Logica 1. Joost J. Joosten

Maat: px
Weergave met pagina beginnen:

Download "Logica 1. Joost J. Joosten"

Transcriptie

1 Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan CS Utrecht Kamer 158, jjoosten@phil.uu.nl jjoosten (hier moet een tilde bij) Logica 1 p.1/15

2 Vandaag Recapitulatie vorig college. Logica 1 p.2/15

3 Vandaag Recapitulatie vorig college. Trek aan de rem als het te snel gaat. Logica 1 p.2/15

4 Vandaag Recapitulatie vorig college. Trek aan de rem als het te snel gaat. Correctheid natuurlijke deductie voorbereiden Logica 1 p.2/15

5 Vandaag Recapitulatie vorig college. Trek aan de rem als het te snel gaat. Correctheid natuurlijke deductie voorbereiden Inductieve bewijzen Logica 1 p.2/15

6 Tautologieën Definitie tautologie: overal in de waarheidstabel staan énen. Logica 1 p.3/15

7 Tautologieën Definitie tautologie: overal in de waarheidstabel staan énen. We gaan een iets beter vocabularium ontwikkelen om over waarheidstafels te spreken. Logica 1 p.3/15

8 Tautologieën Definitie tautologie: overal in de waarheidstabel staan énen. We gaan een iets beter vocabularium ontwikkelen om over waarheidstafels te spreken. We noemen een rij in het linker deel van een waarheidstabel een valuatie. Logica 1 p.3/15

9 Tautologieën Definitie tautologie: overal in de waarheidstabel staan énen. We gaan een iets beter vocabularium ontwikkelen om over waarheidstafels te spreken. We noemen een rij in het linker deel van een waarheidstabel een valuatie. In andere woorden, een valuatie zegt bij elke propositie letter of deze waar (1) is of niet (0). Logica 1 p.3/15

10 Valuaties Waarheidstafels zeggen ons hoe wij valuaties tot formules uit moeten breiden. Logica 1 p.4/15

11 Valuaties Waarheidstafels zeggen ons hoe wij valuaties tot formules uit moeten breiden. Bijvoorbeeld: v(ϕ ψ) = min{v(ϕ), v(ψ)} Logica 1 p.4/15

12 Valuaties Waarheidstafels zeggen ons hoe wij valuaties tot formules uit moeten breiden. Bijvoorbeeld: v(ϕ ψ) = min{v(ϕ),v(ψ)} = v(ϕ) v(ψ) Logica 1 p.4/15

13 Valuaties Waarheidstafels zeggen ons hoe wij valuaties tot formules uit moeten breiden. Bijvoorbeeld: v(ϕ ψ) = min{v(ϕ),v(ψ)} = v(ϕ) v(ψ) Een formule ψ is een tautologie als v(ψ) = 1 voor alle valuaties v. Logica 1 p.4/15

14 Valuaties Waarheidstafels zeggen ons hoe wij valuaties tot formules uit moeten breiden. Bijvoorbeeld: v(ϕ ψ) = min{v(ϕ),v(ψ)} = v(ϕ) v(ψ) Een formule ψ is een tautologie als v(ψ) = 1 voor alle valuaties v. Voorbeeld: (p q) (q p). Logica 1 p.4/15

15 Meer valuaties Definitie: ϕ = ψ Logica 1 p.5/15

16 Meer valuaties Definitie: ϕ = ψ Definitie: Γ = ψ Logica 1 p.5/15

17 Meer valuaties Definitie: ϕ = ψ Definitie: Γ = ψ Definitie: = ϕ. Logica 1 p.5/15

18 Falsum en Verum De waarheidstabel van ϕ en ϕ zijn dezelfde. Logica 1 p.6/15

19 Falsum en Verum De waarheidstabel van ϕ en ϕ zijn dezelfde. Van nu af aan zullen we ϕ schrijven en ϕ bedoelen: het is een verkorte schrijfwijze. Logica 1 p.6/15

20 Falsum en Verum De waarheidstabel van ϕ en ϕ zijn dezelfde. Van nu af aan zullen we ϕ schrijven en ϕ bedoelen: het is een verkorte schrijfwijze. Evenzo zal van nu af aan ϕ ψ verkorte schrijfwijze zijn voor (ϕ ψ) (ψ ϕ) Logica 1 p.6/15

21 Nogmaals deductie Nog één connectief: falsum Logica 1 p.7/15

22 Nogmaals deductie Nog één connectief: falsum Ex falso sequitur quidlibet Logica 1 p.7/15

23 Nogmaals deductie Nog één connectief: falsum Ex falso sequitur quidlibet Reductio ad absurdum Logica 1 p.7/15

24 Nogmaals deductie Nog één connectief: falsum Ex falso sequitur quidlibet Reductio ad absurdum Stel Piet heeft de afgelopen tien dagen niets gegeten en niets gedronken... Logica 1 p.7/15

