdekt het verschijnsel radioactiviteit 1895: Wilhelm Conrad Röntgen ontdekt Röntgenstraling RadioNucliden: Inleiding Stralingsfysica 1 Wat maakt

Nadere informatie

Samenvatting H5 straling Natuurkunde

Samenvatting H5 straling Natuurkunde Samenvatting H5 straling Natuurkunde Deze samenvatting bevat: Een begrippenlijst van dikgedrukte woorden uit de tekst Belangrijke getallen en/of eenheden (Alle) Formules van het hoofdstuk (Handige) tabellen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 27 november 2003 van 09:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 27 november 2003 van 09:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D1) d.d. 7 november 3 van 9: 1: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook

Nadere informatie

introductie fysische achtergronden ioniserende straling Sytze Brandenburg sb/radsaf2003/1

introductie fysische achtergronden ioniserende straling Sytze Brandenburg sb/radsaf2003/1 introductie fysische achtergronden ioniserende straling Sytze Brandenburg sb/radsaf2003/1 ioniserende straling wat is het atoomfysica elementaire deeltjes fysica waar komt het vandaan atoomfysica kernfysica

Nadere informatie

Opleiding Stralingsdeskundigheid niveau 3 / 4B. Dosimetrie, deel 1. introductie dosisbegrip. W.P. Moerman

Opleiding Stralingsdeskundigheid niveau 3 / 4B. Dosimetrie, deel 1. introductie dosisbegrip. W.P. Moerman Opleiding Stralingsdeskundigheid niveau 3 / 4B Dosimetrie, deel 1 introductie dosisbegrip W.P. Moerman Dosis Meestal: hoeveelheid werkzame stof Inhoud dag 1 dosis kerma exposie dag 2 equivalente dosis

Nadere informatie

Straling. Onderdeel van het college Kernenergie

Straling. Onderdeel van het college Kernenergie Straling Onderdeel van het college Kernenergie Tjeerd Ketel, 4 mei 2010 In 1946 ontworpen door Cyrill Orly van Berkeley (Radiation Lab) Nevelkamer met radioactiviteit, in dit geval geladen deeltjes vanuit

Nadere informatie

1 Atoom- en kernfysica TS VRS-D/MR vj Mieke Blaauw

1 Atoom- en kernfysica TS VRS-D/MR vj Mieke Blaauw 1 Atoom- en kernfysica TS VRS-D/MR vj 2018 Mieke Blaauw 2 Atoom- en kernfysica TS VRS-D/MR vj 2018 1-3 Atoombouw en verval 4,5 Wisselwerking van straling met materie en afscherming 6-9 Röntgentoestellen,

Nadere informatie

Voor kleine correcties (in goede benadering) geldt:

Voor kleine correcties (in goede benadering) geldt: Antwoorden tentamen stralingsfysica 3D100 d.d. 25 juni 2010 (Antwoorden onder voorbehoud van typefouten) a) In de opstelling van Franck en Hertz worden elektronen versneld. Als de energie van een elektron

Nadere informatie

(Permitiviteit van vacuüm)

(Permitiviteit van vacuüm) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D1) d.d. 5 juni 1 van 9: 1: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is niet

Nadere informatie

Neutronenstraling. Hans Beijers KVI-CART. February 6, KVI-CART, Universiteit van Groningen

Neutronenstraling. Hans Beijers KVI-CART. February 6, KVI-CART, Universiteit van Groningen Neutronenstraling Hans Beijers (beijers@kvi.nl), KVI-CART KVI-CART, Universiteit van Groningen February 6, 2018 Inhoud Neutronen Productie Wisselwerking Dosimetrie Afscherming Detectie H. Beijers, Nivo

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 november 2004 van 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 november 2004 van 14:00 17:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D) d.d. 6 november 4 van 4: 7: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is

Nadere informatie

Hoofdstuk 9: Radioactiviteit

Hoofdstuk 9: Radioactiviteit Hoofdstuk 9: Radioactiviteit Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 9: Radioactiviteit Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige

Nadere informatie

Fysische grondslagen radioprotectie deel 2. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum

Fysische grondslagen radioprotectie deel 2. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum Fysische grondslagen radioprotectie deel 2 dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum rik.leyssen@jessazh.be Fysische grondslagen radioprotectie H1: INLEIDING H2: STRALING - RADIOACTIVITEIT

Nadere informatie

Neutronenstraling. Hans Beijers KVI-CART. Januari 19, KVI-CART, Universiteit van Groningen

