Hoofdstuk 9: Exponentiële en logaritmische functies. 9.1 Logaritmische en exponentiële vergelijkingen. Opgave 1: a. y2 b. y2 c. y1. Opgave 2: c.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 9: Exponentiële en logaritmische functies. 9.1 Logaritmische en exponentiële vergelijkingen. Opgave 1: a. y2 b. y2 c. y1. Opgave 2: c."

Transcriptie

1 Hoodstk 9: Eonntiël n ritmisch nctis 9. Logritmisch n onntiël vrglijkingn Ogv :. y n y b. y n y c. y n y Ogv :. 6 6 b. 6 c. 9 d Ogv :. 6 8 b. 8 8 c. d Ogv :. 6 9 b. c d Ogv : g g g g b g b. g g g b g b g g g n n n b. g g g n Ogv 6:. 8 b. GETAL EN RUIMTE VWO WB DH9 - - AUGUSTINIANUM LW

2 Ogv 7: b c d. vrvlt ds gn olossingn Ogv 8:. b. GETAL EN RUIMTE VWO WB DH9 - - AUGUSTINIANUM LW

3 6 7 c. vrvlt ds d. 6 6 Ogv 9:. b vrvlt 8 ds 8 c. GETAL EN RUIMTE VWO WB DH9 - - AUGUSTINIANUM LW

4 8 8 vrvlt ds d ds 7 7 vrvlt Ogv :. 8 b. Ogv :,6,8 Ogv : 6. b. GETAL EN RUIMTE VWO WB DH9 - - AUGUSTINIANUM LW

5 vrvlt ds c. d. stl dn Ogv : vrvlt ds b GETAL EN RUIMTE VWO WB DH9 - - AUGUSTINIANUM LW

6 6 6 8 vrvlt 8 ds 8 c. vrvlt ds d. stl dn 8 6 Ogv :. b vrvlt GETAL EN RUIMTE VWO WB DH9-6 - AUGUSTINIANUM LW

7 c. stl dn 9 9 d. stl dn Ogv : 7 kn j nit ls mcht vn schrijvn Ogv 6:. 8 8 b. k.n. Ogv 7:. 8 b. 8 stl 8 dn 8 8 k.n. 6 GETAL EN RUIMTE VWO WB DH9-7 - AUGUSTINIANUM LW

8 c. d. 6 stl 6 dn 6 9 Stl 6 dn k.n. stl dn k.n. 6 Ogv 8:. b. 6,,,,8, GETAL EN RUIMTE VWO WB DH9-8 - AUGUSTINIANUM LW

9 c stl 6 dn ,8 d. stl dn 7 k.n.,9,9 Ogv 9: b. stl dn k.n. c. 8 8 GETAL EN RUIMTE VWO WB DH9-9 - AUGUSTINIANUM LW

10 8 8 8 stl dn d. 8 8 stl dn k.n. ds gn olossingn GETAL EN RUIMTE VWO WB DH9 - - AUGUSTINIANUM LW

11 9. Grikn vn onntiël n ritmisch nctis Ogv :. T, b. 8 Ogv :. Vy s, 8 b. 8 8 Ogv : T,. y y b. y y V s, y ds V s, y ds T, V y s, c. y y y ds T, T, d. y y y ds V y s, Ogv : T,. g b. c. N, d vrticl symtoot vn d grik vn is d lijn ds dit zo n vrmnigvldiging ook d vrticl symtoot vn d grik vn g motn zijn, mr dt is d lijn. Ds r bstt gn vrmnigvldiging tn ozicht vn d y-s. Er is ook gn vrticl trnslti moglijk wnt voor bstt wl mr g nit. V y s, d. g h h ds n q Ogv :. V s, b. g ds T, GETAL EN RUIMTE VWO WB DH9 AUGUSTINIANUM LW

12 c. d.. h h ds V ys, ds V n V s, ys, T, g j j 8 ds n b Ogv : AB g 6 Ogv 6: 6. y g b. d tw horizontl symtotn liggn o n stnd 8 vn lkr, ds lln g ht n olossing c. 8 Ogv 7: y ds A, b. g ds Ogv 8:. ds, D ds, D g GETAL EN RUIMTE VWO WB DH9 AUGUSTINIANUM LW

13 b. ds c. g g ds 7 Ogv 9:. stl dn k.n. y b. g g y y y y intrsct gt, 8 intrsct gt, 7 ds,8, 7 GETAL EN RUIMTE VWO WB DH9 AUGUSTINIANUM LW

14 Ogv :. B A AB 6 b. A n B liggn o n horizontl lijn ds y A y B A g B g 6 c. q y A Ogv : g 8 g y 8 y ds q 8 q Ogv :. d tw vrticl symtotn hbbn n stnd vn, ds lln rchts vn ht snijnt is r n horizontl lijnstk mt lngt b. Ogv : g g y ds q 8 q y Ogv :. voorwrd: GETAL EN RUIMTE VWO WB DH9 AUGUSTINIANUM LW

15 6 6 9 D, n, D g, g g b vrvlt 6 7 ds 6 7 c. g g y 8 y y 8 y y y GETAL EN RUIMTE VWO WB DH9 AUGUSTINIANUM LW

16 Ogv :. AB AB : BC : : ds BC AC AB BC b. y y B C g yb y C ds c. q y B Ogv 6: B dn C q 6 6 Ogv 7:. B dn C yb y C g q b. y F ye r g r r r r r r r r 6r 9 r 7r 9 r GETAL EN RUIMTE VWO WB DH9 6 AUGUSTINIANUM LW

17 7 r 7 7 r,697 vrvlt r, ds r, Ogv 8: B dn C yb y C k.n. y Ogv 9:. B dn C g 9 nm r dn r r r 9r 9 r r 6 r r 6 6 k.n. 6 q 6 b. y F ye g r r 9 6 r r r r r r r r 9 6 GETAL EN RUIMTE VWO WB DH9 7 AUGUSTINIANUM LW

18 r 9 r 9 r 9 GETAL EN RUIMTE VWO WB DH9 8 AUGUSTINIANUM LW

19 9. Ht grondtl Ogv :. b. c, 69 c. c, 986 Ogv : h h. lim lim lim h h h h h h lim h h h h h b. lim lim lim h h h h h h h c. lim h h Ogv :. h h lim h h h b. c., y, 78, y, 769, y, 78, y, 78 d., 78 Ogv :. b. GETAL EN RUIMTE VWO WB D H9-9 - AUGUSTINIANUM LW

20 GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW c. d g. h. i. j. k l Ogv :. 9 b. c. Ogv :. k.n. b. k.n. c. k.n. d..

