Informatica: C# WPO 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Informatica: C# WPO 10"

Transcriptie

1 Informatica: C# WPO Inhoud 2D arrays, lijsten van arrays, NULL-values 2. Oefeningen Demo 1: Fill and print 2D array Demo 2: Fill and print list of array A: Matrix optelling A: Matrix * constante A: Picasso A: Vergelijk matrices A: Matrix * vector A: Matrix * matrix E: Stringsplit E: Bovendriehoeksmatrix E: Eliminatie van Gauss X: Sudoku 2.1 Demo 1: Fill and print 2D array Schrijf een programma waarin je een 2D array aanmaakt van integers. Gebruik 2 for loops om de array in te vullen met random waarden. 2.2 Demo 2: Fill and print list of array Schrijf een programma waarin je een list van arrays bijhoudt. Vul de list aan met arrays met lengte 1 t.e.m. 10. Print vervolgens de list of array af in de console. De console is een alternatief voor de textbox en kan enkel gebruikt worden als debug output. 1

2 2.3 A: Matrix optelling Schrijf een programma waarin je 2 matrices met elkaar kan optellen. Matrices kunnen gezien worden als 2D arrays. Je mag hierbij volgende matrices beschouwen: M 1 = (1) M 2 = (2) M 2 = (3) Je mag hierbij zelf kiezen of je de som van de matricies in de console of in een textbox afprint. Schrijf een aparte functie die de optelling tussen 2 matrices uitvoert. De functie retourneert de resultaatsmatrix en heeft als argumenten de 2 op te tellen matrices. Opgelet: beide matrices kunnen enkel opgeteld worden indien de dimensies exact overeen komen. 2.4 A: Matrix * constante Voor deze opgave mag je de matrices van voorgaande opgaven beschouwen. Deze keer ga je de matrices vermenigvuldigen met een bepaalde constante. De constanten die je kan gebruiken zijn: 3, 10, -5, 17, 3. Schrijf een functie die de vermenigvuldiging uitvoert. De functie retourneert de resultaatmatrix en heeft als argumenten de originele matrix en de te vermenigvuldigen constante. 2.5 A: Picasso Schrijf een programma dat een 2D array met random getallen invult en de array a.d.h.v. kleine rechthoeken op een canvas weergeeft. Schrijf een aparte functie die een 2D-array van 100 bij 100 elementen met randomwaarden tussen 0 en 255 invult. Een andere functie neemt deze matrix op als argument en tekent (in grijswaarden) alle waarden a.d.h.v. kleine vierkanten op een canvas. Merk op dat de volledige canvas gevuld dient te worden. Dus zorg voor de juiste schaling wat betreft de hoogte en breedte van de kleine rechthoeken. 2

3 2.6 A: Vergelijk matrices Schrijf een programma waarin je 2 matrices met elkaar gaat vergelijken. Je mag hierbij de matrices van hierboven gebruiken. Schrijf een functie die de vergelijking uitvoert. Merk op dat hierbij alle cellen (elementen) van beide matrices aan elkaar vergeleken moeten worden. Het is enkel indien alle elementen overeenkomen dat de matrices gelijk zijn. Opgelet: beide matrices kunnen enkel opgeteld worden indien de dimensies exact overeen komen. 2.7 A: Matrix * vector Herneem voorgaande opgave en schrijf nu een functie die een matrix met een vector kan vermenigvuldigen. Schrijf hierbij eerst op papier uit hoe de vermenigvulding plaatsvindt. Daarna schrijf je hiervoor een functie die een 1D-array retourneert en 2D array en 1D array als argumenten opneemt. Aan welke voorwaarden moeten de dimensies van de array/vector voldoen opdat de vermenigvuldiging plaatsvindt. Print het resultaat af in de console. Je mag hierbij zelf de vectoren (1D arrays) kiezen. Je kan hierbij ook de matrices van een voorgaande opgave hernemen. 2.8 A: Matrix * matrix Deze opgave is vrij gelijkaardig aan de vermenigvuldiging van een matrix met een vector. Hierbij zal je echter een matrix met een andere matrix vermenigvuldigen. Schrijf eerst op papier uit hoe de vermenigvuldiging plaatsvindt alvorens die te programmeren in een functie. Aan welke voorwaarden moeten de dimensies van de matrices (arrays) voldoen opdat de vermenigvuldiging plaatsvindt. Print het resultaat af in de console. Je kan hierbij ook de matrices van een voorgaande opgave hernemen. 2.9 E: Stringsplit Schrijf zelf een functie die een string kan opdelen a.d.h.v. een karakter. Als argumenten krijgt deze functie een string en een karakter mee. De functie retourneert een lijst van strings. In deze opgave ga je volgt te werk. 1. Maak een variabele tempstring aan die je leeg laat. 2. Vergelijk het huidige karakter met de te vergelijken karakter van in de opgave. Zijn beide karakters gelijk, dan voeg je de huidige tempstring toe aan de lijst. Op dat moment maak je een nieuwe tempstring aan die je leeg maakt. Indien niet voeg jet het huidige karakter toe aan de tempstring. 3. Op het einde zal je een nog een volle tempstring hebben. De string eindigt daarom niet altijd op het te zoeken karakter. Voeg daarom na de laatste iteratie de tempstring toe aan de lijst. 4. Retourneer de lijst. Merk op dat dit alleen mag indien tempstring niet leeg is. 3