Neutronenstraling. Hans Beijers KVI-CART. Januari 19, KVI-CART, Universiteit van Groningen Neutronenstraling Hans Beijers (beijers@kvi.nl), KVI-CART KVI-CART, Universiteit van Groningen Januari 19, 2016 Inhoud Neutronen Productie Wisselwerking Dosimetrie Afscherming Detectie H. Beijers, Nivo

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 21 januari 2005 van 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 21 januari 2005 van 14:00 17:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D) d.d. januari 5 van 4: 7: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is niet

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 16 januari 2006 van 14:00 17:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D d.d. 6 januari 6 van 4: 7: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is

Nadere informatie

Tales of the unexpected 14

Tales of the unexpected 14 Tales of the unexpected 14 C als fotonenbron (examen 15 mei 2017) Frits Pleiter Rijksuniversiteit Groningen / GARP Waar gaat het over? Een "lecture bottle" gevuld met kooldioxide dat gelabeld is met het

Nadere informatie

1 Welk van onderstaande schakelingen is geschikt om de remspanning te meten?

1 Welk van onderstaande schakelingen is geschikt om de remspanning te meten? Domein F: Moderne Fysica Subdomein: Atoomfysica 1 Welk van onderstaande schakelingen is geschikt om de remspanning te meten? 2 Bekijk de volgende beweringen. 1 In een fotocel worden elektronen geëmitteerd

Nadere informatie

(Permitiviteit van vacuüm)

(Permitiviteit van vacuüm) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D) d.d. maart 9 van 4: 7: uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is niet

Nadere informatie

5,5. Samenvatting door een scholier 1429 woorden 13 juli keer beoordeeld. Natuurkunde

5,5. Samenvatting door een scholier 1429 woorden 13 juli keer beoordeeld. Natuurkunde Samenvatting door een scholier 1429 woorden 13 juli 2006 5,5 66 keer beoordeeld Vak Natuurkunde Natuurkunde samenvatting hoofdstuk 3 ioniserende straling 3. 1 de bouw van de atoomkernen. * Atoom: - bestaat

Nadere informatie

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 5 Straling Gemaakt als toevoeging op methode Natuurkunde Overal 5.1 Straling en bronnen Eigenschappen van straling RA α γ β 1) Beweegt langs rechte lijnen vanuit een bron. ) Zwakker als ze verder

Nadere informatie

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm.

1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Domein F: Moderne fysica Subdomein: Atoomfysica 1 Een lichtbron zendt licht uit met een golflengte van 589 nm in vacuüm. Bereken de energie van het foton in ev. E = h c/λ (1) E = (6,63 10-34 3 10 8 )/(589

Nadere informatie

Gamma en Neutron afscherming

Gamma en Neutron afscherming Gamma en Neutron afscherming Jan Leen Kloosterman Technische Universteit Delft Jan Leen Kloosterman 1 Verschillen gamma-neutronen Gamma s hebben interactie met atoomschil Foto-elektrisch effect Compton

Nadere informatie

Herkansing tentamen: Kernenergie voor natuurkundigen

Herkansing tentamen: Kernenergie voor natuurkundigen Herkansing tentamen: Kernenergie voor natuurkundigen Docenten: J. F. J. van den Brand en R. Aaij Telefoon: 0620 539 484 Datum: 8 juli 2013 Zaal: WN-KC137 Tijd: 12:00-14:45 uur Maak elke opgave op een apart

Nadere informatie

Vraagstuk 1: Lektest van een 106 Ru/ 106 Rhbron

Vraagstuk 1: Lektest van een 106 Ru/ 106 Rhbron Examen stralingsbescherming deskundigheidsniveau 4A/4B p. 1 Vraagstuk 1: Lektest van een 106 Ru/ 106 Rhbron De activiteit van een 106 Ru/ 106 Rh bron is opgedampt op een zeer dun folie. Bij de jaar lijkse

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 9 januari 2008 van 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 9 januari 2008 van 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Stralingsfysica (3D d.d. 9 januari 8 van 9: : uur Vul de presentiekaart in blokletters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is niet

Nadere informatie

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 5 Straling Gemaakt als toevoeging op methode Natuurkunde Overal 5.1 Straling en bronnen Eigenschappen van straling RA α γ β 1) Beweegt langs rechte lijnen vanuit een bron. 2) Zwakker als ze verder