25 Meer deductie Onze kaart is nu af! Logica 1 p.8/15

26 Meer deductie Onze kaart is nu af! Hoe veel regels? Welke regels? Welke notatie? Logica 1 p.8/15

27 Meer deductie Definitie: ϕ ψ Logica 1 p.9/15

28 Meer deductie Definitie: ϕ ψ Definitie: Γ ψ Logica 1 p.9/15

29 Meer deductie Definitie: ϕ ψ Definitie: Γ ψ Definitie: ϕ. Logica 1 p.9/15

30 Correctheid redeneren Is alles wat wij kunnen bewijzen ook waar? Logica 1 p.10/15

31 Correctheid redeneren Is alles wat wij kunnen bewijzen ook waar? ϕ = ϕ? Logica 1 p.10/15

32 Correctheid redeneren Is alles wat wij kunnen bewijzen ook waar? ϕ = ϕ? We zullen bewijzen dat voor elk bewijs Γ ϕ ook geldt Γ = ϕ. Logica 1 p.10/15

33 Correctheid redeneren Is alles wat wij kunnen bewijzen ook waar? ϕ = ϕ? We zullen bewijzen dat voor elk bewijs Γ ϕ ook geldt Γ = ϕ. Hoe kunnen wij universele uitspraken bewijzen? Logica 1 p.10/15

34 Universele uitspraken Hoe kunnen wij universele uitspraken bewijzen? Generalisatie Logica 1 p.11/15

35 Universele uitspraken Hoe kunnen wij universele uitspraken bewijzen? Generalisatie Eindig domein Logica 1 p.11/15

36 Universele uitspraken Hoe kunnen wij universele uitspraken bewijzen? Generalisatie Eindig domein Reductie Logica 1 p.11/15

37 Universele uitspraken Hoe kunnen wij universele uitspraken bewijzen? Generalisatie Eindig domein Reductie Inductie Logica 1 p.11/15

38 Inductie Thema/techniek van deze week: inductie Logica 1 p.12/15

39 Inductie Thema/techniek van deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Logica 1 p.12/15

40 Inductie Thema/techniek van deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Logica 1 p.12/15

41 Inductie Thema/techniek van deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Logica 1 p.12/15

42 Inductie Thema/techniek van deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Logica 1 p.12/15

43 Inductie Thema/techniek van deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Voorbeeld: formules Logica 1 p.12/15

44 Inductie Thema/techniek van deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Voorbeeld: formules Voorbeeld: bewijzen Logica 1 p.12/15

45 Inductie Thema/techniek van deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Voorbeeld: formules Voorbeeld: bewijzen Makkelijkste voorbeeld: Logica 1 p.12/15

46 Inductie Thema/techniek van deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Voorbeeld: formules Voorbeeld: bewijzen Makkelijkste voorbeeld: natuurlijke getallen Logica 1 p.12/15

47 Getallen Logica 1 p.13/15

48 Getallen Wees niet bang voor wiskunde Logica 1 p.13/15

49 Getallen Wees niet bang voor wiskunde Voorbeeld: Gauss Logica 1 p.13/15

50 Getallen Wees niet bang voor wiskunde Voorbeeld: Gauss Voorbeeld: Torens van Hanoi Logica 1 p.13/15

51 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Logica 1 p.14/15

52 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Logica 1 p.14/15

53 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Logica 1 p.14/15

54 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Logica 1 p.14/15

55 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Dan hebben alle formules eigenschap P. Logica 1 p.14/15

56 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Dan hebben alle formules eigenschap P. Logica 1 p.14/15

57 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Dan hebben alle formules eigenschap P. Logica 1 p.14/15

58 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Dan hebben alle formules eigenschap P. Logica 1 p.14/15

59 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ψ), dan P( ψ) Dan hebben alle formules eigenschap P. Logica 1 p.14/15

60 Inductieprincipes We kunnen nu de indrukwekkende stelling bewijzen dat elke formule een even aantal haakjes heeft. Logica 1 p.15/15

61 Technieken Week 1: natuurlijke deductie Logica 1 p.16/15

62 Technieken Week 1: natuurlijke deductie Week 2: waarheidstabellen Logica 1 p.16/15

63 Technieken Week 1: natuurlijke deductie Week 2: waarheidstabellen Week 3: inductie Logica 1 p.16/15

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Voortgezette Logica, Week 2

Voortgezette Logica, Week 2 Voortgezette Logica, Week 2 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 164, 030-2535575 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Inleiding Wiskundige Logica