21 Ogv 6: b. c. k.n. d... 6 nm dn k.n. 6 nm dn GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW

22 GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW Ogv 7:. b. g ` g Ogv 8:. b. c. d... Ogv 9:. 78, b., c. 86, d. 66,. 8 9,. 9 6, Ogv :. k.n. y

23 GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW m b. b y door, b y k : Ogv :. k.n. b. k.n. y y m min c. ls dn wint ht vn ds voor gldt d. 6 Ogv : y P b y k : door, b b : y k k snijdn mt d lijn y gt:

24 GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW Q Q P P Q P Q PP PP Q O Ogv : b mt b ds b b Ogv :. mt ds b. g mt ds g 6 c. h mt ds h d. j mt ds 6 6 j. k T mt ds T k

25 GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW. l T mt ds T l Ogv :. y A b y k : door, b b : y k g g g g y B b y l : door, b b y l :

26 GETAL EN RUIMTE VWO WB D H9-6 - AUGUSTINIANUM LW snijnt vn k n l: b. g h g h min h, [ B h Ogv 6:. k.n. min, B b. PQ OP OPQR O O k.n. 8 d orvlkt is miniml voor Ogv 7:.

27 GETAL EN RUIMTE VWO WB D H9-7 - AUGUSTINIANUM LW k.n. m min b. k.n. A n B c. B ds y d. A y ds y.

28 9. D ntrlijk ritm Ogv 8:. b. [ ] [ ] [ ] mt ds [ ] Ogv 9:. ln ln b. ln ln c. ln ln d. ln. ln ln. ln ln 9 g. ln ln 8 ln 7 ln 7 ln 7 ln 7 h ln ln i. ln ln j. Ogv 6:. ln ln b. 6 ln ln c., 6,, ln ln d. ln ln Ogv 6:. ln ln ln ln ln 9 ln ln6 b. ln ln ln ln ln ln8 ln 8 ln c. ln ln ln ln d. ln ln ln ln GETAL EN RUIMTE VWO WB D H9-8 - AUGUSTINIANUM LW

29 . ln 6 ln ln 6 ln ln6 ln 6. ln ln ln ln Ogv 6:. ln b. ln ln c. ln d. ln. ln ln ln. ln ln ln ln ln ln ln Ogv 6:. ln ln ln, b. ln ln,6 ln,6 Ogv 6:. ln ln ln ln ln ln b. ln ln ln ln GETAL EN RUIMTE VWO WB D H9-9 - AUGUSTINIANUM LW

30 ln ln c. ln ln ln ln ln ln vrvlt d. ln ln nm ln dn ln ln. ln ln ln ln ln. ln ln ln ln ln 8 8 vrvlt Ogv 6:. b. c. ln g mt ds g ln h h ln ln ln ln ln ln ln ln GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW

31 GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW = ln Ogv 66:. ln ln ln y, [ B g b. ln ds ln ln Ogv 67:. ln ln ln y, [ B b. ln ln nm dn 9 k.n. dn y ds,

32 c. ln y ln n y intrsct gt, y,8 b y,8, 7,98 Ogv 68: ln. [ ] [ ] [ ] mt ln n [ln ] ln [ ] [ln ] [ln ] ook gldt: [ ] b. [ln ] ds [ln ] ln c. g ln ln ln g ln ln Ogv 69:. [ln 6] [ln 6 ln ] [ln 6] [ln ] b. g h ln Ogv 7:. [ln 6 ] [6 ln ] 6 [ln ] 6 b. g h 6 Ogv 7: ln. ln ln ln GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW

33 b. g ln g ln ln c. ln ln ln d. ln ln. ln ln ln. ln ln Ogv 7:. ln b. g ln ln g ln c. h h ln d. j j 8 ln ln ln Ogv 7:. ln ln ln ln ln b. g g ln ln c. h h ln ln GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW

34 d. j ln 6 ln j ln 8 Ogv 7:. b. c. d. nln n ln n n y ln mt n ln ds n nln nln nln n y [ ] n n ln n nln nln n ln [ ] [ ] [ ] r is gn brking voor d wrd vn n Ogv 7:. ln ln ln ln ln y b door, b b y ln b. ln ln ln m c. stl B dn C yb y C ln ln ln ln ln ln ln ln n n n n n n GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW

35 ln ln vrvlt ln q ln Ogv 76:. ln y A ln ln ln ln y b door, b y b ln b. 6 ln ln 6ln 6ln ln nm ln dn 6 ln ln y y, n, Ogv 77:. ln GETAL EN RUIMTE VWO WB D H9 - - AUGUSTINIANUM LW

36 y ln8 [ln8, B b. 8 y ln y ln, ln,ln c. 6 kn nit, ds gn olossingn Ogv 78:. ln ln y ln,ln b. ln g ln ln g g ln vrvlt y b door, b b y c. g g GETAL EN RUIMTE VWO WB D H9-6 - AUGUSTINIANUM LW

37 ln ln ln ln ln ln ln ln vrvlt vrvlt ds d. y B ln n y M y B y C y C ln y y ln ln ln8 B C ln8 ds onhnklijk vn GETAL EN RUIMTE VWO WB D H9-7 - AUGUSTINIANUM LW

38 9. Dignostisch tots Ogv :. b. 8 8 c Ogv : vrvlt b vrvlt Ogv : b. 6 nm dn vrvlt GETAL EN RUIMTE VWO WB DH9 Dignostisch tots AUGUSTINIANUM LW

39 6 6 Ogv :. 6 6 nm dn 6 6 b. 9 nm dn ds k.n. c. 9 nm dn ds k.n. d. 9 nm dn 9 9 k.n. GETAL EN RUIMTE VWO WB DH9 Dignostisch tots AUGUSTINIANUM LW

40 Ogv :. y V s, y ds T, T, b. y y ds Vy s, 9 Ogv 6:. g g ds 6 b. g g y q q Ogv 7:. B dn C g B C q b. g y 9 GETAL EN RUIMTE VWO WB DH9 Dignostisch tots - - AUGUSTINIANUM LW