Nadere informatie

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum Fysische grondslagen radioprotectie deel 1 dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum rik.leyssen@jessazh.be Fysische grondslagen radioprotectie H1: INLEIDING H2: STRALING - RADIOACTIVITEIT

Nadere informatie

Bestaand (les)materiaal. Loran de Vries

Bestaand (les)materiaal. Loran de Vries Bestaand (les)materiaal Loran de Vries Database www.adrive.com Email: ldevries@amsterdams.com ww: Natuurkunde4life NiNa lesmateriaal Leerlingenboekje in Word Docentenhandleiding Antwoorden op de opgaven

Nadere informatie

Een deels bestaande PowerPointpresentatie voor de cursus in de aandacht gebracht cq bewerkt door:

Een deels bestaande PowerPointpresentatie voor de cursus in de aandacht gebracht cq bewerkt door: Sporen van deeltjes Een deels bestaande PowerPointpresentatie voor de cursus in de aandacht gebracht cq bewerkt door: E.J. Klesser, K. Akrikez, F. de Wit, F. Bergisch, J. v. Reisen Het onderzoek naar elementaire

Nadere informatie

Biologische effecten van ioniserende en niet-ioniserende straling

Biologische effecten van ioniserende en niet-ioniserende straling Inhoudsopgave 01 Ioniserende straling 1 011 Ioniserende elektromagnetische straling 2 012 Straling van radioactieve Deeltjes 3 013 Tijdsconstante en halveringstijd 7 02 Absorptie 9 021 De absorptiewet

Nadere informatie

Aandachtspunten voor het eindexamen natuurkunde vwo

Aandachtspunten voor het eindexamen natuurkunde vwo Aandachtspunten voor het eindexamen natuurkunde vwo Algemeen Thuis: Oefen thuis met Binas. Geef belangrijke tabellen aan met (blanco) post-its. Neem thuis Binas nog eens door om te kijken waar wat staat.

Nadere informatie

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben.

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben. Uitwerkingen HiSPARC Elementaire deeltjes C.G.N. van Veen 1 Hadronen Opdracht 1: Elementaire deeltjes worden onderverdeeld in quarks en leptonen. (a) Noem twee eigenschappen die quarks en leptonen met

Nadere informatie

Kosmische straling: airshowers. J.W. van Holten NIKHEF, Amsterdam

Kosmische straling: airshowers. J.W. van Holten NIKHEF, Amsterdam Kosmische straling: airshowers J.W. van Holten NIKHEF, Amsterdam 1. Kosmische straling. Kosmische straling wordt veroorzaakt door zeer energetische deeltjes die vanuit de ruimte de aardatmosfeer binnendringen

Nadere informatie

IONISERENDE STRALING. Deeltjes-straling

IONISERENDE STRALING. Deeltjes-straling /stralingsbeschermingsdienst SBD 9673 Dictaat 98-10-26, niv. 5 A/B IONISERENDE STRALING Met de verzamelnaam straling bedoelen we vele verschillende verschijningsvormen van energie, die kunnen worden uitgezonden

Nadere informatie

- U zou geslaagd zijn als u voor het oefenexamen totaal 66 punten of meer behaalt (dus u moet minimaal 33 vragen juist beantwoorden).

- U zou geslaagd zijn als u voor het oefenexamen totaal 66 punten of meer behaalt (dus u moet minimaal 33 vragen juist beantwoorden). Technische Universiteit Delft Faculteit Technische Natuur Wetenschappen Reactor Instituut Delft Nationaal Centrum voor Stralingsveiligheid Afdeling Opleidingen Delft Oefenexamen 1, Stralingshygiëne deskundigheidsniveau

Nadere informatie

Gamma en neutron afscherming. Jan Leen Kloosterman Interfacultair Reactor Instituut Technische Universiteit Delft

Gamma en neutron afscherming. Jan Leen Kloosterman Interfacultair Reactor Instituut Technische Universiteit Delft Gamma en neutron afscherming Jan Leen Kloosterman Interfacultair Reactor Instituut Technische Universiteit Delft Verschillen gamma s-neutronen Gamma s hebben interactie met atoomschil Foto-elektrisch effect

Nadere informatie

Algemeen. Cosmic air showers J.M.C. Montanus. HiSPARC. 1 Kosmische deeltjes. 2 De energie van een deeltje

Algemeen. Cosmic air showers J.M.C. Montanus. HiSPARC. 1 Kosmische deeltjes. 2 De energie van een deeltje Algemeen HiSPARC Cosmic air showers J.M.C. Montanus 1 Kosmische deeltjes De aarde wordt continu gebombardeerd door deeltjes vanuit de ruimte. Als zo n deeltje de dampkring binnendringt zal het op een gegeven