Inleiding Wiskundige Logica Inleiding Wiskundige Logica Yde Venema 2017/2018 c YV 2018 Institute for Logic, Language and Computation, University of Amsterdam, Science Park 904, NL 1098XH Amsterdam E-mail: yvenema@uvanl Voorwoord

Nadere informatie

Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven

Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven Mededelingen TI1300: Redeneren en Logica College 4: Waarheidstafels, Redeneringen, Syntaxis van PROP Tomas Klos Algoritmiek Groep Voor de Fibonacci getallen geldt f 0 = f 1 = 1 (niet 0) Practicum 1 Practicum

Nadere informatie

Tentamen TI1300 en IN1305-A (Redeneren en) Logica

Tentamen TI1300 en IN1305-A (Redeneren en) Logica TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen TI1300 en IN1305-A (Redeneren en) Logica 21 Januari 2011, 8.30 11.30 uur LEES DEZE OPMERKINGEN AANDACHTIG DOOR

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 2

Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 2 Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 2 2.1 Geef de volgende zinnen weer in propositionele notatie: i Als de bus niet komt, komen de tram en de trein We voeren de volgende

Nadere informatie

Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 3

Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 3 Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 3 3.1 Stel ϕ, ψ α, β γ, en ψ, α, γ χ. Indien nu bovendien bekend wordt dat χ onwaar is, maar ψ en β waar, wat weet u dan over ϕ? oplossing:

Nadere informatie

Logic for Computer Science

Logic for Computer Science Logic for Computer Science 06 Normaalvormen en semantische tableaux Wouter Swierstra University of Utrecht 1 Vorige keer Oneindige verzamelingen 2 Vandaag Wanneer zijn twee formules hetzelfde? Zijn er

Nadere informatie

Logica voor Informatica. Propositielogica. Syntax & Semantiek. Mehdi Dastani Intelligent Systems Utrecht University

Logica voor Informatica. Propositielogica. Syntax & Semantiek. Mehdi Dastani Intelligent Systems Utrecht University Logica voor Informatica Propositielogica Syntax & Semantiek Mehdi Dastani m.m.dastani@uu.nl Intelligent Systems Utrecht University Wat is Logica? Afleiden van conclusies uit aannames Jan Sara Petra Schuldig

Nadere informatie

Wie A zegt moet B zeggen

Wie A zegt moet B zeggen Logica in actie H O O F D S T U K 3 Wie A zegt moet B zeggen Logici ontwerpen niet alleen systemen om bestaande vormen van redeneren te analyseren, ze bestuderen ook de eigenschappen van die systemen op

Nadere informatie

Mededelingen. TI1300: Redeneren en Logica. Metavariabelen Logica, p Minder connectieven nodig

Mededelingen. TI1300: Redeneren en Logica. Metavariabelen Logica, p Minder connectieven nodig Mededelingen TI1300: Redeneren en Logica College 5: Semantiek van de Propositielogica Tomas Klos Algoritmiek Groep Tip: Als ik je vraag de recursieve definitie van een functie over PROP op te schrijven,

Nadere informatie

Logica voor Informatica

Logica voor Informatica Logica voor Informatica 10 Predikatenlogica Wouter Swierstra University of Utrecht 1 Vorige keer Syntax van predikatenlogica Alfabet Termen Welgevormde formulas (wff) 2 Alfabet van de predikatenlogica

Nadere informatie

Logica voor Informatica. Propositielogica. Bewijssystemen voor propositielogica. Mehdi Dastani

Logica voor Informatica. Propositielogica. Bewijssystemen voor propositielogica. Mehdi Dastani Logica voor Informatica Propositielogica Bewijssystemen voor propositielogica Mehdi Dastani mmdastani@uunl Intelligent Systems Utrecht University Deductie Tot nu toe voornamelijk semantisch naar logica

Nadere informatie

TI1300: Redeneren en Logica, Practicum 1 Deadline: 17 september 2010, 10:45 uur

TI1300: Redeneren en Logica, Practicum 1 Deadline: 17 september 2010, 10:45 uur TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica TI1300: Redeneren en Logica, Practicum 1 Deadline: 17 september 2010, 10:45 uur Introductie In deze practicumopgave komt

Nadere informatie

Inleiding logica Inleveropgave 3

Inleiding logica Inleveropgave 3 Inleiding logica Inleveropgave 3 Lientje Maas 30 september 2013 Ik (Rijk) heb verbeteringen in rood vermeld. Deze verbeteringen meegenomen zijn dit correcte uitwerkingen van de derde inleveropgaven. 1

Nadere informatie

Logica voor Informatica. Propositielogica. Normaalvormen en Semantische tableaux. Mehdi Dastani