41 ,7 9, vrvlt Ogv 8:. 6 b. Ogv 9:. k.n. b. 6 c. d. nm dn k.n. Ogv :. 6 GETAL EN RUIMTE VWO WB DH9 Dignostisch tots - - AUGUSTINIANUM LW

42 GETAL EN RUIMTE VWO WB DH9 Dignostisch tots - - AUGUSTINIANUM LW b. c. d Ogv :. k.n. y min b. A y A b y door, b b y l : Ogv :. ln ln b. ln ln Ogv :. ln ln ln ln b. 8 6 ln ln ln6 ln ln ln ln ln

43 Ogv :. ln 6 ln b. ln 6 ln ln c. ln ln ln ln ln ln ln d. ln 9 ln ln 9 ln ln Ogv :. b. ln ln ln ln c. ln ln ln d. ln ln. 6 6 ln 6 ln. ln 6 6 GETAL EN RUIMTE VWO WB DH9 Dignostisch tots - - AUGUSTINIANUM LW

44 Ogv 6:. ln y [, B ln ln 8 b. ln ln nm dn k.n. y ds, Ogv 7:. ln ln ln ln y b door, b b y GETAL EN RUIMTE VWO WB DH9 Dignostisch tots - - AUGUSTINIANUM LW

45 ln b. ln ln y B, ] GETAL EN RUIMTE VWO WB DH9 Dignostisch tots - - AUGUSTINIANUM LW

Uitwerkingen H9 van vwo B deel 3 Exponentiële functies en logaritmische functies

Uitwerkingen H9 van vwo B deel 3 Exponentiële functies en logaritmische functies Uitwrkingn H9 van vwo B dl Eponntiël functis n logaritmisch functis. y log( + 5) y log() + log (5) n y log (5) Uit d tabl blijkt dat y n y htzlfd zijn. log() + log(5) log(5) Vor in : y log( 5) ; y log()

Nadere informatie

De middens van de intervallen zijn 0,2; 0,6; 1; 1,4 en 1,8. O ( V ) f (0,2) 0,4 + f (0,6) 0,4 + f (1) 0,4 + f (1,4) 0,4 + f (1,8) 0,4

De middens van de intervallen zijn 0,2; 0,6; 1; 1,4 en 1,8. O ( V ) f (0,2) 0,4 + f (0,6) 0,4 + f (1) 0,4 + f (1,4) 0,4 + f (1,8) 0,4 G&R vwo B dl Intglkning C von Schwtznbg /6 D twd bnding is d bst Omdt d gik vn dlnd is, is ht minimum vn o lk intvl d unctiwd in d chtgns vn ht intvl En zo is ht mimum vn o lk intvl d unctiwd in d linkgns

Nadere informatie

Machten. Inhoud Machten

Machten. Inhoud Machten Mchtn Inhoud Mchtn Mchtn n mchtsvrhffn Evn n onvn mchtn Vrmnigvuldign vn mchtn Dln vn mchtn Mcht vn n mcht Mchtn vn productn 7 Mchtn vn rukn Sustiturn vrvngn vn n lttr door n gtl Wortls n mchtn mt grokn

Nadere informatie

13 Afgeleide en tweede afgeleide

13 Afgeleide en tweede afgeleide Afglid n twd afglid a f ( + gft f ( + + + ( + f ( gft ( - - + ƒ ma is f ( B f, ] b f ( + + ( + ( + + f ( gft ( + + + f ( dus ht buigunt is, c f ( Zi d figuur + a hft één olossing voor a a a ƒ d b( + hft

Nadere informatie

= Oplossingen vbtl 5 analyse 1, leerweg 4

= Oplossingen vbtl 5 analyse 1, leerweg 4 OPLOSSINGEN = Olossingn vtl nlys lrwg. D uliish ling (lz. ) + 7 + + 8 8 0 8 9 9 _ + i + _ i + _ + i 7 8 7 _ + i + _ i + _ + i + _ 8i _ + i + _ + i + 8 0 g ( _ + i + _ i + _ + i ) h 9 + + 9 0 i + 8 + +

Nadere informatie

Integralen. onbepaalde integralen. oneigenlijke integralen. gemiddelde functiewaarde op een interval

Integralen. onbepaalde integralen. oneigenlijke integralen. gemiddelde functiewaarde op een interval Intgrln onld intgrln onignlijk intgrln gmiddld funtiwrd o n intrvl Onld intgrl En onld intgrl wordt ogshrvn ls: f ( d ) wrin f() n willkurig funti is. En r gldt: f ( d ) = F( ) + Wrij F() d rimitiv funti

Nadere informatie

Q: Afstand tot E is. R: Afstand tot E is

Q: Afstand tot E is. R: Afstand tot E is H9 PARABOLEN & HYPERBOLEN VWO 9. INTRO Q: Afstnd tot E is 69 6 7 () ( ) 9. Afstnd tot k is 9. R: Afstnd tot E is (6 ) 6. 669 6 7 Afstnd tot k is 6. us Q en R liggen even ver vn E ls vn k. e fstnd tot k

Nadere informatie

Gelijknamige breuken kun je eenvoudig bij elkaar optellen of van elkaar aftrekken:

Gelijknamige breuken kun je eenvoudig bij elkaar optellen of van elkaar aftrekken: Brukn optlln n ftrkkn Vrknnn Opgv 1 Ton n Hns stlln smn n grot pizz. Ton t d hlft vn d pizz op, Hns t 3 dl vn d pizz. 8 Wlk dl vn d pizz tn z smn op? Wlk dl vn d pizz t Ton mr op dn Hns? nm: Imgs/R1003.jpg

Nadere informatie

15 4 11 dus punt B ligt niet op lijn k

15 4 11 dus punt B ligt niet op lijn k Hoofdstu 9: Lijnen en iels. 9. Vegelijingen vn lijnen. Ogve :... 6 6 Ogve :.. dus unt ligt o lijn dus unt B ligt niet o lijn 6 7 dus unt C ligt o lijn 6 6 dus unt D ligt o lijn. q q q q 7q q 7 d. doo 6

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 5 Exponentiële functies

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 5 Exponentiële functies D Wagnings Mthod 5&6 VWO wiskund B Uitgbridr antwoordn Hoofdstuk 5 Eponntiël functis Paragraaf Eponntiël functis a. J mag wl van n artikl van 00 uro uitgaan. Bij d n krijg j: 00 0 0 99 Bij d andr: 00 90

Nadere informatie

Opgave 1: I, II, IV en V zijn tweedegraads vergelijkingen. III is een eerstegraads vergelijking en VI is een derdegraads vergelijking.