4 2.10 E: Bovendriehoeksmatrix In deze opgave ga je onderstaande matrix herleiden naar een bovendriehoeksmatrix. V = = 4 (4) De oplossing van deze vergelijking zou er als volgt moeten uitzien (na herleiden naar bovendriehoeksmatrix). V = = 4 (5) Hiervoor ga je als volgt te werk. 1. Hou rij 1 vast. Sla het eerste element van deze rij in een tijdelijke variabele op. 2. Ga op rij 2 staan en schaal de tijdedelijke variabele met element 1 van rij Vermenigvuldig de eerste rij met de geschaalde waarde en trek deze af van rij 2. Doe dit ook voor de kolomvector na het gelijkheidsteken. De vergelijking zou na de eerste stap er als volgt moeten uitzien: V = = 4 (6) Voer dezelfde operatie uit voor rij 3 (t.o.v. rij 1) De schaling zal hier uiteraard anders zijn. Eenmaal de 3de rij behandeld is, ziet de vergelijking er als volgt uit: V = = 4 (7) Bij grotere matrices wordt deze operatie doorlopen totdat alle rijen behandeld zijn. De volledige operatie wordt herhaald voor de 2de kolom. De operatie start hier vanuit de 2de rij i.p.v. de eerste rij. Na de 2de kolom te hebben verwerkt zou de matrix er als volgt moeten uitzien: V = = 4 (8) Bij grotere matrices wordt de operatie herhaald totdat alle kolomen behandeld zijn. Er wordt dan telkens vanuit de diagonaalelement gestart en dan naar beneden gewerkt om de rijen uit te nullen. 4

5 2.11 E: Eliminatie van Gauss De eliminatie van Gauss werkt op dezelfde manier als hierboven. Het enige verschil is dat de bovendriehoeksmatrix verder wordt opgelost naar een matrix waarin enkel waarden verschillend van 0 op de diagonaal staan. De niet diagonaal waarden zijn allemaal 0. Om dit te bereiken kan je als volgt te werk gaan. Neem de oplossing bekomen van vorige opgave (driehoeksmatrix). De methode werkt volledig omgekeerd aan het verkrijgen van een bovendriehoeksmatrix. Hou dus het uiterste rechtsonder element vast en elimineer de elementen van dezelfde kolom in de bovengelegen rijen. Herhaal deze methode voor de andere kolomen, telkens vertrekkende van de diagonaal (van rechts naar links). Na deze operaties zou de oplossing er als volgt uitzien: V = = 6 (9) Het is mogelijk dat de waarden niet overeenkomen. De verhoudingen tussen de matrix en de kolomvector moeten voor elke rij dezelfde zijn als in de oplossing X: Sudoku - Opgelet - gebruik van recursie en backtracking - voor de echte durvers! Backtracking omvat programmeerproblemen waarbij plausibele oplossingen onderzocht worden en niet-plausibele oplossingen genegeerd worden. Dit algoritme kan o.a. toegepast worden op puzzelproblemen (Sudoku, Achtkoninginnenprobleem,...), Minimum Spanning Trees (routering binnen netwerken), etc. Een bekende puzzel die hier opgelost zal worden met dit algoritme is de Sudoku. De klassieke Sudoku bestaat uit een rooster (Figuur 1) van 9 bij 9 cellen (81 elementen), waarbij volgende spelregels gehanteerd worden: in elke rij is elk getal uniek in elke kolom is elk getal uniek, elk subrooster van 3 bij 3 cellen bevat 9 unieke getallen. De werkwijze van backtracking wordt hieronder beschreven. Ga naar de eerste lege cel in de Sudoku. Probeer de laagste waarde, hier 1, in te vullen. Ga naar de volgende lege cel indien aan alle spelregels voldaan zijn. Indien niet, incrementeer de celwaarde en controlleer opnieuw. Blijf dit herhalen totdat een mogelijke kandidaat gevonden is. 5