Logica voor Informatica. Propositielogica. Normaalvormen en Semantische tableaux. Mehdi Dastani Logica voor Informatica Propositielogica Normaalvormen en Semantische tableaux Mehdi Dastani m.m.dastani@uu.nl Intelligent Systems Utrecht University Literals Een literal is een propositieletter, of de

Nadere informatie

Tegenvoorbeeld. TI1300: Redeneren en Logica. De truc van Gauss. Carl Friedrich Gauss, 7 jaar oud (omstreeks 1785)

Tegenvoorbeeld. TI1300: Redeneren en Logica. De truc van Gauss. Carl Friedrich Gauss, 7 jaar oud (omstreeks 1785) Tegenvoorbeeld TI1300: Redeneren en Logica College 3: Bewijstechnieken & Propositielogica Tomas Klos Definitie (Tegenvoorbeeld) Een situatie waarin alle premissen waar zijn, maar de conclusie niet Algoritmiek

Nadere informatie

Logica. Oefeningen op hoofdstuk Propositielogica

Logica. Oefeningen op hoofdstuk Propositielogica Oefeningen op hoofdstuk 1 Logica 1.1 Propositielogica Oefening 1.1. Stel dat f en g functies zijn waarvoor f(x)dx = g(x)+c niet waar is. Als Elio Di Rupo paarse sokken heeft, bepaal dan de waarheidswaarde

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Inhoud leereenheid 1. Inleiding. Introductie 13. Leerkern 13. 1.1 Wat is logica? 13 1.2 Logica en informatica 13

Inhoud leereenheid 1. Inleiding. Introductie 13. Leerkern 13. 1.1 Wat is logica? 13 1.2 Logica en informatica 13 Inhoud leereenheid 1 Inleiding Introductie 13 Leerkern 13 1.1 Wat is logica? 13 1.2 Logica en informatica 13 12 Leereenheid 1 Inleiding I N T R O D U C T I E Studeeraanwijzing Deze leereenheid is een leesleereenheid.

Nadere informatie

Hoofdstuk 3. behandeld. In de paragrafen 3.1 en 3.2 worden de noties valuatie, model en

Hoofdstuk 3. behandeld. In de paragrafen 3.1 en 3.2 worden de noties valuatie, model en Hoofdstuk 3 Semantiek van de Propositielogica In dit hoofdstuk wordt de semantiek (betekenistheorie) van de propositielogica behandeld. In de paragrafen 3.1 en 3.2 worden de noties valuatie, model en logisch

Nadere informatie

Tentamen TI1300 en IN1305-A (Redeneren en) Logica

Tentamen TI1300 en IN1305-A (Redeneren en) Logica TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen TI1300 en IN1305-A (Redeneren en) Logica 5 november 2010, 9.00 12.00 uur LEES DEZE OPMERKINGEN AANDACHTIG DOOR

Nadere informatie

Tentamen IN1305-I Fundamentele Informatica 1, deel I: Logica

Tentamen IN1305-I Fundamentele Informatica 1, deel I: Logica TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen IN1305-I Fundamentele Informatica 1, deel I: Logica 27 oktober 2008, 9.00 12.00 uur Dit tentamen bestaat uit 5

Nadere informatie

Inleiding Wiskundige Logica

Inleiding Wiskundige Logica Inleiding Wiskundige Logica Yde Venema 2017/2018 c YV 2018 Institute for Logic, Language and Computation, University of Amsterdam, Science Park 904, NL 1098XH Amsterdam E-mail: yvenema@uvanl Voorwoord

Nadere informatie

Samenvatting. TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten. Disclaimer

Samenvatting. TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten. Disclaimer Samenvatting TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst mogelijke

Nadere informatie

Logica voor AI. Responsiecollege. Antje Rumberg. 12 december Kripke Semantiek. Geldigheid. De bereikbaarheidsrelatie

Logica voor AI. Responsiecollege. Antje Rumberg. 12 december Kripke Semantiek. Geldigheid. De bereikbaarheidsrelatie Logica voor AI Responsiecollege Antje Rumberg Antje.Rumberg@phil.uu.nl 12 december 2012 1 De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en ruitje ϕ: het is noodzakelijk

Nadere informatie

Logica voor AI. Bisimulatie en niet-karakteriseerbaarheid. Antje Rumberg. 21 november Correspondentie.