Opgave 1: I, II, IV en V zijn tweedegraads vergelijkingen. III is een eerstegraads vergelijking en VI is een derdegraads vergelijking. Hoofdstuk : Vergelijkingen en ongelijkheden.. Tweedegraadsvergelijkingen Ogave : I, II, IV en V zijn tweedegraads vergelijkingen. III is een eerstegraads vergelijking en VI is een derdegraads vergelijking.

Nadere informatie

15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO

15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO Hoofdstuk 6 RECHTE LIJNEN 6.0 INTRO 6 d km kost,0: =,9 drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls je nr rechts zou gn, zou je omhoog

Nadere informatie

wedstrijden, dus totaal 1 n ( n 1)

wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Comintoriek.. Telprolemen visuliseren Opgve :. ;. voordeel: een wegendigrm is compcter ndeel: ij een wegendigrm moet je weten dt je moet vermenigvuldigen terwijl je ij een oomdigrm het ntl

Nadere informatie

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1.

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1. Hoofdstuk 9: Allerlei functies 9. Machtsfuncties en wortelfuncties Opgave : a. 0,0, c. y en y d. y en y Opgave : a. de grafiek van y ontstaat uit die van y door T 0, T 0,6 y y 6 Opgave : a. T 6,0 T,0 c.

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

Christmas time 2.0! Lesbrief

Christmas time 2.0! Lesbrief Lsbrif Christms tim 2.0! En updt vn ht succsvoll Tumult krstspl vn vorig jr. In smnwrking mt Musicbox is d muzikrond nu n krstmuzikquiz gwordn di j klssikl ls fsluiting vn ht spl dot: vl plzir n lvst hl

Nadere informatie

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5 Hoofdstuk 6: De afgeleide functie 6. Hellinggrafieken Opgave : als je vanuit punt A naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te komen, dus rc 6 b. c. d. x 0 4 helling 6,5 0, 5, 5 0,5 Opgave

Nadere informatie

de Wageningse Methode Antwoorden H29 PARABOLEN&HYPERBOLEN 1

de Wageningse Methode Antwoorden H29 PARABOLEN&HYPERBOLEN 1 Hodstuk PARABOLEN & HYPERBOLEN. INTRO. CONFLICTLIJN ; ; d,, Q: Afstnd tot E is 7 Afstnd tot k is R: Afstnd tot E is 7 Afstnd tot k is us Q en R liggen even ver vn E ls vn k. e fstnd tot k is e fstnd tot

Nadere informatie

Negatieve getallen in een assenstelsel

Negatieve getallen in een assenstelsel G Ngtiv gtlln in n ssnstlsl 98 kijk ht ssnstlsl n los vrgn op. Gf oörint vn puntn, n. 2 4 (...,...) (...,...) 2 (...,...) Tkn in ht ssnstlsl puntn D(, 2), ( 4,) n (2, ). Klur ht glt vn ht ssnstlsl gron

Nadere informatie

4.3. Toepassingen van logaritmische en exponentiële functies

4.3. Toepassingen van logaritmische en exponentiële functies 4.3. Topassingn van logaritmisch n ponntiël functis 4.3.. Limitn van logaritmisch n ponntiël functis Voorbld : a b a b H lna a lna lnb b lnb b log a Voorbld : Dit is n niuw onbpaald vorm! W wtn wl dat

Nadere informatie

Opgave 1: 2 is de richtingscoëfficiënt, d.w.z. 1 naar rechts en 2 omhoog. 3 is het snijpunt met de y-as, dus ( 0,3)

Opgave 1: 2 is de richtingscoëfficiënt, d.w.z. 1 naar rechts en 2 omhoog. 3 is het snijpunt met de y-as, dus ( 0,3) Hoofdstuk : Functies en grafieken.. Lineaire functies Ogave : is de richtingscoëfficiënt, d.w.z. naar rechts en omhoog. is het snijunt met de y-as, dus ( 0,). Ogave : rc en het snijunt met de y-as is (

Nadere informatie

Hoofdstuk 5 Oneigenlijke integralen

Hoofdstuk 5 Oneigenlijke integralen Anlys Plus rdr Hoofdsuk 5 Hoofdsuk 5 Onignlijk ingrln Inhoud Hoofdsuk 5 Onignlijk ingrln... 4 5. Inliding.... 4 5. Ni grnsd ingri-inrvlln.... 4 5. Disconinu o h ingri-inrvl... 44 5. Gmngd ogvn... 47 Hogschool

Nadere informatie

We gebruiken de volgende standaardvorm van een cirkel met middelpunt M en straal r : ( ) ( ) 2

We gebruiken de volgende standaardvorm van een cirkel met middelpunt M en straal r : ( ) ( ) 2 Wiskunde D Online uitweking VWO lok les jnui Pgf Opgve We geuiken de volgende stnddvom vn een cikel met middelpunt M en stl : De cikel met middelpunt (-,) en stl voldoet n de vegelijking De cikel met middelpunt

Nadere informatie

Uitwerkingen 1. Opgave 1. v gem = 2,2 m/s. Oplossing: Opgave 2. v gem = 0,83 m/s = = Oplossing: Opgave 3. Δt = 11 s. Gevraagd: Oplossing: v gem.