6 Indien bij een verdere cel de maximale waarde overschreden wordt (hier 9), moet het algoritme terugkeren naar de vorige ingevulde cellen. Die cellen worden opgehoogd en het algoritme rekent opnieuw verder. Indien er geen oplossingen mogelijk zijn, zal het algoritme uit zichtzelf opnieuw naar de oorsprong begeven, waar het stopt met een foutmelding. Cel Kolom Rij Subrooster Figuur 1: Schematische voorstelling van een 9 bij 9 sudoku. Programmeer een functie die toelaat om dergelijke puzzels op te lossen. sudokus uit een krant nemen en hardcoded programmeren in het programma. Je mag hierbij 6

Informatica: C# WPO 9

Informatica: C# WPO 9 Informatica: C# WPO 9 1. Inhoud Functies (functies met return-waarde) 2. Oefeningen Demo 1: Som Demo 2: Min en max of array Demo 3: Retourneer array van randomwaarden A: Absolute waarde A: Afstand A: Aantrekkingskracht

Nadere informatie

Informatica: C# WPO 6

Informatica: C# WPO 6 Informatica: C# WPO 6 1. Inhoud Timers, switch cases, combobox 2. Oefeningen Demo 1: Bounce Demo 2: Hex to decimal converter Demo 3: Debug oplossing demo 1 A: Count to 10 A: Biljarttafel A: Azerty to qwerty

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Objectgeoriënteerd Programmeren: WPO 1

Objectgeoriënteerd Programmeren: WPO 1 Objectgeoriënteerd Programmeren: WPO 1 1. Inhoud Opfrissing syntax, programmeermethodes, datatypes, functies/procedures, tekenen in C#. Herhaling Informatica 1 ste bachelor. 2. Oefeningen Demo 1: Volume

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

II. ZELFGEDEFINIEERDE FUNCTIES

II. ZELFGEDEFINIEERDE FUNCTIES II. ZELFGEDEFINIEERDE FUNCTIES In Excel bestaat reeds een uitgebreide reeks van functies zoals SOM, GEMIDDELDE, AFRONDEN, NU enz. Het is de bedoeling om functies aan deze lijst toe te voegen door in Visual

Nadere informatie

Informatica: C# WPO 4

Informatica: C# WPO 4 Informatica: C# WPO 4 1. Inhoud For-loop, debuggen, inleiding tot graphics 2. Oefeningen Demo 1: Geometrische figuren Demo 2: Teken een 10 bij 10 rooster Demo 3: Debug oplossingen demo s 1 en 2 A: Flowerpower

Nadere informatie

Objectgeoriënteerd Programmeren: WPO 2

Objectgeoriënteerd Programmeren: WPO 2 Objectgeoriënteerd Programmeren: WPO 2 1. Inhoud Klassen, objecten, methoden, properties, private vs. object, this. public, velden, instantie, reference to 2. Oefeningen Demo 1: Bugs Demo 2: Kleurcodes

Nadere informatie

Programmeren (1) Examen NAAM:

Programmeren (1) Examen NAAM: Schrijf al je antwoorden op deze vragenbladen (op de plaats die daarvoor is voorzien) en geef zowel klad als net af. Bij heel wat vragen moet je zelf Java-code schrijven. Hou dit kort en bondig. Je hoeft

Nadere informatie

Datum. Vraag het bedrag in BEF. Reken om naar EURO. Toon het bedrag in EURO. --- Vraag het bedrag in BEF--- --- Reken om naar EURO---