Nadere informatie

Wetenschappelijke Nascholing Deel 1: Van de alchemisten tot het Higgs-deeltje

Wetenschappelijke Nascholing Deel 1: Van de alchemisten tot het Higgs-deeltje Wetenschappelijke Nascholing Deel 1: Van de alchemisten tot het Higgs-deeltje Dirk Ryckbosch Fysica en Sterrenkunde 9 oktober 2017 Dirk Ryckbosch (Fysica en Sterrenkunde) Elementaire Deeltjes 9 oktober

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 21 november 2005 van 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Stralingsfysica (3D100) d.d. 21 november 2005 van 14:00 17:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Straingsfysica (3D) d.d. november 5 van 4: 7: uur Vu de presentiekaart in boketters in en onderteken deze. Gebruik van boek, aantekeningen of notebook is niet

Nadere informatie

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum

Fysische grondslagen radioprotectie deel 1. dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum Fysische grondslagen radioprotectie deel 1 dhr. Rik Leyssen Fysicus Radiotherapie Limburgs Oncologisch Centrum rik.leyssen@jessazh.be Fysische grondslagen radioprotectie Wat is straling? Radioactiviteit?

Nadere informatie

Begripsvragen: Radioactiviteit

Begripsvragen: Radioactiviteit Handboek natuurkundedidactiek Hoofdstuk 4: Leerstofdomeinen 4.2 Domeinspecifieke leerstofopbouw 4.2.6 Radioactiviteit Begripsvragen: Radioactiviteit 1 Meerkeuzevragen Ioniserende straling 1 [H/V] Op welke

Nadere informatie

HiSPARC High-School Project on Astrophysics Research with Cosmics. Interactie van kosmische straling en aardatmosfeer

HiSPARC High-School Project on Astrophysics Research with Cosmics. Interactie van kosmische straling en aardatmosfeer HiSPARC High-School Project on Astrophysics Research with Cosmics Interactie van kosmische straling en aardatmosfeer 2.3 Airshowers In ons Melkwegstelsel is sprake van een voortdurende stroom van hoogenergetische

Nadere informatie

1 Leerlingproject: Kosmische straling 28 februari 2002

1 Leerlingproject: Kosmische straling 28 februari 2002 1 Leerlingproject: Kosmische straling 28 februari 2002 1 Kosmische straling Onder kosmische straling verstaan we geladen deeltjes die vanuit de ruimte op de aarde terecht komen. Kosmische straling is onder

Nadere informatie

Hoeveel straling krijg ik eigenlijk? Prof. dr. ir. Wim Deferme

Hoeveel straling krijg ik eigenlijk? Prof. dr. ir. Wim Deferme Hoeveel straling krijg ik eigenlijk? Prof. dr. ir. Wim Deferme 2 Geschiedenis -500 vcr.: ατοµοσ ( atomos ) bij de Grieken (Democritos) 1803: verhandeling van Dalton over atomen 1869: voorstelling van 92

Nadere informatie

Detectie van kosmische straling

Detectie van kosmische straling Detectie van kosmische straling muonen? geproduceerd op 15 km hoogte reizen met een snelheid in de buurt van de lichtsnelheid levensduur = 2,2.10-6 s s = 2,2.10-6 s x 3.10 8 m/s = 660 m = 0,6 km Victor

Nadere informatie

p na = p n,na + p p,na p n,na = m n v 3

p na = p n,na + p p,na p n,na = m n v 3 Kernreactoren Opgave: Moderatorkeuze in een kernsplijtingscentrale a) Er is geen relevante externe resulterende kracht. Dat betekent dat er geen relevante stoot wordt uitgeoefend en de impuls van het systeem

Nadere informatie

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel.