Uitwerkingen 1. Opgave 1. v gem = 2,2 m/s. Oplossing: Opgave 2. v gem = 0,83 m/s = = Oplossing: Opgave 3. Δt = 11 s. Gevraagd: Oplossing: v gem. Uitwrkingn 1 Opg 1 Δt 480 s, m/s Δs, m/s 480 s 1056 m s Opg Δs 9 m 0,83 m/s Δt 9 m 0,83 m/s 34,9 s Opg 3 Opg 4 Opg 5 Opg 6 Δs 15 m Δt 11 s Δs 5 m Δt 4,3 s 15 m 11s 5 m 4,3 s 1,36 m/s 5,8 m/s 340 m/s Δs

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO H6 RECHTE LIJNEN VWO 6.0 INTRO 6 d km kost,0: =,0 (oude druk) km kost,0: =,9 (nieuwe druk) drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls

Nadere informatie

Formulekaart VWO wiskunde B1 en B2

Formulekaart VWO wiskunde B1 en B2 Formulekrt VWO wiskunde B en B2 De Formulekrt Wiskunde hvo/vwo is gepubliceerd in Uitleg, Gele Ktern nr. 2, CEVO- 98/257. Deze versie vn de Formulekrt is die officiële versie. Vierkntsvergelijking Als

Nadere informatie

Ajodakt Hoofdrekenen groep 5-6

Ajodakt Hoofdrekenen groep 5-6 Ajokt Hoofrknn grop - Dln t/m 0 n hogr, mt n zonr rst Colofon ũžěăŭƚ ŵăăŭƚ ĚĞĞů Ƶŝƚ ǀĂŶ ŚŝĞŵĞDĞƵůĞŶŚŽī ĞůĨƐƚĂŶĚŝŐ ǁĞƌŬĞŶ ŝƚ ďğɛƚăăƚ Ƶŝƚ ĞĞŶ ŐƌŽŽƚ ĂƐƐŽƌƟ ŵğŷƚ ůğğƌŵŝěěğůğŷ ǀŽŽƌ ĂůůĞ ůğğƌũăƌğŷ Op onz Z-sit

Nadere informatie

Bij de toepassing van de in paraplubestemmingsplan bedoelde ontheffing wordt verstaan onder:

Bij de toepassing van de in paraplubestemmingsplan bedoelde ontheffing wordt verstaan onder: HOOFDSTUK 2. REGELS PARAGRAAF 1 TOEPASSINGSREGELS Artikl 1 Topssingsrik Inin nit op gron vn nr plingn vn in ijlg 1 gnom stmmingsplnnn vrijstlling/onthffing kn worn vrln zijn urgmstr n wthours vog onthffing

Nadere informatie

2 de Bachelor IR 2 de Bachelor Fysica

2 de Bachelor IR 2 de Bachelor Fysica de Bchelor IR de Bchelor Fysic jnuri 4 Er worden 5 vrgen gesteld. Vul o ieder bld je nm in. Motiveer of bewijs iedere uitsrk. Los lle vrgen o, o een rt bld! Het exmen duurt u. Veel succes!. Bereken lle

Nadere informatie

Deel 1 Vijfde, herziene druk

Deel 1 Vijfde, herziene druk drs. J.H. Blanksoor drs. C. d Jood ir. A. Sluijtr Togast Wiskund voor ht hogr brosondrwijs Dl Vijfd, hrzin druk Uitwrking hrhalingsogavn hoofdstuk 6 ThimMulnhoff, Amrsfoort, Togast Wiskund, dl Uitwrking

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

Hoofdstuk 5: Machten en exponenten. 5.1 Hogeremachtswortels. Opgave 1: a. b. twee oplossingen. c. geen oplossingen. Opgave 2: a. b.

Hoofdstuk 5: Machten en exponenten. 5.1 Hogeremachtswortels. Opgave 1: a. b. twee oplossingen. c. geen oplossingen. Opgave 2: a. b. Hoofdsuk : Mchen en eponenen.. Hogeremchsworels Opgve :.. wee oplossingen 0, 0 geen oplossingen Opgve :.,. oplossing 0,9 oplossingen 0,9 Opgve :.. 0 0 e. 0 f. Opgve :. 0 0 0. GETAL EN RUIMTE VWO WA/C D

Nadere informatie

Eindexamen wiskunde B1 vwo 2008-I

Eindexamen wiskunde B1 vwo 2008-I Eindamn wiskund B vwo 008-I Boordlingsmodl Vraag Antwoord Scors Landing maimumscor 4 y' 4,8 0 3 + 4,8 0 5 y '(0) 0 (dus in (0, 8) hft ht vligtuig n horizontal bwgingsrichting) y '(00) 0,48+ 0,48 0 (dus

Nadere informatie

9.1 Logaritmische en exponentiële vergelijkingen [1]

9.1 Logaritmische en exponentiële vergelijkingen [1] 9.1 Logaritmische en eonentiële vergelijkingen [1] Voor logaritmen gelden de volgende rekenregels: (1) log( ab) log( a) log( b) g g g () g g g (4) (3) g n g (5) g log() = y volgt = g y Voorbeeld: a log

Nadere informatie

: de diepte wordt 10 m/min minder, dus hij stijgt 10 m/min 46: op t 0 is de diepte 46 m, dus het wrak ligt op 46 m diepte

: de diepte wordt 10 m/min minder, dus hij stijgt 10 m/min 46: op t 0 is de diepte 46 m, dus het wrak ligt op 46 m diepte Hoofdstuk : Functies en grafieken.. Lineaire functies Opgave : a. d b. t, 75 dus d 8, 5 m c. 0 : de diepte wordt 0 m/min minder, dus hij stijgt 0 m/min 46: op t 0 is de diepte 46 m, dus het wrak ligt op

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-I

Eindexamen wiskunde B1-2 vwo 2007-I Eindemen wiskunde B- vwo 007-I Beoordelingsmodel Podiumverlichting mimumscore 3 sin α = r 650 V 650 r r r 650 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 650 650 = 9+ 9+ 9 + mimumscore 5 650 00

Nadere informatie

Hoofdstuk 5 - Evenredigheden

Hoofdstuk 5 - Evenredigheden Hvo D l Uitwrkingn Morn wiskun Hoofstuk - Evnrign Blzij 0 6 8 mtr 08 b HA in mtrs 0 7 08 D in mtrs,67 8,89 6 J ; ngglir gt in n rt lijn nr bnn. J omt r tussn HA n D n linir vrbn bstt. D 0 0 O 0 0 60 80

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

Verzoek om kwijtschelding particulieren 2016

Verzoek om kwijtschelding particulieren 2016 Vrzok om kwijtshling prtiulirn 2016 Mt it formulir kunt u kwijtshling vrgn vn lsting. Bntwoor vrgn, onrtkn ht formulir n stuur ht zo snl moglijk trug. U mot op ll vrgn i op u vn topssing zijn vollig n

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschppelijk Onderwijs 0 0 Tijdvk Inzenden scores Vul de scores vn de lfbetisch eerste vijf kndidten per school in op de optisch leesbre

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a Statistik Ongvr 6 miljon guln at is ruim miljar guln. 0 kg marihuana in 99 is onwaarshijnlijk winig. Zkr vrglkn mt anr jarn. D juist waar is 9 0 7 9 6. In 99 is r voor ruim 07 miljon guln onrshpt. Dit

Nadere informatie

Jaargang 4, nummer 12, datum: 17 februari 2015

Jaargang 4, nummer 12, datum: 17 februari 2015 Jgng 4, numm 12, dtum: 17 fui 2015 Bst ouds of vzogs, Volgnd wk is ht lw Voojsvknti n mt ht w vn d fglopn dgn, volt ht ook uitn f n to l ls vooj. W wnsn idn lvst n hl pttig vknti n zin lk 2 mt hoplijk

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0

Nadere informatie

In figuur 5-1 zie je een afbeelding van de snelheidsmeter en de kilometerteller van een nieuwe auto.