Datum. Vraag het bedrag in BEF. Reken om naar EURO. Toon het bedrag in EURO. --- Vraag het bedrag in BEF--- --- Reken om naar EURO--- 3UREOHPHQRSORVVHQPHW9%$WRHSDVVLQJHQELMGHHO Naam. NR : Klas. PC : Datum. 23*$9( Hieronder vind je het algoritme om een bedrag in BEF om te rekenen naar EURO. Zet het algoritme om in programmacode. Noem

Nadere informatie

Supplement Wiskunde 2017/2018. Inhoudsopgave

Supplement Wiskunde 2017/2018. Inhoudsopgave Inhoudsopgave Hoofdstuk 1: Missende stof in de verslagen... 2 Hoofdstuk 2: Overbodige stof in de verslagen... 7 Hoofdstuk 3: Fouten in de verslagen... 8 Tentamen halen? www.rekenmaarverslagen.nl 1 Hoofdstuk

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

Overzicht. Lineaire vergelijkingen. Onderwerpen & Planning. Doel. VU Numeriek Programmeren 2.5

Overzicht. Lineaire vergelijkingen. Onderwerpen & Planning. Doel. VU Numeriek Programmeren 2.5 VU Numeriek Programmeren 25 Charles Bos Vrije Universiteit Amsterdam Tinbergen Institute csbos@vunl, A40 Onderwerpen & Planning Practicum Literatuur Taal Terugblik & Huiswerk 2 april 202 /26 2/26 Onderwerpen

Nadere informatie

Uitleg: In de bovenstaande oefening zie je in het eerste blokje een LEES en een SCHRIJF opdracht. Dit is nog lesstof uit het tweede trimester.

Uitleg: In de bovenstaande oefening zie je in het eerste blokje een LEES en een SCHRIJF opdracht. Dit is nog lesstof uit het tweede trimester. In onderstaande oefeningen zijn kleuren gebruikt. Deze dienen aleen om de structuren makkelijker terug te kunnen herkennen. Ze worden niet standaard zo gebruikt. De dunne rood/roze balken zijn ook geen

Nadere informatie

Small Basic Programmeren Text Console 2

Small Basic Programmeren Text Console 2 Oefening 1: Hoogste getal Je leest een reeks positieve gehele getallen in totdat je het getal 0 (nul) invoert. Daarna stopt de invoer en druk je een regel af met het hoogste getal uit de reeks. Voorbeeld:

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

**** *** Sudoku en co *** ****

**** *** Sudoku en co  *** **** Sudoku classic Spelregels sudoku-classic: op elke horizontale regel moeten de cijfers tot en met ingevuld worden.op elke verticale regel moeten de cijfers tot en met ingevuld worden.in elk vierkantje van

Nadere informatie

3. Structuren in de taal

3. Structuren in de taal 3. Structuren in de taal In dit hoofdstuk behandelen we de belangrijkst econtrolestructuren die in de algoritmiek gebruikt worden. Dit zijn o.a. de opeenvolging, selectie en lussen (herhaling). Vóór we

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Lineaire vergelijkingen

Lineaire vergelijkingen 1/24 VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, 1A40 8 april 2013 2/24 Overzicht Overzicht Onderwerpen & Planning Practicum Literatuur Taal Terugblik & Huiswerk

Nadere informatie

woensdag 2/3/4² - Diepenbeek OPGAVEN CAT 3

woensdag 2/3/4² - Diepenbeek OPGAVEN CAT 3 woensdag /3/4² - Diepenbeek OPGAVEN CAT 3 Ladderspel Opgave Het Ladderspel (Snakes and Ladders) is een gezelschapsspel dat gespeeld wordt op een vierkant bord van N N vakjes, genummerd van 1 tot N. Het

Nadere informatie

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk.