Logica voor AI. Bisimulatie en niet-karakteriseerbaarheid. Antje Rumberg. 21 november Correspondentie. Logica voor AI en niet-karakteriseerbaarheid Antje Rumberg Antje.Rumberg@phil.uu.nl 21 november 2012 1 Kripke Semantiek De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en

Nadere informatie

Formeel Denken 2014 Uitwerkingen Tentamen

Formeel Denken 2014 Uitwerkingen Tentamen Formeel Denken 2014 Uitwerkingen Tentamen (29/01/15) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Als het regent word ik

Nadere informatie

Logica voor AI. Inleiding modale logica en Kripke semantiek. Antje Rumberg. 14 november 2012

Logica voor AI. Inleiding modale logica en Kripke semantiek. Antje Rumberg. 14 november 2012 Logica voor AI Inleiding modale logica en Kripke semantiek Antje Rumberg Antje.Rumberg@phil.uu.nl 14 november 2012 1 Logica voor AI Deel 1: Modale logica semantiek en syntax van verschillende modale logica

Nadere informatie

Tentamentips. Tomas Klos. 14 december 2010

Tentamentips. Tomas Klos. 14 december 2010 Tentamentips Tomas Klos 14 december 010 Samenvatting In dit document vind je een aantal tentamen tips. Het gaat om fouten die ik op tentamens veel gemaakt zie worden, en die ik je liever niet zie maken.

Nadere informatie

Propositielogica. Onderdeel van het college Logica (2017) Klaas Landsman

Propositielogica. Onderdeel van het college Logica (2017) Klaas Landsman Propositielogica Onderdeel van het college Logica (2017) Klaas Landsman They who are acquainted with the present state of the theory of Symbolic Algebra, are aware of the validity of the processes of analysis

Nadere informatie

Logica voor AI. Bewijstheorie en natuurlijke deductie. Antje Rumberg. 28 november Kripke Semantiek.

Logica voor AI. Bewijstheorie en natuurlijke deductie. Antje Rumberg. 28 november Kripke Semantiek. Logica voor AI en natuurlijke deductie Antje Rumberg AntjeRumberg@philuunl 28 november 2012 1 De taal L m van de modale propositielogica ::= p Blokje en ruitje : het is noodzakelijk dat : het is mogelijk

Nadere informatie

Handout Natuurlijke Deductie

Handout Natuurlijke Deductie Handout Natuurlijke Deductie Peter van Ormondt 4 februari 2017 1 Inleiding In Van Benthem et al (2016, Hoofdstuk 2), hebben we redeneringen bestudeerd door te kijken naar de semantiek of betekenis van

Nadere informatie

4 Beschouw de volgende formuleverzameling S: {"x "y ((Rxy Æ "z (Rxz Æ y = z)), "x "y (Ryx Æ "z (Rzx Æ y = z)),

4 Beschouw de volgende formuleverzameling S: {x y ((Rxy Æ z (Rxz Æ y = z)), x y (Ryx Æ z (Rzx Æ y = z)), T E N T A M E N L O G I C A 1 1 Bepaal met behulp van een waarheidstabel een disjunctieve normaalvorm voor de formule (p (q Ÿ ( r Æ (p Ÿ q)))). Is er een eenvoudiger formule waarmee de gevonden formule

Nadere informatie

Propositielogica, waarheid en classificeren

Propositielogica, waarheid en classificeren Logica in actie H O O F D S T U K 2 Propositielogica, waarheid en classificeren We hebben al gezien dat voor een logicus het verhevene heel dicht kan liggen bij het alledaagse. Misschien beter gezegd:

Nadere informatie

Formeel Denken 2013 Uitwerkingen Tentamen

Formeel Denken 2013 Uitwerkingen Tentamen Formeel Denken 201 Uitwerkingen Tentamen (29/01/1) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Het is koud, maar er ligt

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Formeel Denken. Herfst 2004

Formeel Denken. Herfst 2004 Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen Herfst 2004 Contents 1 Propositielogica

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

Hoofdstuk 4. In dit hoofdstuk wordt een aantal uiteenlopende eigenschappen van de propositielogica

Hoofdstuk 4. In dit hoofdstuk wordt een aantal uiteenlopende eigenschappen van de propositielogica Hoofdstuk 4 Stellingen over de Propositielogica In dit hoofdstuk wordt een aantal uiteenlopende eigenschappen van de propositielogica behandeld. In x4.1 wordt het begrip meta-stelling gentroduceerd en

Nadere informatie

Eerste-orde logica (= Predikaatlogica)

Eerste-orde logica (= Predikaatlogica) Eerste-orde logica (= Predikaatlogica) Onderdeel van het college Logica (2017) Klaas Landsman 1.1 Eerste-orde taal (aanvulling op 2.2 in Moerdijk & van Oosten) De propositielogica is te eenvoudig om bijv.