In figuur 5-1 zie je een afbeelding van de snelheidsmeter en de kilometerteller van een nieuwe auto. Opgvn Vrkr In ht vrkr spln snlhi n krht n lngrijk rol. W zulln topssingn kijkn wrij voorl ook vilighi in ht vrkr n o zl komn. Opgv 1 In figuur 5-1 zi j n fling vn snlhismtr n kilomtrtllr vn n niuw uto.

Nadere informatie

De Slimste Handleiding ter Wereld

De Slimste Handleiding ter Wereld D Slimst Hndliding t Wld 1. Inliding vsi 2.5 Wlkom bij d Slimst Hndliding t Wld, d gids di u l lidn doohn ht voobidn n uitvon vn D Slimst Mns t Wld, mt bhulp vn ht bijgvogd flsh-pogmm n nd documntn. 2.

Nadere informatie

Aanvraagformulier Persoonsgebonden Budget Verpleging en Verzorging

Aanvraagformulier Persoonsgebonden Budget Verpleging en Verzorging Anvrgormulir Prsoonsgonn Bugt Vrplging n Vrzorging DEEL 3: Bugtpln Dit ugtpln wort oor vrzkr o wttlijk vrtgnwoorigr ingvul. 1 (En tolihting op ht ormulir stt in ijlg) 1. Grssr Dit ormulir is stm voor:

Nadere informatie

H28 VIERKANTSVERGELIJKINGEN

H28 VIERKANTSVERGELIJKINGEN H8 VIERKANTSVERGELIJKINGEN vwo 8.0 INTRO - - 8. TERUGBLIKKEN 3 a x = 3½ b x + 7 = x + 7 = x + 6 = x Dus x = 3 c x = of x = - d x + 6 = of x + 6 = - x= - of x = -0 e Er is geen olossing, want het kwadraat

Nadere informatie

NEVAC examen Elementaire Vacuümtechniek Vrijdag 11 april 2003, 14:00-16:30 uur. Vraagstuk 1 (EV-03-1) (25 punten)

NEVAC examen Elementaire Vacuümtechniek Vrijdag 11 april 2003, 14:00-16:30 uur. Vraagstuk 1 (EV-03-1) (25 punten) NEVAC xmn Elmntir Vuümthnik Vrijg 11 pril 2003, 14:00-16:30 uur Vrgstuk 1 (EV-03-1) (25 puntn) En vuümsystm wort gëvur mt n olivrij pompsystm, t stt uit n voorvuümpomp n n turomolulirpomp. D pompsnlhi

Nadere informatie

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden Hoofdstuk : Formules en grafieken.. Lineaire verbanden Opgave : in 0 minuten daalt het water 40 cm, dus 4 cm per minuut dus na minuut geldt: h 40 4 6 cm en na minuten geldt: h 40 4 cm b. formule II Opgave

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht

Nadere informatie

Hoofdstuk 5: Werken met formules. 5.1 Stelsels vergelijkingen. Opgave 1: 44 110 dus 110 bolletjes. 24 15 dus 15 broden. Opgave 2: Opgave 3:

Hoofdstuk 5: Werken met formules. 5.1 Stelsels vergelijkingen. Opgave 1: 44 110 dus 110 bolletjes. 24 15 dus 15 broden. Opgave 2: Opgave 3: Hoofdstuk 5: Werken met formules 5. Stelsels vergelijkingen Opgave : a. 60 0,6 44 44 0 dus 0 bolletjes 0,4 b. 60 90 0,4 4 4 5 dus 5 broden,6 c.,6 0,4 y 60 Opgave : a. 5 y 50 y 5 50 y,5 0 b. p q 6 p q 6

Nadere informatie

4 a x x + 36 = 16 x x + 20 = 0 b x x + 20 = (x + 2)(x + 10) c x = -2 of x = -10

4 a x x + 36 = 16 x x + 20 = 0 b x x + 20 = (x + 2)(x + 10) c x = -2 of x = -10 H8 VIERKANTSVERGELIJKINGEN VWO 8.0 INTRO - - 8. TERUGBLIKKEN a x = b x + 7 = x + 7 = x + 6 = x x = c x = of x = - d x + 6 = of x + 6 = - x = - of x = -0 e Er is geen olossing, want het kwadraat van een

Nadere informatie

Hoofdstuk 11: Groei 11.1 Exponenti 0 5le groei Opgave 1: Opgave 2: Opgave 3:

Hoofdstuk 11: Groei 11.1 Exponenti 0 5le groei Opgave 1: Opgave 2: Opgave 3: Hoofdsuk : Groei. Eponeni 0 le groei Opgave : a. 60 7 70 7 800 miljoen b., c. 980: N 7 00 7, 7 900 miljoen o 990: N 7 00 7, 7 0 miljoen o 900 7 00 d. klop nie, per 0 jaar is de oename: 700% 7 % 00 Opgave

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24

Nadere informatie

3 Snijpunten. Verkennen. Uitleg

3 Snijpunten. Verkennen. Uitleg 3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls

Nadere informatie

Analyse. Lieve Houwaer Dany Vanbeveren

Analyse. Lieve Houwaer Dany Vanbeveren Anlyse Lieve Houwer Dny Vnbeveren . Relties, functies, fbeeldingen, bijecties Voor niet-ledige verzmelingen A en B noemen we elke deelverzmeling vn de productverzmeling A x B een reltie vn A nr B. We noemen

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1 Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten

Nadere informatie

Voorkom forse inkomensterugval bij arbeidsongeschiktheid met WIA aanvullende verzekeringen