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk. HOOFDSTUK 3 3.1 Stapsgewijs programmeren In de vorige hoofdstukken zijn programmeertalen beschreven die imperatief zijn. is het stapsgewijs in code omschrijven wat een programma moet doen, net als een

Nadere informatie

9. Strategieën en oplossingsmethoden

9. Strategieën en oplossingsmethoden 9. Strategieën en oplossingsmethoden In dit hoofdstuk wordt nog even terug gekeken naar alle voorgaande hoofdstukken. We herhalen globaal de structuren en geven enkele richtlijnen voor het ontwerpen van

Nadere informatie

Praktische toepassing van functies

Praktische toepassing van functies Excellerend Heemraadweg 21 2741 NC Waddinxveen 06 5115 97 46 richard@excellerend.nl BTW: NL0021459225 ABN/AMRO: NL72ABNA0536825491 KVK: 24389967 Praktische toepassing van functies De laatste twee functies

Nadere informatie

woensdag 2/3/4² - Diepenbeek OPGAVEN CAT 4

woensdag 2/3/4² - Diepenbeek OPGAVEN CAT 4 woensdag /3/4² - Diepenbeek OPGAVEN CAT 4 Food truck festival De laatste jaren zijn food trucks erg populair geworden: het zijn combi s of aanhangwagens waarin gerechten gemaakt worden, en die worden dan

Nadere informatie

Hoofdstuk 7: Werken met arrays

Hoofdstuk 7: Werken met arrays Programmeren in Microsoft Visual Basic 6.0, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Marnix Gymnasium Rotterdam, januari 2004 Hoofdstuk 7: Werken met arrays 7.0 Leerdoel

Nadere informatie

Sudoku s. Annelies Veen Noud Aldenhoven

Sudoku s. Annelies Veen Noud Aldenhoven Sudoku s Annelies Veen Noud Aldenhoven Vierkant voor Wiskunde Zomerkamp A 2010 Voorwoord Het plaatje op de voorkant is een erg bijzondere puzzel, een soort sudoku. Sudoku s zijn puzzeltjes met hun eigen

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Magidoku s en verborgen symmetrieën

Magidoku s en verborgen symmetrieën Uitwerking Puzzel 92-6 Magidoku s en verborgen symmetrieën Wobien Doyer Lieke de Rooij Een Latijns vierkant van orde n, is een vierkante matrix, gevuld met n verschillende symbolen waarvan elk precies

Nadere informatie

Graphics. Small Basic graphics 1/6

Graphics. Small Basic graphics 1/6 Small Basic graphics 1/6 Graphics Naast het werken met tekst kan je in Small Basic ook werken met grafische elementen: lijnen, vormen en kleuren. Hierbij gebruik je het grafische venster met de witte achtergrond.

Nadere informatie

OEFENINGEN PYTHON REEKS 6

OEFENINGEN PYTHON REEKS 6 OEFENINGEN PYTHON REEKS 6 1. A) Schrijf een functie die een getal x en een getal y meekrijgt. De functie geeft de uitkomst van volgende bewerking als returnwaarde terug: x y x als x y x y y als x < y B)

Nadere informatie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie Hoofdstuk 5 Recursion I N T R O D U C T I E Veel methoden die we op een datastructuur aan kunnen roepen, zullen op een recursieve wijze geïmplementeerd worden. Recursie is een techniek waarbij een vraagstuk

Nadere informatie

OEFENINGEN PYTHON REEKS 5

OEFENINGEN PYTHON REEKS 5 Vraag 1: Interpoleren (vervolg) OEFENINGEN PYTHON REEKS 5 Bouw verder op je code van Reeks 3, vraag 4. Voeg vier constanten toe aan je code: X0 = 280, Y0 = 0, Z0 = 50 en SIZE = 8. a) Teken een kubus met

Nadere informatie

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren HOOFDSTUK 3 3.1 Stapsgewijs programmeren De programmeertalen die tot nu toe genoemd zijn, zijn imperatieve of procedurele programmeertalen. is het stapsgewijs in code omschrijven wat een programma moet

Nadere informatie

Opgave Constraint Processing

Opgave Constraint Processing Opgave Constraint Processing De deadline voor het indienen van je verslag is woensdag 9 december, 12u. We verwachten je verslag op papier in de studentenbrievenbus in 200A. In dit project zullen we een

Nadere informatie

Dattiloritmica in de praktijk

Dattiloritmica in de praktijk Dattiloritmica in de praktijk Introductie van het apparaat: Verkennen van het apparaat. Uitleggen, dat een blokje van 4 eigenlijk een braillecel is. Voor cijfers heb je alleen de puntjes 1, 2, 4 en 5 nodig.

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld.

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Wiskunde juli 2009 Laatste aanpassing: 29 juli 2009. Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Vraag 1 Wat is de top van deze parabool 2 2. Vraag

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.