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel. H7: Radioactiviteit Als een bepaalde kern van een element te veel of te weinig neutronen heeft is het onstabiel. Daardoor gaan ze na een zekere tijd uit elkaar vallen, op die manier bereiken ze een stabiele

Nadere informatie

Opgave 3 N-16 in een kerncentrale 2014 II

Opgave 3 N-16 in een kerncentrale 2014 II Opgave 3 N-16 in een kerncentrale 2014 II In de reactor binnen in het reactorgebouw van een kerncentrale komt warmte vrij door kernsplijtingen. Die warmte wordt afgevoerd door het water in het primaire

Nadere informatie

Samenvatting Natuurkunde Domein B2

Samenvatting Natuurkunde Domein B2 Samenvatting Natuurkunde Domein B2 Samenvatting door R. 1964 woorden 2 mei 2017 7,1 4 keer beoordeeld Vak Natuurkunde Domein B. Beeld- en geluidstechniek Subdomein B2. Medische beeldvorming 1. Uitzending,

Nadere informatie

Fysica. Atoombouw, straling en wiskunde H book claims widespread radiation testing during cold war/

Fysica. Atoombouw, straling en wiskunde H book claims widespread radiation testing during cold war/ Fysica Atoombouw, straling en wiskunde H1 3 https://nypost.com/2017/10/02/new book claims widespread radiation testing during cold war/ Hendrik Erenstein Fysica Stralingsbescherming Radiologie OG-Tutor

Nadere informatie

Toezichthouder Stralingsbescherming. Oefenvragen

Toezichthouder Stralingsbescherming. Oefenvragen Toezichthouder Stralingsbescherming meet- en regeltechniek Oefenvragen 21 oktober 2018 rijksuniversiteit groningen arbo- en milieudienst garp Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen

Nadere informatie

De Zon. N.G. Schultheiss

De Zon. N.G. Schultheiss 1 De Zon N.G. Schultheiss 1 Inleiding Deze module is direct vanaf de derde of vierde klas te volgen en wordt vervolgd met de module De Broglie of de module Zonnewind. Figuur 1.1: Een schema voor kernfusie

Nadere informatie

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica Wat zie je? PositronEmissieTomografie (PET) Nucleaire geneeskunde: basisprincipe Toepassing van nucleaire geneeskunde Vakgebieden

Nadere informatie

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern.

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern. Uitwerkingen 1 protonen en neutronen Opgave negatief positief neutraal positief neutraal Een atoom bevat twee soorten geladen deeltjes namelijk protonen en elektronen. Elk elektron is evenveel negatief

Nadere informatie

Meesterklas Deeltjesfysica. Universiteit Antwerpen

Meesterklas Deeltjesfysica. Universiteit Antwerpen Meesterklas Deeltjesfysica Universiteit Antwerpen Programma 9u45 10u00 11u00 11u15 11u45 12u00 13u00 15u00 15u30 17u00 Verwelkoming Deeltjesfysica Prof. Nick van Remortel Pauze Versnellers en Detectoren

Nadere informatie

Stabiliteit van atoomkernen

Stabiliteit van atoomkernen Stabiliteit van atoomkernen Wanneer is een atoomkern stabiel? Wat is een radioactieve stof? Wat doet een radioactieve stof? 1 Soorten ioniserende straling Alfa-straling of α-straling Bèta-straling of β-straling

Nadere informatie

Exact Periode 7 Radioactiviteit Druk

Exact Periode 7 Radioactiviteit Druk Exact Periode 7 Radioactiviteit Druk Exact periode 7 Radioactiviteit Druk Exact Periode 7 2 Natuurlijke radioactiviteit Met natuurlijke radioactiviteit wordt bedoeld: radioactiviteit die niet kunstmatig

Nadere informatie

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier.

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier. Alfa -, bèta - en gammastraling Al in 1899 onderscheidde Ernest Rutherford bij de uraniumstraling "minstens twee" soorten: één die makkelijk wordt geabsorbeerd, voor het gemak de 'alfastraling' genoemd,

Nadere informatie

Detectie TMS MR & VRS-d Stijn Laarakkers

Detectie TMS MR & VRS-d Stijn Laarakkers Detectie TMS MR & VRS-d 2018 Stijn Laarakkers Overzicht Detectie van ioniserende straling Soorten detectoren: Ionisatiedetectoren Scintillatiedetectoren Rendement/efficiency Telfout en meetgevoeligheid

Nadere informatie

Wordt echt spannend : in 2015 want dan gaat versneller in Gevene? CERN echt aan en gaat hij draaien op zijn ontwerp specificaties.

Wordt echt spannend : in 2015 want dan gaat versneller in Gevene? CERN echt aan en gaat hij draaien op zijn ontwerp specificaties. Nog niet gevonden! Wordt echt spannend : in 2015 want dan gaat versneller in Gevene? CERN echt aan en gaat hij draaien op zijn ontwerp specificaties. Daarnaast ook in 2015 een grote ondergrondse detector.