Nadere informatie

Caleidoscoop: Logica

Caleidoscoop: Logica Caleidoscoop: Logica Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Delft, 3 October, 2007 Overzicht 1 2 Negaties We gaan rekenen met proposities (beweringen). Bedenker: George Boole

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Semantiek van predicatenlogica en Tractatus

Semantiek van predicatenlogica en Tractatus Logica en de Linguistic Turn 2012 Semantiek van predicatenlogica en Tractatus Maria Aloni ILLC-University of Amsterdam M.D.Aloni@uva.nl 1/11/12 Plan voor vandaag 1. Predicatenlogica: semantiek 2. Tractatus:

Nadere informatie

Voortgezette Logica, Week 6

Voortgezette Logica, Week 6 Voortgezette Logica, Week 6 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 164, 030-2535575 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten Voortgezette

Nadere informatie

Propositielogica. Evert De Nolf Delphine Draelants Kirsten Storms Evelien Weyn. 24 augustus Universiteit Antwerpen

Propositielogica. Evert De Nolf Delphine Draelants Kirsten Storms Evelien Weyn. 24 augustus Universiteit Antwerpen Propositielogica Evert De Nolf Delphine Draelants Kirsten Storms Evelien Weyn Universiteit Antwerpen 24 augustus 2006 Propositionele connectoren Negatie Conjunctie Disjunctie Implicatie Equivalentie Propositionele

Nadere informatie

b) Niet geldig. Zij π(n)(p) = 1 als n is even, anders π(n)(p) = 0. Schrijf

b) Niet geldig. Zij π(n)(p) = 1 als n is even, anders π(n)(p) = 0. Schrijf opgave 2.1 a) Geldig. Zij n N en π een willekeurige valuatie. Schrijf T = (N, π). Stel, T, n p. Dan bestaat m > n zodat T, m p. Dus voor k > m geldt altijd T, k p. Nu geldt T, n p, want voor alle x > n

Nadere informatie

Propositielogica. Leereenheid 4

Propositielogica. Leereenheid 4 Leereenheid 4 Propositielogica I N T R O D U C T I E Logica Van oudsher is de logica de leer van het correct redeneren. Nog steeds is het herkennen van correcte en incorrecte redeneringen een belangrijke

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Recursie en inductie i

Recursie en inductie i Recursie en inductie i deel 2 Negende college inductiebewijzen 1 inductieprincipe Structurele inductie (inductie naar de opbouw) is de bewijstechniek die hoort bij inductief opgebouwde objecten zoals bomen

Nadere informatie

Logica voor AI. Verschillende modale systemen en correctheid. Antje Rumberg. 30 november 2012.

Logica voor AI. Verschillende modale systemen en correctheid. Antje Rumberg. 30 november 2012. Logica voor AI en correctheid Antje Rumberg AntjeRumberg@philuunl 30 november 2012 1 De minimale normale modale logica K Axioma s alle tautologieën van de propositielogica ( ψ) ( ψ) (K-axioma) (Def ) Afleidingsregels

Nadere informatie

Inleiding Wiskundige Logica

Inleiding Wiskundige Logica Inleiding Wiskundige Logica Yde Venema 2015/2016 c YV 2016 Institute for Logic, Language and Computation, University of Amsterdam, Science Park 904, NL 1098XH Amsterdam E-mail: yvenema@uvanl Voorwoord

Nadere informatie

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element.

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element. Hoofdstuk 2 De regels van het spel 2.1 De gehele getallen Grof gezegd kunnen we de (elementaire) getaltheorie omschrijven als de wiskunde van de getallen 1, 2, 3, 4,... die we ook de natuurlijke getallen

Nadere informatie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 30 april 2007 INLEIDING Kennisrepresentatie & Redeneren Week1: Introductie

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Logica, verzamelingenleer, functies en bewijstechnieken (versie 9 juli 2008) Inleiding Omdat de behandelde topics niet of nauwelijks meer aan bod komen in

Nadere informatie

Logica voor AI. Frame eigenschappen en correspondentie. Antje Rumberg 16 november Kripke Semantiek.

Logica voor AI. Frame eigenschappen en correspondentie. Antje Rumberg 16 november Kripke Semantiek. 1 Logica voor AI en correspondentie Antje Rumberg Antje.Rumberg@phil.uu.nl 16 november 2012 2 De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en ruitje ϕ: het is noodzakelijk

Nadere informatie

Logica Les 1 Definities en waarheidstabellen. (Deze les sluit aan bij les 1 van de syllabus Logica WD_online)

Logica Les 1 Definities en waarheidstabellen. (Deze les sluit aan bij les 1 van de syllabus Logica WD_online) Logica Les 1 Definities en waarheidstabellen (Deze les sluit aan bij les 1 van de syllabus Logica WD_online) Definities Een propositie is een bewering die waar of onwaar is (er is geen derde mogelijkheid).