Nadere informatie

Opgaven Matlab - Week 2, sessie 2: De Singulierewaardendecompositie

Opgaven Matlab - Week 2, sessie 2: De Singulierewaardendecompositie Opgaven Matla - Week 2, sessie 2: De Singulierewaardendecompositie Laat A R n k. Dan etaan er unitaire matrices V R k k en U R n n zodanig, dat AV = UΣ, (1) waarij Σ R n k een niet-negatieve diagonaalmatrix

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

12 Vlaamse Wiskunde Olympiade : Eerste ronde.

12 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1999-000: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Android apps met App Inventor 2 antwoorden

Android apps met App Inventor 2 antwoorden 2014 Android apps met App Inventor 2 antwoorden F. Vonk versie 1 11-11-2014 inhoudsopgave Mollen Meppen... - 2 - Schrandere Scholier... - 15 - Meteoor... - 21 - Dit werk is gelicenseerd onder een Creative

Nadere informatie

Een spoedcursus python

Een spoedcursus python Een spoedcursus python Zoals je in de titel misschien al gezien hebt, geven wij een spoedcursus Python. Door deze cursus leer je alle basics, zoals het rekenen met Python en het gebruik van strings. Het

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

Inleiding Programmeren 2

Inleiding Programmeren 2 Inleiding Programmeren 2 Gertjan van Noord November 28, 2016 Stof week 3 nogmaals Zelle hoofdstuk 8 en recursie Brookshear hoofdstuk 5: Algoritmes Datastructuren: tuples Een geheel andere manier om te

Nadere informatie

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix Hoofdstuk 3 Matrices en stelsels 3.1 Matrices Een matrix is in DERIVE gedefinieerd als een vector van vectoren. De rijen van de matrix zijn de elementen van de vector. Op de volgende manier kan je een

Nadere informatie

Grafieken veranderen met Excel 2007

Grafieken veranderen met Excel 2007 Grafieken veranderen met Excel 2007 Hoe werkt Excel? Eerste oefening Hieronder zie je een gedeelte van het openingsscherm van Excel. Let op hoe we alle onderdelen van het werkblad noemen! Aantal decimalen

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

Het warmteverlies van het lichaamsoppervlak aan de wordt gegeven door de volgende formule:

Het warmteverlies van het lichaamsoppervlak aan de wordt gegeven door de volgende formule: Opgave 1. (4 punten) Inleiding: Een vleermuis is een warmbloedig zoogdier. Dat wil zeggen dat hij zijn lichaamstemperatuur op een konstante waarde moet zien te houden. Als de omgeving kouder is dan de

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

INFORMATICA 1STE BACHELOR IN DE INGENIEURSWETENSCAPPEN

INFORMATICA 1STE BACHELOR IN DE INGENIEURSWETENSCAPPEN INFORMATICA 1STE BACHELOR IN DE INGENIEURSWETENSCAPPEN voorbeeldexamen NAAM :... OPMERKINGEN VOORAF Je krijgt 3 uur de tijd om de opdrachten voor dit examen uit te voeren. Verder werken aan je oplossing

Nadere informatie

Objectgeoriënteerd Programmeren: WPO 4B

Objectgeoriënteerd Programmeren: WPO 4B Objectgeoriënteerd Programmeren: WPO 4B 1. Inhoud Polymorfie 2. Oefeningen A: Polygon A: Rekenmachine A: Infection A: Waves E: Snake X: Pacman X: Planetendans 2.1 A: Polygon Herneem de opgave Polygon van

Nadere informatie

extra oefening algoritmiek - antwoorden

extra oefening algoritmiek - antwoorden extra oefening algoritmiek - antwoorden opgave "Formule 1" Maak een programma dat de gebruiker drie getal A, B en C in laat voeren. De gebruiker zorgt ervoor dat er positieve gehele getallen worden ingevoerd.

Nadere informatie

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam:

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam: Datum: Klas: Nr: Naam: Score G1 /5 /5 Opgave 1 G2 / / Opgave 2 G3 /10 /10 Opgave 3 G4 /5 /5 Opgave 4 G5 /4 /4 Opgave 5 G6 /5 /5 G7 /5 /5 G8 /10 /10 G9 /10 /10 G10 /7 /7 G11 /10 /10 Totaal Zelfevaluatie

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Informatica. 2 e graad 2 e jaar. De Mol W.

Informatica. 2 e graad 2 e jaar. De Mol W. Informatica 2 e graad 2 e jaar De Mol W. Inhoudstafel Inhoudstafel... 2 Algoritmes... 3 1.1 Algemeen... 3 1.2 Het algoritme... 4 1.3 Opstellen van het algoritme... 5 1.4 Stapsgewijs verfijnen van het algoritme...

Nadere informatie

www.digitalecomputercursus.nl 10. Voorbeeld berekeningen maken met Excel

www.digitalecomputercursus.nl 10. Voorbeeld berekeningen maken met Excel 10. Voorbeeld berekeningen maken met Excel In de komende hoofdstukken worden een aantal voorbeelden van berekeningen die gemaakt kunnen worden in Excel uitgelicht. U kunt deze berekeningen ook zodanig

Nadere informatie

Je kan op verschillende manierenn gegevens verplaatsen. Je zal steeds eerst de cellen die je wilt

Je kan op verschillende manierenn gegevens verplaatsen. Je zal steeds eerst de cellen die je wilt Knippen - Plakken Je kan op verschillende manierenn gegevens verplaatsen. Je zal steeds eerst de cellen die je wilt verplaatsen, moeten selecteren om ze vervolgens te knippen en dan de cel te selecteren

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

Uitleg. Welkom bij de Beverwedstrijd 2006. Je krijgt 15 vragen, die je in maximaal 45 minuten moet beantwoorden.

Uitleg. Welkom bij de Beverwedstrijd 2006. Je krijgt 15 vragen, die je in maximaal 45 minuten moet beantwoorden. Uitleg Welkom bij de Beverwedstrijd 2006 Je krijgt 15 vragen, die je in maximaal 45 minuten moet beantwoorden. Je krijgt 5 vragen van niveau A, 5 vragen van niveau B en 5 vragen van niveau C. Wij denken

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

Algoritmen en programmeren: deel 2 - basis

Algoritmen en programmeren: deel 2 - basis Algoritmen en programmeren: deel 2 - basis Ruud van Damme Creation date: 25 april 2005 Update: 16 november 2006, 9 september 2007 Overzicht 1 Basisbenodigdheden voor alle problemen 2 Alles in stukjes op

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen.

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Opmerking vooraf. Een netwerk is een structuur die is opgebouwd met pijlen en knooppunten. Bij het opstellen van

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

NAAM: Programmeren 1 Examen 29/08/2012

NAAM: Programmeren 1 Examen 29/08/2012 Programmeren 29 augustus 202 Prof. T. Schrijvers Instructies Schrijf al je antwoorden op deze vragenbladen (op de plaats die daarvoor is voorzien). Geef ook je kladbladen af. Bij heel wat vragen moet je

Nadere informatie

handleiding ontbinden

handleiding ontbinden handleiding ontbinden inhoudsopgave inhoudsopgave de grote lijn 3 Bespreking per paragraaf 4 Applets 4 1 met gegeven product 4 ontbinden van getallen 4 3 vergelijkingen 5 4 onderzoek 6 tijdpad 9 materialen

Nadere informatie

Bepaling energie en soortelijke warmte 2D-atoomrooster m.b.v. de Metropolis Monte Carlo methode

Bepaling energie en soortelijke warmte 2D-atoomrooster m.b.v. de Metropolis Monte Carlo methode Bepaling energie en soortelijke warmte 2D-atoomrooster m.b.v. de Metropolis Monte Carlo methode Verslag Computational Physics Sietze van Buuren Begeleider: Prof.Dr. H. de Raedt 29 december 25 Samenvatting

Nadere informatie

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector Les 3 Matrix product We hebben gezien hoe we matrices kunnen gebruiken om lineaire afbeeldingen te beschrijven. Om het beeld van een vector onder een afbeelding te bepalen hebben we al een soort product

Nadere informatie

10 Meer over functies

10 Meer over functies 10 Meer over functies In hoofdstuk 5 hebben we functies uitgebreid bestudeerd. In dit hoofdstuk bekijken we drie andere aspecten van functies: recursieve functies dat wil zeggen, functies die zichzelf

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Informatica College Blaucapel/KS Handelingsdeel IV. Basis Excel

Informatica College Blaucapel/KS Handelingsdeel IV. Basis Excel blaucapel Basis Excel Excel is een rekenprogramma: een elektronisch rekenvel. Het wordt ook wel een spreadsheet (een verspreid veld) genoemd. Wat kun je bijvoorbeeld maken met excel: Prijsberekeningen

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Bij de volgende opgaven vragen we je een kleine opteltabel in te vullen. De eerste hebben we zelf ingevuld om je te laten zien hoe zoiets gaat. 1.