Voorkom forse inkomensterugval bij arbeidsongeschiktheid met WIA aanvullende verzekeringen km fs nkmnstgval bj abdsngschkthd mt W aanvllnd vkngn lgmn nfmat s bstmd v wkgvs n wknms d gaag m wlln wtn v d aanvllnd W vkngn n d bch lst wlk nadlg gvlgn d Wt nkmn n bd (W) v ht nkmn van wknms kan hbbn

Nadere informatie

Getal & Ruimte. Uitwerkingen. vwo. complexe getallen. J. v.d. Meer H. v. Tilburg

Getal & Ruimte. Uitwerkingen. vwo. complexe getallen. J. v.d. Meer H. v. Tilburg J vd Meer H v lurg Getl & Rumte vwo complee getllen Utwerkngen Hoofdstuk Complee getllen Neuwe getllen ( ( ( ( c ( ( ( d ( 7 7 e f ( ( ( ( ( ( ( ( ( ( ( c ( ( ( 9 d ( ln(,9, ( ln,77, c e d, 7 ( en, en

Nadere informatie

Hoofdstuk 12A - Breuken en functies

Hoofdstuk 12A - Breuken en functies Hoostuk A - Brukn n untis Hoostuk A - Brukn n untis Voorknnis V-a g 9 h 9 9 i 0 j 9 0 0 V-a 0 nt is 0,0. J trkt ht aantal likjs kr 0,0 van uro a. W(0) 0,0 0 Z ht nog uro op klantnkaart staan. 0,0 0,0 :

Nadere informatie

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11 84 V** Vul binnen de hkjes de juiste tekens in zodt de gelijkheden kloppen. De letters stellen gehele getllen voor. + + + + + + + + + b + + d + e f = (... b...... d... e... f ) b b + + d + e f = ( b) +

Nadere informatie

Voorbeelden ISSO-publicatie 57

Voorbeelden ISSO-publicatie 57 Voorbldn ISSO-publcat 7. VOORBEELDEN Voorbld Ht btrft n nuw, vrjstaand, doosvormg hal mt als hoofdafmtngn 80 0 7, m. D dur hft n afmtng van 4 mtr n n U-waard van W/(m K. D wandn hbbn n U-waard van 0, W/(m

Nadere informatie

Boek 2, hoofdstuk 7, allerlei formules..

Boek 2, hoofdstuk 7, allerlei formules.. Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.

Nadere informatie

Hoofdstuk 8 Goniometrie. 8.1 De eenheidscirkel. Opgave 1: PQ 1 OQ 1. Opgave 2: Opgave 3: GETAL EN RUIMTE HAVO WB D2 H8 1-1 - AUGUSTINIANUM (LW)

Hoofdstuk 8 Goniometrie. 8.1 De eenheidscirkel. Opgave 1: PQ 1 OQ 1. Opgave 2: Opgave 3: GETAL EN RUIMTE HAVO WB D2 H8 1-1 - AUGUSTINIANUM (LW) Hoofdstuk 8 Goniometrie 8. De eenheidscirkel Opgave : PQ a. sin 6 PQ sin 6 0,9 OQ cos6 OQ cos 6 0, b. P0,;0,9) Opgave : a. POQ 80 6 PQ 0,9 OQ 0, P0,;0,9) b. cos 0, sin 0,9 x P cos 0, y P sin 0,9 c. POQ

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

5.1 Hogeremachtswortels [1]

5.1 Hogeremachtswortels [1] 5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

Opgave 1: De oppervlakte van de figuur is precies de oppervlakte van een rechthoek van 7 bij 3, dus

Opgave 1: De oppervlakte van de figuur is precies de oppervlakte van een rechthoek van 7 bij 3, dus Hoofdstuk : Oppevlakte en inhoud.. Oppevlakte van vlakke figuen Opgave : De oppevlakte van de figuu is pecies de oppevlakte van een echthoek van 7 bij, dus Opp 7 Opgave : a. ABCQPH ) 4 dus lijnstuk PQ

Nadere informatie

Inschrijvingsdocumenten voor de aanvraag van een sociale woongelegenheid bij de Sociale Huisvesting regio Landen cvba-so voor het jaar 2015.

Inschrijvingsdocumenten voor de aanvraag van een sociale woongelegenheid bij de Sociale Huisvesting regio Landen cvba-so voor het jaar 2015. Inschrijvingsdocumntn voor d nvrg vn n socil woonglgnhid bij d Socil Huisvsting rgio Lndn cvb-so voor ht jr 0. IN TE VULLEN DOCUMENTEN Documnt: Inschrijving prsonn Kuzlijst - formulir: Inschrijving: kuz

Nadere informatie

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK A.F. Bloemsm M.A. Litjens C. Ultzen M.D. Poot INHOUD: H. : Hkjes wegwerken, ontbinden in fctoren H. : Mchten 0 H. : Het rekenen met breuken (deel

Nadere informatie

Extra oefening hoofdstuk 1

Extra oefening hoofdstuk 1 Etra ofning hoofdstuk = ( ) = = v v v dr 7 7 7 v a = + v als v 7 v v dus als = 7 7 7 7 dv waaruit volgt dat v = 7 km/uur. v = 7 gft R = 7, 7 mg/min. a f ' = = ' = + = ( + ) ' = = ( ) = f f d f ' ln ln

Nadere informatie

Oplossingen vbtl 5 analyse 1, leerweg 6-8

Oplossingen vbtl 5 analyse 1, leerweg 6-8 = Olossinn vtl nlys lrw -8. Vltrmuntis (lz. ) (); (); (0); (); () n 0 0 i n 0 ; 0; 9 C A A A A A A < F A A A ovn: A A onr: A A nn uur; 8 m m uur to : () ; () l : (0) 8 u0'" 0 u; 0 m onr wtr u'" 9 8 m m

Nadere informatie

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde Oppervlkte vn riehoeken Verkennen Opgve 1 Je ziet hier twee riehoeken op een m-rooster. Beie riehoeken zijn omgeven oor eenzelfe rehthoek. nme: Imges/hv-me7-e1-t01.jpg file: Imges/hv-me7-e1-t01.jpg Hoeveel

Nadere informatie

Bewonerstevredenheidsonderzoek Hilversumse Meent Ronde I

Bewonerstevredenheidsonderzoek Hilversumse Meent Ronde I Bwnrstvrdnhdsndrzk Hlvrsums Mnt Rnd I kr k D lln l w m n a F rjv. d b st n p k m r v n D s t k j l l sn ank h f a n s m l. n H s r s f d r r p j z k m t aak m t a D 2 D Fam l wr r H B kwa k gd m s b lm

Nadere informatie

Welke drie redenen kun je noemen voor het feit dat hun aantal in Zuid-Afrika achteruit is gegaan?