Nadere informatie

Propositionele logica

Propositionele logica Logic is the beginning of wisdom, not the end. Captain Spock, Star Trek VI (1991) Hoofdstuk 1 ropositionele logica 1.1 Uitspraken Het begrip uitspraak. We geven hier geen definitie van het begrip uitspraak

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

Proposities. Hoofdstuk 2

Proposities. Hoofdstuk 2 Hoofdstuk 2 Proposities In de wiskunde en in de informatica, en ook in veel andere disciplines, is er behoefte aan redeneren. Om dat goed te kunnen doen moet men allereerst beschikken over een arsenaal

Nadere informatie

FP-theorie. 2IA50, Deel B. Inductieve definities 1/19. / department of mathematics and computer science

FP-theorie. 2IA50, Deel B. Inductieve definities 1/19. / department of mathematics and computer science FP-theorie 2IA50, Deel B Inductieve definities 1/19 Inductieve definitie Definitie IL α, (Cons-)Lijsten over α Zij α een gegeven verzameling. De verzameling IL α van eindige (cons-)lijsten over α is de

Nadere informatie

Verzamelingen. Hoofdstuk 5

Verzamelingen. Hoofdstuk 5 Hoofdstuk 5 Verzamelingen In de meest uiteenlopende omstandigheden kan het handig zijn om een stel objecten, elementen, of wat dan ook, samen een naam te geven. Het resultaat noemen we dan een verzameling.

Nadere informatie

Tentamen TI1300 en IN1305-A (Redeneren en) Logica

Tentamen TI1300 en IN1305-A (Redeneren en) Logica TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen TI1300 en IN1305-A (Redeneren en) Logica 5 november 2010, 9.00 12.00 uur LEES DEZE OPMERKINGEN AANDACHTIG DOOR

Nadere informatie

Hoofdstuk 15. In dit hoofdstuk geven we een inleiding op het gebied van het automatisch bewijzen

Hoofdstuk 15. In dit hoofdstuk geven we een inleiding op het gebied van het automatisch bewijzen Resolutie in de Propositielogica Hoofdstuk 15 In dit hoofdstuk geven we een inleiding op het gebied van het automatisch bewijzen van theorema's. Het idee daarbij is dat een computerprogramma nagaat of

Nadere informatie

Wiskunde logica Werkcollege 6

Wiskunde logica Werkcollege 6 Wiskunde logica Werkcollege 6 Jolien Oomens 17 maart 2017 Jolien Oomens Werkcollege 6 17 maart 2017 1 / 7 Opgave 1 Welke van deze formules zijn af te leiden? (a) Γ$ϕ,Γ$ψ Γ$ϕ^ψ (b) Γ$Dxϕ Γ$@xϕ. Jolien Oomens

Nadere informatie

Logica als een oefening in Formeel Denken

Logica als een oefening in Formeel Denken Logica als een oefening in Formeel Denken Herman Geuvers Institute for Computing and Information Science Radboud Universiteit Nijmegen Wiskunde Dialoog 10 juni, 2015 Inhoud Geschiedenis van de logica Propositielogica

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

ARGUMENTEREN EN REDENEREN

ARGUMENTEREN EN REDENEREN ARGUMENTEREN EN REDENEREN Julie Kerckaert Vaardigheden I Academiejaar 2014-2015 Inhoudsopgave Deel 1: Argumenteren en redeneren... 2 1.1 Logica... 2 1.1.1 Syllogismen... 2 1.1.2 Soorten redeneringen...

Nadere informatie

1 Recurrente betrekkingen

1 Recurrente betrekkingen WIS1 1 1 Recurrente betrekkingen 1.1 De torens van Hanoi De torens van Hanoi Edouard Lucas, 1884: Gegeven 3 pinnen en 64 schijven van verschillende grootte. Startsituatie: 64 op linkerpin, geordend naar

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica College 7: Resolutie Tomas Klos Algoritmiek Groep De Resolutiemethode De resolutiemethode is een methode waarmee je

Nadere informatie

LOGICA OP HET MENU DEEL 2. Dr. Luc Gheysens en Daniël Tant

LOGICA OP HET MENU DEEL 2. Dr. Luc Gheysens en Daniël Tant LOGICA OP HET MENU DEEL 2 Dr. Luc Gheysens en Daniël Tant Augustus De Morgan (180 1871) was een Britse wiskundige die vooral bekend is gebleven voor zijn werk op het gebied van de logica en meerbepaald

Nadere informatie

Hoofdstuk 6. Natuurlijke Deductie volgens Fitch. In de vorige hoofdstukken is de propositielogica hoofdzakelijk vanuit een semantisch

Hoofdstuk 6. Natuurlijke Deductie volgens Fitch. In de vorige hoofdstukken is de propositielogica hoofdzakelijk vanuit een semantisch Hoofdstuk 6 Natuurlijke Deductie volgens Fitch In de vorige hoofdstukken is de propositielogica hoofdzakelijk vanuit een semantisch standpunt beschouwd De sleutelconcepten hierbij waren valuatie, model,