Nadere informatie

Toezichthouder Stralingsbescherming. Oefenvragen

Toezichthouder Stralingsbescherming. Oefenvragen Toezichthouder Stralingsbescherming tandartsen en orthodontisten basis Oefenvragen 21 oktober 2018 rijksuniversiteit groningen arbo- en milieudienst garp Niets uit deze uitgave mag worden verveelvoudigd,

Nadere informatie

Opgave Zonnestelsel 2005/2006: 3

Opgave Zonnestelsel 2005/2006: 3 Opgave Zonnestelsel 25/26: 3 2.1 Samenstelling van de gasreuzen Het afleiden van de interne samenstelling van planeten gebeurt voornamelijk door te kijken naar de afwijkingen in de banen van satellieten

Nadere informatie

Sterrenkunde Ruimte en tijd (3)

Sterrenkunde Ruimte en tijd (3) Sterrenkunde Ruimte en tijd (3) Zoals we in het vorige artikel konden lezen, concludeerde Hubble in 1929 tot de theorie van het uitdijende heelal. Dit uitdijen geschiedt met een snelheid die evenredig

Nadere informatie

Praktische stralingsbescherming

Praktische stralingsbescherming Praktische stralingsbescherming VRS-D/MR nj 2018 1-3 Atoombouw en verval 4,5 Wisselwerking van straling met materie en afscherming 6-9 Röntgentoestellen, ingekapselde bronnen 10 Grootheden en eenheden

Nadere informatie

Onder constituenten verstaat men de fundamentele fermionen: de quarks in het versnelde proton of anti-proton, t of de versnelde elektronen of

Onder constituenten verstaat men de fundamentele fermionen: de quarks in het versnelde proton of anti-proton, t of de versnelde elektronen of 1 2 3 Onder constituenten verstaat men de fundamentele fermionen: de quarks in het versnelde proton of anti-proton, t of de versnelde elektronen of positronen. De vooruitgang in de hoge-energie fysica

Nadere informatie

Quantummechanica en Relativiteitsleer bij kosmische straling

Quantummechanica en Relativiteitsleer bij kosmische straling Quantummechanica en sleer bij kosmische straling Niek Schultheiss 1/19 Krachten en krachtdragers Op kerndeeltjes werkt de zwaartekracht. Op kerndeeltjes werkt de elektromagnetische kracht. Kernen kunnen

Nadere informatie

Kosmische muonen. Folkert Nobels, Bas Roelenga. 1. Theorie. Contents. Inleiding

Kosmische muonen. Folkert Nobels, Bas Roelenga. 1. Theorie. Contents. Inleiding Natuurkundig practicum 3 203 204 Kosmische muonen Folkert Nobels, Bas Roelenga Abstract In dit experiment is de levensduur van het muon bepaald en is er gekeken naar de intensiteit van kosmische muonen.

Nadere informatie

2.3 Energie uit atoomkernen

2.3 Energie uit atoomkernen 2. Energie uit atoomkernen 2.1 Equivalentie van massa en energie 2.2 Energie per kerndeeltje in een kern 2.3 Energie uit atoomkernen 2.1 Equivalentie van massa en energie Einstein: massa kan worden omgezet

Nadere informatie

De energievallei van de nucliden als nieuw didactisch concept

De energievallei van de nucliden als nieuw didactisch concept De energievallei van de nucliden als nieuw didactisch concept - Kernfysica: van beschrijven naar begrijpen Rita Van Peteghem Coördinator Wetenschappen-Wisk. CNO (Centrum Nascholing Onderwijs) Universiteit

Nadere informatie

Groep 1 + 2 (klas 5), deel 1 Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5

Groep 1 + 2 (klas 5), deel 1 Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Groep 1 + 2 (klas 5), deel 1 Meerkeuzevragen + bijbehorende antwoorden aansluitend op hoofdstuk 2 paragraaf 1 t/m 3, Kromlijnige bewegingen (Systematische Natuurkunde) Vraag 1 Bij een horizontale worp

Nadere informatie

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben.