Welke drie redenen kun je noemen voor het feit dat hun aantal in Zuid-Afrika achteruit is gegaan? Rout B 1 Zwrtvotpinguïns Zwrtvotpinguïns zijn ngpst n ht wtrlvn. Doort hun kort vrn iht tgn lkr zittn, zijn z shrm tgn ht kou wtr. Bovnin hn z onr hun hui n ikk vtlg. Zwrtvotpinguïns mkn l uit vn volgn

Nadere informatie

6 5 x 4 x x 3 x x x 2 x x x x 1 x x x x x x 5 4 x 3 x 2 x opgave a opgave b opgave c

6 5 x 4 x x 3 x x x 2 x x x x 1 x x x x x x 5 4 x 3 x 2 x opgave a opgave b opgave c Hoofdstuk : Het kansbegrip.. Kansen Opgave : De kans dat ze gooit is groter, want ze kan op zes manieren gooien: -, 2-, -, -, -2, -. Ze kan op manieren 9 gooien: -, -, -, -. Opgave 2: e. Opgave : 9 0 2

Nadere informatie

Recreatieprogramma. Mexico. Sport. Kinderclub. Knutselen

Recreatieprogramma. Mexico. Sport. Kinderclub. Knutselen Rcratiprogramma Zatrdag 31 jli t/m vrijdag 6 agsts 2010 Camping d'n Ul Ptstraat 8 6235 NN Ulstratn (043) 3647769 www.campingdnl.nl info@campingdnl.nl Mxico D L B R V r on' m a in n 'g program Zo zo n n

Nadere informatie

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1 H GONIOMETRIE VWO.0 INTRO 6 km : 0.000 = cm b b Driehoek PQB is gelijkvormig met driehoek VHB, de 00 vergrotingsfctor is 0 = 7. Dus PQ = 680 = 0, dus zeilt ze 0 meter 7 in minuten. Dt is,8 km/u.. HOOGTE

Nadere informatie

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek . Omtrekshoeken en middelpuntshoeken Opgave : ACB is constant Opgave : a. * b. * c. ACB AMB Opgave 3: a. * b. de drie cirkels gaan door één punt c. de drie lijnstukken gaan door één punt Opgave 4: a. Teken

Nadere informatie

Voorbereidende opgaven Examencursus

Voorbereidende opgaven Examencursus Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en

Nadere informatie

Hoofdstuk 6 Machtsfuncties. Kern 1 Even en oneven exponenten. 4VWO B, uitwerkingen Hoofdstuk 6, Machtsfuncties1

Hoofdstuk 6 Machtsfuncties. Kern 1 Even en oneven exponenten. 4VWO B, uitwerkingen Hoofdstuk 6, Machtsfuncties1 VWO B, uitwrkingn Hoostuk, Mahtsuntis Hoostuk Mahtsuntis Krn Evn n onvn ponntn a Ht gwiht van kuus staat uit ht gwiht van rin. Er zijn rin. Als ri r m lang is, an wgt ir ri 0, r gram. Ht total gwiht wort

Nadere informatie

Hoofdstuk 4: Veranderingen. 4.1 Stijgen, dalen en intervallen

Hoofdstuk 4: Veranderingen. 4.1 Stijgen, dalen en intervallen Hoofdtuk 4: Veranderingen 4. Stijgen, dalen en intervallen Opgave : 4.00-.00 uur eert een toeneende tijging, daarna een afneende tijging eert een toeneende daling, daarna een afneende daling Opgave : 6,

Nadere informatie

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 BR* BR+

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 BR* BR+ B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 BR* BR+ LH 262 BK JV 151 FA KR 069 MU ET 160 TK VK 010 MT JE 139 EN AW 228 WI KT 247 BI BT 172 FA PW 261 BK HF 119 EN NF 107

Nadere informatie

Dag stoere dolfijntjes en leeuwkes!

Dag stoere dolfijntjes en leeuwkes! WIJ GN OP Dag stoere dolfijntjes en leeuwkes! Wat leuk dat jullie zich wagen aan dit spannend avontuur en samen met mij op safari gaan. Ik ben jullie gids en zal jullie begeleiden tijdens onze trip. Het

Nadere informatie

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm :

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm : 1.8. De Lplce vergelijking. De wrmtevergelijking in meerdimsionle ruimt heeft de volgde vorm : in R 2 : α 2 (u xx + u yy ) = u t in R 3 : α 2 (u xx + u yy + u zz ) = u t. Hierbij stelt u(x, y, t) de tempertuur

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symbool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

Hoofdstuk 7 : Differentiaalrekening

Hoofdstuk 7 : Differentiaalrekening Hoodstk 7 : Dierentilrekenin H4D Hoodstk 7 : Dierentilrekenin Les Prodct en qotiëntreel Teorie dierentiëren Hoodreel dierentiëren : = n = n n- Er zijn drie lreels bij dierentiëren : Prodctreel : ' ' '

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 6 De integraal

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 6 De integraal D Wgnings Mthod & VWO wiskund B Uitgrid ntwoordn Hoofdstuk D intgrl Prgrf Opprvlkt ondr n grfik. km. ls t< : w(t t ls t< : in uur km glopn n t uur km/u, dus (t glopn, dus w(t t ls t : w(t (t t c., n. t

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Over de lengte van OH, OZ en OI in een willekeurige driehoek

Over de lengte van OH, OZ en OI in een willekeurige driehoek Over de lengte vn OH, OZ en OI in een willekeurige driehoek DICK KLINGENS (e-mil: dklingens@pndd.nl Krimpenerwrd College, Krimpen n den IJssel (Nederlnd pril 2007 1. De lengte vn OH en OZ De punten O,

Nadere informatie

Routeplanning middels stochastische koeling

Routeplanning middels stochastische koeling Routeplnning middels stochstische koeling Modellenprcticum 2008 Stochstische koeling of Simulted nneling is een combintorisch optimlistielgoritme dt redelijke resultten geeft in ingewikkelde situties.

Nadere informatie