Bij de volgende opgaven vragen we je een kleine opteltabel in te vullen. De eerste hebben we zelf ingevuld om je te laten zien hoe zoiets gaat. 1. I Natuurlijke getallen Dit deel gaat over getallen waarmee je aantallen kunt weergeven: vijf vingers aan je hand, twaalf appels op een schaal, zestig minuten in een uur, zestien miljoen Nederlanders, nul

Nadere informatie

WETENSCHAPPEN Oefeningen. LES 1 - Baksteen in Grasshopper. Matthias Dziwak Tobias Labarque Rinus Roelofs

WETENSCHAPPEN Oefeningen. LES 1 - Baksteen in Grasshopper. Matthias Dziwak Tobias Labarque Rinus Roelofs WETENSCHAPPEN Oefeningen LES 1 - Baksteen in Grasshopper Matthias Dziwak Tobias Labarque Rinus Roelofs LES 1 Deel 1 Inleiding Rhinoceros en Grasshopper Deel 2 De bouw van vier bakstenen muren in Grasshopper

Nadere informatie

12.1 Grafen [1] Definitie: Een graaf bestaat uit punten, waarvan er twee of meer door wegen verbonden zijn. Willem-Jan van der Zanden

12.1 Grafen [1] Definitie: Een graaf bestaat uit punten, waarvan er twee of meer door wegen verbonden zijn. Willem-Jan van der Zanden 12.1 Grafen [1] Een spoorwegkaart is een voorbeeld van een graaf; Een graaf bestaat uit punten; De punten worden door wegen met elkaar verbonden; De plaats van de punten en de vorm van de wegen is van

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

Sudoku s en Wiskunde

Sudoku s en Wiskunde Non impeditus ab ulla scientia Sudoku s en Wiskunde K. P. Hart 3 februari, 2006 Programma Tellen Makkelijk, medium, moeilijk Hoeveel zaadjes? Een miljoen dollar verdienen? Puzzels Tellen Vooralsnog onbegonnen

Nadere informatie

... en de Prijsvraag 2009

... en de Prijsvraag 2009 Magische Wiskunde... en de Prijsvraag 9 Matthijs Coster www.pythagoras.nu 6 februari 1 (NWD) Inhoud Geomagische vierkanten Opgave over Geomagische vierkanten Pythagoras Magische vierkanten MRI Discrete

Nadere informatie

Migrerende euromunten

Migrerende euromunten Migrerende euromunten Inleiding Op 1 januari 2002 werden in vijftien Europese landen (twaalf grote en drie heel kleine) euromunten en - biljetten in omloop gebracht. Wat de munten betreft, ging het in

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Rekentijger - Groep 5 Tips bij werkboekje A

Rekentijger - Groep 5 Tips bij werkboekje A Rekentijger - Groep 5 Tips bij werkboekje A Sprinten of sjokken? Werkblad 1 Zijn er handige getallenparen? Bijvoorbeeld 1 en 10 samen. Neem dat dan 5 keer. Dobbelstenen Werkblad 2 Hoeveel sprongen? Werkblad

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Handleiding BreakEven Calculator Door Thomas Vulsma

Handleiding BreakEven Calculator Door Thomas Vulsma Handleiding BreakEven Calculator Door Thomas Vulsma Introductie Deze handleiding geeft een korte inleiding tot de werking en het gebruik van de BreakEven Calculator. Met een paar simpele stappen leert

Nadere informatie

Programmeren A. Genetisch Programma voor het Partitie Probleem. begeleiding:

Programmeren A. Genetisch Programma voor het Partitie Probleem. begeleiding: Programmeren A Genetisch Programma voor het Partitie Probleem begeleiding: Inleiding Het Partitie Probleem luidt als volgt: Gegeven een verzameling van n positieve integers, vindt twee disjuncte deelverzamelingen

Nadere informatie