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben. Werkbladen HiSPARC Elementaire deeltjes C.G.N. van Veen 1 Hadronen Opdracht 1: Elementaire deeltjes worden onderverdeeld in quarks en leptonen. (a) Noem twee eigenschappen die quarks en leptonen met elkaar

Nadere informatie

Medische Toepassingen van pixel detectors. Jan Visser

Medische Toepassingen van pixel detectors. Jan Visser Medische Toepassingen van pixel detectors Courtesy ATLAS collaboration Jan Visser Viva Fysica, Amsterdam January 2015 Courtesy Linda B. Glaser Foto s maken in Hoge Energie Fysica Vertex resolutie ~ 15

Nadere informatie

H7+8 kort les.notebook June 05, 2018

H7+8 kort les.notebook June 05, 2018 H78 kort les.notebook June 05, 2018 Hoofdstuk 7 en Materie We gaan eens goed naar die stoffen kijken. We gaan steeds een niveau dieper. Stoffen bijv. limonade (mengsel) Hoofdstuk 8 Straling Moleculen water

Nadere informatie

1 Bellenvat. 1.1 Intorductie. 1.2 Impuls bepaling

1 Bellenvat. 1.1 Intorductie. 1.2 Impuls bepaling 1 Bellenvat 1.1 Intorductie In dit vraagstuk zullen we een analyse doen van een bellenvat foto die genomen is van een interactie van een π bundeldeeltje in een waterstof bellenvat. De bijgesloten foto

Nadere informatie

Compton-effect. Peter van Zwol Sietze van Buuren Assistent: Heinrich Wörtche 16 oktober Samenvatting

Compton-effect. Peter van Zwol Sietze van Buuren Assistent: Heinrich Wörtche 16 oktober Samenvatting Compton-effect Peter van Zwol Sietze van Buuren Assistent: Heinrich Wörtche 6 oktober 23 Samenvatting Onder verschillende hoeken zijn energiespectra van fotonen, die door een vrij elektron zijn verstrooid,

Nadere informatie

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern.

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern. Uitwerkingen 1 Opgave 1 protonen en neutronen Opgave negatief positief neutraal positief neutraal Opgave 3 Een atoom bevat twee soorten geladen deeltjes namelijk protonen en elektronen. Elk elektron is

Nadere informatie

Gecoördineerd examen stralingsbescherming Deskundigheidsniveau 3

Gecoördineerd examen stralingsbescherming Deskundigheidsniveau 3 Gecoördineerd examen stralingsbescherming Deskundigheidsniveau 3 Nuclear Research and Consultancy Group Technische Universiteit Delft Boerhaave/IRS-stralingsbeschermingscursussen Rijksuniversiteit Groningen

Nadere informatie

21/05/2014. 3. Natuurlijke en kunstmatige radioactiviteit 3.1 3.1. 3.1 Soorten radioactieve straling en transmutatieregels. (blijft onveranderd)

21/05/2014. 3. Natuurlijke en kunstmatige radioactiviteit 3.1 3.1. 3.1 Soorten radioactieve straling en transmutatieregels. (blijft onveranderd) 3. Natuurlijke en kunstmatige radioactiviteit 3.1 Soorten radioactieve straling en transmutatieregels 3.2 Halveringstijd Detectiemethoden voor radioactieve straling 3.4 Oefeningen 3.1 Soorten radioactieve

Nadere informatie

Uitwerkingen opgaven hoofdstuk 5

Uitwerkingen opgaven hoofdstuk 5 Uitwerkingen opgaven hodstuk 5 5.1 Kernreacties Opgave 1 a Zie BINAS tabel 40A. Krypton heeft symbool Kr en atoomnummer 36 krypton 81 = 81 36 Kr 81 0 81 De vergelijking voor de K-vangst is: 36Kr 1e 35X

Nadere informatie

Rutherford verstrooiing

Rutherford verstrooiing Rutherford verstrooiing Hoofdstuk 1 van Das & Ferbel Lange afleiding van in 1.2 niet, maar 1.3 en 1.4 zijn belangrijk en 1.7 slaan we over Deeltjesfysica I Hoorcollege 2 1 3 typen straling Er werden drie

Nadere informatie

Kwantummechanica Donderdag, 29 september 2016 OPGAVEN SET HOOFDSTUK 1 - OPLOSSINGEN

Kwantummechanica Donderdag, 29 september 2016 OPGAVEN SET HOOFDSTUK 1 - OPLOSSINGEN 1 Kwantummehania Donderdag, 29 september 2016 OPGAVEN SET HOOFDSTUK 1 - OPLOSSINGEN ALGEMENE VRAGEN Opgave 1: Wat is de maximum snelheid dat een deeltje kan hebben, zodat zijn kinetishe energie geshreven

Nadere informatie

BIJLAGE bij Examen Coördinerend Deskundige Stralingsbescherming

BIJLAGE bij Examen Coördinerend Deskundige Stralingsbescherming BIJLAGE bij Examen Coördinerend Deskundige Stralingsbescherming Nuclear Research and consultancy Group Technische Universiteit Delft Boerhaave Nascholing/LUMC Rijksuniversiteit Groningen Radboudumc TU

Nadere informatie

Large Hadron Collider. Werkbladen. HiSPARC. 1 Inleiding. 2 Voorkennis. 3 Opgaven atoombouw. C.G.N. van Veen

Large Hadron Collider. Werkbladen. HiSPARC. 1 Inleiding. 2 Voorkennis. 3 Opgaven atoombouw. C.G.N. van Veen Werkbladen HiSPARC Large Hadron Collider C.G.N. van Veen 1 Inleiding In het voorjaar van 2015 start de LHC onieuw o. Ditmaal met een hogere energie dan ooit tevoren. Protonen met een energie van 7,0 TeV

Nadere informatie

IONISERENDE STRALING VWO

IONISERENDE STRALING VWO IONISERENDE STRALING VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan

Nadere informatie

Kernenergie. FEW cursus: Uitdagingen. Jo van den Brand 6 december 2010

Kernenergie. FEW cursus: Uitdagingen. Jo van den Brand 6 december 2010 Kernenergie FEW cursus: Uitdagingen Jo van den Brand 6 december 2010 Inhoud Jo van den Brand jo@nikhef.nl www.nikhef.nl/~jo Boek Giancoli Physics for Scientists and Engineers Week 1 Week 2 Werkcollege

Nadere informatie

Fysische grondslagen van radioprotectie

Fysische grondslagen van radioprotectie Fysische grondslagen van radioprotectie Voorwoord... 3 1. Inleiding... 4 2. Straling... 7 2.1. Bouw van de materie... 7 2.2. Straling... 8 2.2.1. Inleiding... 8 2.2.2. Elektromagnetische straling... 9

Nadere informatie

Vraagstuk: Afscherming versnellerruimte

Vraagstuk: Afscherming versnellerruimte Vraagstuk: Afscherming versnellerruimte Een onderzoeksinstituut beschikt over een 6 MV versneller. Hiermee worden elektronen versneld die vervolgens op een trefplaat remstralingsfotonen produceren. Met

Nadere informatie

1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen.

1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen. SO Straling 1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen. 2 Waaruit bestaat de elektronenwolk van een atoom? Negatief geladen deeltjes, elektronen. 3 Wat bevindt zich

Nadere informatie

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel Uitwerking Opgave Zonnestelsel 2005/2006: 1 1 Het Zonnestelsel en de Zon 1.1 Het Barycentrum van het Zonnestelsel Door haar grote massa domineert de Zon het Zonnestelsel. Echter, de planeten hebben een

Nadere informatie

Eindexamen natuurkunde pilot vwo II

Eindexamen natuurkunde pilot vwo II Beoordelingsmodel Opgave Sopraansaxofoon maximumscore 4 uitkomst: F d = 7, N voorbeeld van een bepaling: Er geldt: Fr z z= Fr d d. Opmeten in de figuur levert: rz =,7 cm en rd= 5,4 cm. Invullen levert:,

Nadere informatie

Toezichthouder Stralingsbescherming. Oefenvragen

Toezichthouder Stralingsbescherming. Oefenvragen Toezichthouder Stralingsbescherming verspreidbare radioactieve stoffen niveau D Oefenvragen 21 oktober 2018 rijksuniversiteit groningen arbo- en milieudienst garp Niets uit deze uitgave mag worden verveelvoudigd,

Nadere informatie

TE BEHANDELEN ONDERWERPEN BIJ OPLEIDINGEN STRALINGSHYGIËNE

TE BEHANDELEN ONDERWERPEN BIJ OPLEIDINGEN STRALINGSHYGIËNE TE BEHANDELEN ONDERWERPEN BIJ OPLEIDINGEN STRALINGSHYGIËNE Verklaring van de notatie in de laatste 6 kolommen: cijfer behandelingswijze doelstelling niet nodig globaal, kwalitatief bekendheid met begrip

Nadere informatie

HOVO cursus Kosmologie

HOVO cursus Kosmologie HOVO cursus Kosmologie Voorjaar 011 prof.dr. Paul Groot dr. Gijs Nelemans Afdeling Sterrenkunde, Radboud Universiteit Nijmegen HOVO cursus Kosmologie Overzicht van de cursus: 17/1 Groot Historische inleiding

Nadere informatie