Nadere informatie

Tentamen Grondslagen van de Wiskunde B met uitwerkingen

Tentamen Grondslagen van de Wiskunde B met uitwerkingen Tentamen Grondslagen van de Wiskunde B met uitwerkingen 19 januari 2012, 13.30-16.30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Formeel Denken. October 20, 2004

Formeel Denken. October 20, 2004 Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen October 20, 2004 Contents 1 Predicatenlogica

Nadere informatie

Logic for Computer Science

Logic for Computer Science Logic for Computer Science 07 Predikatenlogica Wouter Swierstra University of Utrecht 1 Vrijdag Aanstaande vrijdag is geen hoorcollege of werkcollege. De tussentoets is uitgesteld tot volgende week dinsdag.

Nadere informatie

Parvulae Logicales INDUCTIE Extra materiaal bij het college Logica voor CKI 10/11. Albert Visser & Piet Lemmens & Vincent van Oostrom

Parvulae Logicales INDUCTIE Extra materiaal bij het college Logica voor CKI 10/11. Albert Visser & Piet Lemmens & Vincent van Oostrom Parvulae Logicales INDUCTIE Extra materiaal bij het college Logica voor CKI 10/11 Albert Visser & Piet Lemmens & Vincent van Oostrom 15 september 2010 Inhoudsopgave 1 Inleiding 2 2 Inductieve Definities

Nadere informatie

PROPOSITIELOGICA. fundament voor wiskundig redeneren. Dr. Luc Gheysens

PROPOSITIELOGICA. fundament voor wiskundig redeneren. Dr. Luc Gheysens PROPOSITIELOGICA fundament voor wiskundig redeneren Dr. Luc Gheysens PROPOSITIELOGICA Een propositie of logische uitspraak, verder weergegeven door een letter p, q, r is een uitspraak die in een vastgelegde

Nadere informatie

BEWIJZEN EN REDENEREN

BEWIJZEN EN REDENEREN BEWIJZEN EN REDENEREN voor Bachelor of Science in Fysica en Wiskunde Academiejaar 2012/2013 Arno KUIJLAARS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee Inhoudsopgave

Nadere informatie

Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 mei 2008

Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie   9 mei 2008 Talen & Automaten Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.cs.rug.nl/~wim 9 mei 2008 Talen & automaten Week 1: Inleiding Dit college Talen Automaten Berekenbaarheid Weekoverzicht

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

Gödels Onvolledigheidsstellingen

Gödels Onvolledigheidsstellingen Gödels Onvolledigheidsstellingen Jaap van Oosten Department Wiskunde, Universiteit Utrecht Symposium A-eskwadraat, 11 december 2014 De Onvolledigheidsstellingen van Gödel zijn verreweg de beroemdste resultaten

Nadere informatie

Inhoud casus blok 4. Analyse van een woordspel. Introductie 7

Inhoud casus blok 4. Analyse van een woordspel. Introductie 7 Inhoud casus blok 4 Analyse van een woordspel Introductie 7 1 Iets over het spel... en de knikkers 7 2 Algemene opzet van het computerprogramma 8 3 De delen van het computerprogramma 9 4 Conclusies 13

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis

Nadere informatie

Tentamen Grondslagen van de Wiskunde B met uitwerkingen

Tentamen Grondslagen van de Wiskunde B met uitwerkingen Tentamen Grondslagen van de Wiskunde B met uitwerkingen 8 november 2012, 14:00 17:00 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Logica in het (V)WO. Barteld Kooi

Logica in het (V)WO. Barteld Kooi Logica in het (V)WO Barteld Kooi Wie ben ik? Bijzonder hoogleraar logica en argumentatietheorie Ik geef al meer dan tien jaar colleges logica aan de RuG voor de opleidingen wijsbegeerte, wiskunde, (alfa-)informatica,

Nadere informatie

Credit cards, computationele complexiteit en consistentie uitspraken

Credit cards, computationele complexiteit en consistentie uitspraken Credit cards, computationele complexiteit en consistentie uitspraken Joost J. Joosten 14 december 2005 Praag en bier Sinds enkele maanden werk ik als post-doc aan de Czech Academy of Sciences in Praag.

Nadere informatie

Logica voor Informatica

Logica voor Informatica Logica voor Informatica 12 Normaalvormen Wouter Swierstra University of Utrecht 1 Vandaag We hebben gezien dat er verschillende normaalvormen zijn voor de propositionele logica. Maar hoe zit dat met de

Nadere informatie

Logica voor Informatica

Logica voor Informatica Logica voor Informatica 13 Prolog Wouter Swierstra University of Utrecht 1 Programmeren met Logica Propositielogica is niet geschikt voor programmeren er is nauwlijkst iets interessants uit te drukken.

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie