Rekenen aan hypotheken

Maat: px
Weergave met pagina beginnen:

Download "Rekenen aan hypotheken"

Transcriptie

1 42 NAW 5/3 r. 1 maart 22 Rekee aa hypotheke Fras Boshuize, Peter Spreij Fras Boshuize Divisie Wiskude e Iformatica, Vrije Uiversiteit ING Group, Corporate Reisurace Postbus 81, 1 AV Amsterdam Peter Spreij Korteweg-de Vries Istituut voor Wiskude Uiversiteit va Amsterdam Platage Muidergracht 24, 118 TV Amsterdam Rekee aa hypotheke Meer da hoderd jaar gelede vod meig wiskudige zij beroep i de verzekerigswiskude. Sidsdie is er veel veraderd. De fiaciële markte zij groter e seller geworde e worde bestuurd door selle computers die complexe modelle kue doorrekee. Fiaciële wiskude eemt de laatste tie jaar ee veel grotere plaats i op de uiversiteite e daar wordt ook weer meer gedacht aa de fiaciële beroepspraktijk. Fras Boshuize e Peter Spreij beschrijve allerlei geavaceerde techieke die gebruikt worde bij fiaciële istellige om risico s te mete e beheerse. Fiaciële istellige zoals bake, verzekerigsmaatschappije, treasury afdelige va iteratioaal opererede oderemige probere zich op allerlei maiere i te dekke tege fiaciële risico s. Deze risico s kue va allerlei aard zij. Dek bijvoorbeeld aa fluctuaties va wisselkoerse, grote schadeclaims bij oodweer, of aa waardeveraderig va beleggigsportefeuilles, die zeer va belag zij voor pesioefodse die hu verplichtige op het gebied va pesioeaasprake moete akome. Welke va de geoemde voorbeelde ook va toepassig is, altijd zal ee kwatitatieve aalyse va marktgegeves e wiskudige modelle de grodslag vorme voor het bepale va prijze e het oderbouwe va risicobeheersig. Het is da ook iet verwoderlijk dat de laatste tijd veel wiskudige of persoe met ee adere exacte of kwatitatieve achtergrod ecoometriste, statistici, maar ook fysici e sterrekudige ee werkkrig vide i de fiaciële sector. Naast werk va statistische aard wordt ook gebruik gemaakt va aalytische methode uit adere dele va de wiskude, bijvoorbeeld de theorie va de partiële differetiaalvergelijkige. Omdat de te aalysere probleme vaak te complex zij om ee aalytische geslote vorm oplossig te berekee, worde veel umerieke methode (umeriek itegrere/differetiëre) gebruikt. Ook eevoudigere situaties da de eerder geoemde voorbeelde zij dekbaar. Bijvoorbeeld, risico s die fiaciële istellige aagaa bij het verstrekke va hypotheke aa klate. I dit artikel gaa we ader i op ee aatal wiskudige aspecte die om de hoek kome kijke bij het vaststelle va prijze die bake, of adere hypotheekverstrekkers, hu klate berekee. 1 Rete e verdiscoterig Als we geld uitlee of op ee bakrekeig zette, otvage we daarvoor rete. Stel dat we begie met ee kapitaal k e dat we aa het eid va op elkaar volgede periode het kapitaal k otvage. Over elk va deze periode bestaat ee rete va ρ k 1%. Da is k = (1 + ρ k)k. Als we deze periodes kort eme, zeg met ee legte h, da zal ook de rete over zo periode va h afhage. I dat geval schrijve we ρk h. We kieze voor everedigheid va ρk h met de legte va de periode, dus bijvoorbeeld ρk h = hr k. Deke we u aa r k als waarde va ee fuctie va ee reële variabele r( ), da ligt het voor de had r k = r(kh) te eme. Op dezelfde maier beschouwe we ook het cumulatieve kapitaal k als iterpolaties va ee reële fuctie k( ). We vervage da k door k(h) e krijge dus de uitdrukkig k(h) = k() (1 + hr(kh)). Neme we logaritme, da otstaat er log k(h) = log k()+ log(1+hr(hk)) log k()+ h r(hk). De som beadere we door de itegraal r(s)ds, met als gevolg dat we bij beaderig k(t) = k() exp( r(s) ds) krijge voor h e h t. We kue de zake ook omkere. Als we op ee tijdstip T i de toekomst ee kapitaal va ee gulde wille spare, da moete we op ee eerder tijdstip t daarvoor ee bedrag p(t, T) = exp( T t r(s) ds) ilegge, erva uitgaade dat r( ) beked is. Het bedrag p(t, T) wordt ook wel de prijs va ee discout of zero-coupo obligatie geoemd. Zero-coupo duidt op het feit dat ee dergelijke obligatie iet tussetijds rete uitkeert, maar allee de hoofdsom aa het eide va de looptijd. De fuctie r wordt aageduid met de aam korte rete of short rate. Het zal duidelijk zij dat soortgelijke overwegige ook betrekkig hebbe op hypotheke, va welke soort da ook, met

2 Fras Boshuize, Peter Spreij Rekee aa hypotheke NAW 5/3 r. 1 maart die verstade dat het geld voor de aakoop va ee huis door de cosumet geleed moet worde, waarover bake rete berekee. Dat deze rete afhagt va de looptijd va de hypotheek, of liever va de periode waarover ee retepercetage afgesproke wordt, is iederee beked. Bij ee retevaste periode va vijf jaar ligt het percetage vaak hoger da voor ee periode va twee jaar. Terwijl voor de klat de te betale rete voor ee zekere periode vast ligt, is de situatie voor bake geheel verschilled. Zij sluite immers dagelijks grote aatalle hypotheke af, moete het uitgeleede bedrag zelf fiaciere e hebbe daarbij steeds te make met de marktrete die hu die dag bereked wordt e daarmee ook met de schommelige die de rete odervidt. Ook hebbe bake og te make met verschillede rechte die verstrekt worde aa de klate. We oeme hier het recht op vervroegd aflosse e de meeeem-optie bij verhuize. Deze rechte zorge er voor dat de kasstrome die bake otvage uit hu hypothekeportefeuille iet helemaal zeker zij, maar afhakelijk va toekomstige rete-otwikkelige. We kome hier uitgebreid op terug i paragrafe 5 e 6. Voor het i kaart brege va de ozekerheid over de otwikkelig va de korte rete hatere we ee stochastisch model. Er zij i de literatuur verscheidee modelle gepostuleerd. Sommige erva lee zich voor ee betrekkelijk eevoudige aalytische aapak, voor adere moet de toevlucht tot simulaties geome worde. I het bestek va dit verhaal kieze we voor ee eevoudig aalytisch te hatere model. Dit model werd geitroduceerd door Hull e White i 1987 (zie [7]). Meer is hierover te vide i bijvoorbeeld de boeke va Björk [2] of Pelsser [1]. 2 Ee wiskudig model Voor het beschrijve va de ozekerheid va de reteotwikkelig is het voldoede dat we kase kue bepale over de waarde die de rete op toekomstige tijdstippe ka aaeme. Impliciet is dit het gevolg va het modellere va de otwikkelig va de rete i de tijd door middel va ee stochastische differetiaalvergelijkig. We itroducere wat otatie e begrippe. Va fudameteel belag is het zogehete Wieer-proces (veroemd aar de wiskudige Norbert Wieer ( ), die het bestaa erva als welgedefiieerd wiskudig object aatoode [13]). Dit stochastische proces duide we aa met W. Al eerder is dit proces geïtroduceerd i ee fiaciële cotext door Louis Bachelier ( ) i zij dissertatie [1], waarop hij als promovedus va Heri Poicaré aa de Sorboe promoveerde. Ook wordt de aam Browse bewegig als syoiem gebruikt voor het Wieer-proces. Deze aam verwijst aar de Schotse botaist Robert Brow ( ) die i 1827 als eerste het beweeglijke Figuur 2 De botaist Robert Brow ( ) e de wiskudige Norbert Wieer ( ). Naar he zij de Browse bewegig e het Wieer-proces verschillede ame voor eeehetzelfde stochastische proces geoemd. gedrag va polle i water als het gevolg va voortdurede botsige met watermolecule waaram. De waarde va W op ee tijdstip t geve we aa met W t. Alle W t zij u stochastische variabele. Ee va de belagrijkste kemerke va het Wieer-proces W is dat icremete W t W s voor t > s ormaal N(, t s) verdeeld zij e stochastisch oafhakelijk va alle waarde va W voor tijdstip s. Bovedie zij de pade t W t va het Wieer-proces cotiue fucties. Het is zelfs zo dat het oplegge va deze eigeschappe aa ee stochastisch proces impliceert dat we met ee Wieer-proces te make hebbe. De tijdsperiode die we beschouwe zette we op [, T]. Het begitijdstip is het momet dat de klat ee offerte accepteert. Met r t duide we de korte rete op tijdstip t aa. We presetere u ee model voor r dat tot gevolg heeft dat r t voor elke t ee stochastische variabele wordt. Zij α ee gegeve reëelwaardige fuctie op [, T] (verderop meer hierover) e θ ee iet-egatieve costate, de zogehete mea-reversio speed. I het model va Hull e White wordt de rete beschreve door de oplossig va de stochastische differetiaalvergelijkig dr t = (α(t) θr t ) dt + σ dw t, (1) waarbij dw t het icremet W t+dt W t voorstelt. Ee discrete tijd approximatie va deze vergelijkig behadele we i paragraaf 3; hieruit valt teves te destillere hoe deze vergelijkig geïterpreteerd diet te worde. We make het typografische oderscheid door i stochastische groothede de tijdsparameter t als subidex weer te geve (zoals r t ) e bij determiistische variabele deze tusse haakjes te schrijve (zoals α(t)). Omdat we de Figuur 1 1 HW-pade met θ =.1 (liks) e θ =.4 (rechts)

3 44 NAW 5/3 r. 1 maart 22 Rekee aa hypotheke Fras Boshuize, Peter Spreij rete u stochastisch gemaakt hebbe, schrijve we dus aders da i paragraaf 1 r t i plaats va r(t). I figuur 1 zie we het effect va de mea-reversio speed i het Hull & White model. I de figuur staa voor θ =.1 e θ =.4 1 gesimuleerde pade geplot. Het is metee duidelijk dat hoe hoger de θ des te seller de retepade teruggetrokke worde aar het gemiddelde iveau. De theorie va de stochastische differetiaalvergelijkige e va de stochastische itegratietheorie, waarva de grodbegisele door K. Itô i de jare veertig va de twitigste eeuw geformuleerd zij, oderscheidt zich qua calculusregels i het algemee va de gewoe differetiaalrekeig. Dit wordt geïllustreerd door de zogeaamde Itô-regel (zie [9]). Recet is beked geworde dat wat u beked staat als de Itô-regel al i 194 is opgeschreve i ee recet geopebaard mauscript va Wolfgag Döbli ( ) dat i ee verzegelde evelop is bewaard i het archief va de Académie des scieces i Parijs. Zie [5] voor ee verhadelig va de bizarre geschiedeis e ee gedrukte versie va het origieel e ook elders i dit blad. Het va de gewoe calculus afwijkede gedrag is essetieel ee gevolg va het feit dat de pade va het Wieer-proces weliswaar cotiu zij, maar aders buitegewoo grillig, amelijk va obegresde variatie over eidige itervalle. Het is voor os doel echter iet odig om hier dieper op i te gaa. Lezers die hierover meer wille wete verwijze we aar bijvoorbeeld Karatzas & Shreve [9] of Chug & Williams [6]. Voor vergelijkig (1) valt aa te toe dat we oze toevlucht kue eme tot methode uit de theorie va de gewoe differetiaalvergelijkige. Gegeve ee begivoorwaarde r (die we determiistisch eme, immers we kee de rete op dit momet) is deze stochastische differetiaalvergelijkig expliciet op te losse. De oplossig waarva we ee slordig bewijs geve i het oderstaade kader, is r t = e θt (r + e θs α(s) ds + σ e θs dw s ). (2) Het gevolg va bovestaad model is (zie paragraaf 3) dat r t op elk tijdstip ormaal verdeeld is, wat allee de laatste (stochastische) itegraal i (2) is ee toevalsvariabele, die we zie als ee (oeidige) som va oafhakelijke ormale. Deze hebbe allemaal verwachtige ul, zodat de verwachtig va r t gelijk is aa e θt r + e θ(t s) α(s) ds. De variatie is wat lastiger te bepale. Aagetood ka worde dat Var r t = σ 2 2θ (1 e 2θt ). Bovedie kue we voor elk tweetal tijdstippe t e s eevoudig de covariatie tusse r t e r s uitrekee. Voor t > s krijge we Cov (r t, r s ) = e θ(t s) Var r s. Het is u ee koud kustje om voor elk -tupel (t 1,..., t ) de verdelig va r t1,..., r t te karakterisere. Deze is (multivariaat) ormaal e verwachtig e covariatiematrix kue we met de zojuist gegeve formules bepale. Samevatted, als gevolg va de beschrijvig met ee stochastische differetiaalvergelijkig zij we i staat om de kasverdelig va het proces r te beschrijve, waarmee we de ozekerheid over het verloop va r i kaart hebbe gebracht. We hebbe u met behulp va ee stochastisch model de korte rete beschreve. I ee discreet model als i paragraaf 3 wordt beschreve, is dit vaak de 1-maads rete (rete op geldleige met duur 1 maad). Zoals eerder gezegd worde hypotheekretes vaak voor lage tijd (va 1 tot 2 jaar) vastgelegd. Het mooie va modelle als (1) is dat we ee geslote vorm Het oplosse va de stochastische differetiaalvergelijkig (1) De methode die we gebruike is die der variatie va de costate, beked uit de theorie va de ihomogee lieaire differetiaalvergelijkige. Hoewel opgemerkt was, dat de stochastische-calculusregels afwijke va wat we uit de gewoe calculus kee, hebbe we hier met ee situatie te make waarva aa te toe valt dat het oderscheid wegvalt. Beschouw eerst de homogee differetiaalvergelijkig dx t = θx t dt. De oplossig kee we: x t = e θt bij begitoestad x = 1. Late we u ees als oplossig voor de stochastische differetiaalvergelijkig r t = x t y t probere. Hier is x t de oplossig va het homogee deel e y t is ee og obepaald stochastisch process. Late we u r t = x t y t gaa differetiëre: dr t = y t dx t + x t dy t = θx t y t dt + x t dy t = θr t dt + x t dy t. Als we u aar de oorsprokelijk vergelijkig voor r t kijke, da zie we dat dy t gelijk moet zij aa x 1 t (α(t)dt +σdw t ) = e θt α(t)dt +σe θt dw t. Als we de laaste vergelijkig itegrere aa beide zijde va het = -teke, e we eme aa dat r t op tijdstip de begiwaarde r aaeemt, da verkrijge we vergelijkig (2). vergelijkig voor lage retes uit kue rekee i terme va de direct gemodelleerde korte rete. Met ee lage rete bedoele we het redemet op ee laglopede leig (bijvoorbeeld staatsobligatie). Het eevoudigst is om aar het redemet va de zero-coupo obligatie uit paragraaf 1 te kijke. De relatie tusse de prijs p(t, T) va ee zero-coupo obligatie op tijdstip t met ee looptijd T t e het redemet R(t, T) va dit istrumet, de zero-coupo rete, ka als volgt gedefiiëerd worde: R(t, T) := log p(t, ( T)/(T t) waarbij p(t, T) gegeve wordt door p(t, T) = E t exp( ) T t r s ds). Het subscript t bij de verwachtig beteket dat we de verwachtig eme gegeve de iformatie va r s tot e met tijdstip t. Voor de experts: de verwachtig wordt geome oder de risico-eutrale kasmaat. De grafiek va R(t, T) als fuctie va T (t vast) wordt wel de spot- of zero-coupo yield curve geoemd. Ee populaire klasse va retemodelle is de klasse va zogeaamde affiee modelle. Bij deze modelle bestaat er ee lieair verbad tusse de zerocoupo retes R(t, T) e de korte retes r t. Het Hull e White model behoort ook tot deze klasse e me ka a eig rekewerk late zie dat er fucties A(t, T) e B(t, T) bestaa zodaig dat R(t, T) = A(t, T) + B(t, T)r t. (3) De fuctie B(t, T) wordt gegeve door B(t, T) = 1 e θ(t t). θ(t t) De fuctie A(t, T) is vrij gecompliceerd e ka gevode worde i paragraaf 5.2 va Pelsser [1]. Zo zie we dus, dat we via ee model voor de korte rete r t ook formules kue krijge voor

4 Fras Boshuize, Peter Spreij Rekee aa hypotheke NAW 5/3 r. 1 maart de lage retes R(t, T). Als we i de praktijk vergelijkige als (1), (2) e (3) wille simulere op de computer, da zulle we ook discrete versies va de vergelijkige moete hebbe. I de volgede paragraaf wordt kort igegaa op het discretisere va de cotiue vergelijkige i deze paragraaf. Met ame vergelijkig (4) is zeer uttig e geeft direct aa hoe korte retes gesimuleerd kue worde. 3 Discrete beaderig Stochastische differetiaalvergelijkige zij op te vatte als limiete va (stochastische) differetievergelijkige. De aapak die we hierbij volge, verloopt parallel aa die va paragraaf 1. We illustrere dit aa de had va de eerder gepoeerde vergelijkig dr t = (α(t) θr t ) dt + σdw t. Over ee klei tijdsiterval ter legte h vide we dat bij beaderig geldt r t+h r t = (α(t) θr t )h + σ(w t+h W t ). Late we u t steeds ee geheel veelvoud va h zij, zeg t = h, da krijge we met r h = r h, α h = α(h) e W h +1 = W (+1)h W h r h +1 = rh + (α h θr h )h + σ W h +1. (4) Merk op dat W+1 h ormaal verdeeld is met verwachtig ul e variatie h. De laatste vergelijkig is recursief eevoudig op te losse: r h = (1 θh) (r + (1 θh) k α h k 1 h + (1 θh) k σ Wk h). (5) We zie u eevoudig dat r h ormaal is met verwachtig e variatie (1 θh) (r + (1 θh) k αk 1 h h σ 2 (1 θh) 2 (1 θh) 2k h. Late we u h e h t, da covergeert de verwachtig va r h aar e θt (r() + e θs α(s) ds), omdat (1 θh) e θt e we de (Riema) som kue vervage door de correspoderede itegraal. Aaloog covergeert de variatie aar σ 2 e 2θt e 2θs ds = σ 2 (1 e 2θt )/2θ. De aldus verkrege limiete voor verwachtig e variatie zij precies wat we i paragraaf 2 al bereked hadde voor r t. Op soortgelijke wijze kue we u ook iets over covergetie va r h uit (5) zegge, zoder deze bewerige ee preciese vorm te geve: r h covergeert (i kas) aar r t uit (2), waarbij we dw t hebbe geschreve voor de limiet va W h k. 4 Statistiek voor retemodelle I het model va vergelijkig (1) zij de reële parameters θ e σ, alsmede de fuctie α og iet gespecificeerd. I de praktijk probeert me deze obekede parameters te vide door het gebruikte retemodel te calibrere op marktdata. De eerst stap is als volgt: De fuctie α(t) wordt zo gekoze dat de prijs E exp( r s ds) va ee zero-coupo obligatie met looptijd t overee komt met de prijs die vadaag i de markt geldt. I de krat ku je de prijze zie va gewoe coupo obligaties uitgegeve door de Nederladse staat. Hieruit is op eevoudige wijze de prijze va zero-coupo obligaties af te leide. De parameters θ e σ kue verkrege worde door het model te calibrere op prijze va rete-opties (caps, floors, swaptios). Dit gaat door eerst ee aatal prijze te verzamele i de huidige markt, da de prijze va dezelfde istrumete uit te rekee i het model (dus og als fuctie va θ e σ), e daara, bijvoorbeeld met behulp va de kleiste kwadrate methode, de parameters θ e σ zo te kieze dat de marktprijze zo goed mogelijk beaderd worde. Dat hierbij allerlei stadaardvrage uit de statistiek omtret de kwaliteit va de verkrege resultate opdoeme, zal duidelijk zij. I het kader va dit artikel gaa we hier iet ader op i. 5 Retemodelle bij aalyses va hypothekeportefeuilles Nu we ee wiskudig model geïtroduceerd hebbe, gaa we ader i op de vraag waarom fiaciële istellige complexe retemodelle gebruike bij het beheerse va risico s va hypothekeportefeuilles. Er zij twee redee aa te voere: 1. Zoals gezegd i paragraaf 1 is er ee verschil tusse de hypotheekrete zoals klate die zie, e de marktrete die fiaciële istellige zie als zij de hypotheke moete fiaciere. Marktretes fluctuere dagelijks e hypotheekretes zij voor lagere periode costat. 2. I de praktijk is het iet zo dat bake altijd de aflossige e retes met zekerheid otvage. Dit heeft te make met bepaalde herfiacierigsrechte die klate krijge aagebode i het hypotheekcotract. Er is vaak ee verbad aa te wijze tusse het wel of iet uitoefee va deze rechte e de stad va de rete. Ekele va deze rechte worde hieroder besproke. We hebbe hierbove herhaaldelijk de term rechte late valle. Deze rechte worde i de fiaciële wereld veelal opties geoemd. Deze opties kome i allerlei soorte e mate voor ee worde vaak met ee geografische aam aageduid (bijvoorbeeld Europese, Amerikaase, Russische, Aziatische opties). Deze aamgevig heeft evewel iets met ee geografische achtergrod te make, slechts met ee verschil i het momet waarop ee klat va zij recht gebruik ka make. Bijvoorbeeld, bij ee Europese optie is dit het geval op ee va te vore bepaald momet, bij ee Amerikaase optie daaretege staat het de klat vrij bie ee vastgestelde periode op elk momet dat hem goeddukt zij recht uit te oefee. DE OFFERTE-OPTIE. I ee hypothekeofferte otvagt de klat ee hypotheketarief dat hij gedurede ee zekere periode zeg ee maad mag (iet moet, vadaar dat we spreke va ee optie) acceptere. Dit beteket dat als de marktrete omhoog gaat, e de bak dus hogere fiacierigskoste heeft, de klat

5 46 NAW 5/3 r. 1 maart 22 Rekee aa hypotheke Fras Boshuize, Peter Spreij og steeds de geoffreerde rete gaat betale bij acceptatie va de offerte. Nu komt het voor de klat mooiste gedeelte va de offerte-optie: als de hypotheekrete i de periode tusse offrere e passere bij de otaris omlaag gaat, da verlaagt de bak automatisch de rete i de offerte tot het da geldede ieuwe hypotheketarief. Het woord optie hier is ietwat misleided, omdat de klat zelf iet i actie hoeft te kome om dit recht uit te oefee. DE MEENEEMOPTIE. Als ee klat verhuist, moet de hypotheek volledig afgelost worde. Het huis als oderpad va de hypotheek vervalt amelijk. Als de klat ee ieuwe hypotheek odig heeft voor het ieuwe huis da biedt de bak of verzekerigsmaatschappij de volgede mogelijkheid: de klat mag de oude hypotheek meeverhuize of de klat mag ee ieuwe offerte vrage. Als de huidige rete lager is da zij oude tarief da zal de klat ee ieuwe hypotheek eme. I het adere geval, dat de rete itusse gestege is, zal de klat de oude hypotheekvoorwaarde meeverhuize aar zij ieuwe hypotheek. DE OPTIE VERVROEGD AF TE LOSSEN. Klate hebbe tijdes de looptijd va de hypotheek de mogelijkheid deze hypotheek vervroegd af te losse. Ee gedeelte ka zelfs zoder boete vervroegd worde afgelost. Dit ka iteressat zij, idie de hypotheekrete flik gedaald is e de hypotheek elders voordeliger gefiacierd ka worde. (Vauit het gezichtsput va de klat moete overiges ook belastigaspecte die kleve aa ee vervroegde aflossig e herfiacierig grodig bestudeerd worde.) DE RENTEBEDENKTIJD-OPTIE. Sommige hypotheekvorme hebbe ee zogeaamde retebedektijd igebouwd. Deze retebedektijd houdt i dat klate, veelal i het laatste jaar va de hypotheek, de mogelijkheid krijge om alvast het ieuwe hypotheketarief voor de volgede retevaste periode te eme. Dit ka gustig zij voor de klat als hij of zij dekt dat de huidige rete wel erg laag is e allee maar ka stijge. Wat veel mese doe bij het kieze va de eerste hypotheek is het eme va ee hypotheek met ee 1-jarige retevast periode e gedurede dat hele eerste jaar ee retebedektijd. De klat ka da gedurede dat hele eerste jaar ee gustig momet kieze om te switche aar ee hypotheek met ee lagere retevaste looptijd. We hebbe hier ee mooi voorbeeld va ee optie i Amerikaase stijl. Voor de experts e fijproevers: ee hypotheek is dus eigelijk ee Forward startig loa met look back faciliteit, die bovedie putable is. Het volgede valt dus op bij bovestaade opties: het uitoefee hagt af va de huidige stad va de rete, het gedrag va de klat e extere omstadighede (bijvoorbeeld het wie va ee loterij, waardoor ee klat zij gehele schuldrest i éé keer aflost). Retemodelle, zoals besproke i paragraaf 2, worde gebruikt voor ee aatal doeleide: zie) worde e belagrijker de otwikkelig va de portefeuillewaarde ka i de tijd gevolgd worde. c. Maatregele kue worde geome om de waardeveraderige va de hypothekeportefeuille als gevolg va veraderige i de rete zoveel mogelijk te reducere. Dit wordt bij fiaciële istellige wel hedge geoemd. 6 Ee waarderigsvraagstuk I deze paragraaf zulle we os richte op het waarderigsvraagstuk (b) uit het eide va de vorige paragraaf. We gaa er hierbij vauit dat het om afgeslote hypotheke gaat, zodat de offerteoptie hier iet gemodelleerd behoeft te worde e we richte os allee op het geval waari we met vervroegde aflossige te make hebbe. Het gaat er al met al dus om hypotheke te voorzie va ee prijs die aa de klat bereked zal worde, terwijl we iet va te vore wete waeer klate vroegtijdig aflosse e hoe groot die aflossig bedraagt. Om de ozekerheid va de kasstrome uit de hypothekeportefeuille e de ozekerheid va de rete met elkaar te verbide zij zogeaamde vervroegdeaflossigsmodelle odig. Verderop presetere we ee eevoudig, maar i de praktijk vaak gebruikt, model. Zelfs voor dit model zal blijke dat ee aalytische formule voor de aa de klat door te bereke prijs i de regel iet voorhade is. We bespreke vervolges ee simulatiemethode om toch ee umerieke waarde aa de hypotheek toe te kee e we lichte toe wat de ivloed va de verschillede parameters i het model is op de te berekee prijs. Voordat we aa de had va ee vervroegd-aflossigsmodel trachte prijze te berekee, late we eerst zie hoe de kasstrome (rete e aflossige) lope va de klat aar de hypotheekverstrekker zoder dat we vervroegde aflossige e adere op- a. De ozekere kasstrome behorede bij hypotheke met bovegeoemde igebouwde opties kue gemodelleerd worde. b. Nadat de kasstrome gemodelleerd zij, kue hypothekeportefeuilles gewaardeerd (dat wil zegge va ee prijs voorcopyright: 21 Reid, Geleijse & Va Tol

6 Fras Boshuize, Peter Spreij Rekee aa hypotheke NAW 5/3 r. 1 maart ties i ogeschouw eme. We gaa uit va ee eevoudige auïteite hypotheek. Dit is ee hypotheek waarbij de klate (tijdes de retevaste periode) maadelijks ee costat bedrag aa rete plus aflossig betale aa de hypotheekverstrekker. Gaa we uit va ee te lee bedrag B dat i N termije afbetaald moet worde tege ee vaste rete r per termij, zodaig dat per termij de som va de betaald rete i e de aflossig a costat is, de auïteit, da kue we a e i als volgt bepale. Zet de schuldrest op tijdstip op S, da is dus S = B e S N =. Verder geldt i = rs 1 e a = a i, waarbij a de auïteit. Dit leidt tot de volgede vergelijkig: S = (1 + r)s 1 a. Eevoudig rekewerk leidt tot a = r(1 + r)n S (1 + r) N 1 e S = (1 + r)n S (1 (1 + r) N ) (1 + r) N. 1 ma 1 j v t = α + β (rt r u 1 j t ma 1 j ) + γ max{rt u 1 j rt, } (6) Er is ee uitgebreide literatuur beschikbaar over vervroegdeaflossigsmodelle. Zie bijvoorbeeld [12] ad [11]. I de literatuur worde deze modelle prepaymet models geoemd. Ee populair e eevoudig model wordt gegeve door de volgede vergelijkig: Hier is v t het percetage vervroegde aflossige (op jaarbasis als u 1 j ma 1 j percetage va uitstaade schuldrest), rt e respectievelijk de 1-jaars rete op tijdstip t e het 1-jarig voortschrijded gemiddelde va de 1-jaars rete op tijdstip t. Figuur 3 laat ee patroo zie dat vaak i de praktijk wordt waargeome. Afgebeeld staat het vervroegde-aflossigs percetage op jaarbasis (verticale as) tege het verschil va ee voortschrijded gemiddelde va de 1-jaars rete e de actuele 1-jaars rete (op momet va de waaremig). De data i dit plaatje zij fictief e iet gebaseerd op data va hypothekeportefeuilles va bestaade fiaciële istellige. Als we u teruggaa aar de bovestaade otatie da zie we dat de schuldrest op tijdstip als volgt bereked wordt: S = B, S = S 1 a v S 1, waarbij a de reguliere aflossig is e v het vervroegde-aflossigspercetage. Verder geldt dat de kasstroom (cash flow) aar de bak toe op tijdstip gegeve wordt door CF = a + v S 1 + i, waarbij i de retecompoet r S 1 is. Aalytische formules voor S zij iet te verkrijge omdat de vervroegde-aflossigscompoet ee lastige vorm heeft e bovedie va de rete afhagt. Het is u belagrijk om i te zie dat de kasstrome afhakelijk zij va de oderliggede marktretebewegige. Bovedie zij ze pad-afhakelijk, dat wil zegge, ieder adere retebewegig aar tijdstip t toe ka tot e adere reeks kasstrome CF 1,..., CF t leide. Met behulp va de retemodelle beschreve i paragraaf 3 kue de ozekere kasstrome gewaardeerd worde. I theorie gaat dit via de vergelijkig ( T ) V T = E exp( r s ds)cf t (r s, s t). (7) t=1 Hier is V T de waarde va de hypotheek (of portefeuille) op tijdstip T, e CF t = CF t (r s, s t) zij de ozekere kasstrome die de portefeuille geereert op de tijdstippe t = 1,..., T. Merk op dat CF t afhagt va de hele historie va de rete tot op tijdstip t (via verbad korte e lage retes gegeve i (3)). Figuur 3 Verschil voorschrijded gemiddelde e huidige 1-jaars rete versus vervroegdaflossigspercetage I de praktijk is het zeer lastig, zo iet omogelijk, om de bovestaade formule aalytisch uit te rekee. Veelal worde simulatie-methode gebruikt om ee auwkeurige beaderig te geve va formule (7). I terme va het discrete model va paragraaf 3 gaat dit als volgt: 1. Simuleer ee reeks korte retes r1 h,..., rh N met bijvoorbeeld h = 1/12 (stappe va 1 maad). 2. Bereke beodigde lage retes met behulp va de relatie i formule (3). 3. Bereke de vervroegde-aflossig percetages (die afhakelijk zij va berekede lage retes, e de reeks kasstrome CF 1, CF 2,...). 4. Verdiscoteer de kasstrome met de gesimuleerde korte termij retes: exp( h ri h) CF (r1 h,..., rh ) (8) i=1 e tel de verdiscoteerde kasstrome bij elkaar op. 5. Doe (1) tot e met (4) ee groot aatal, zeg 1, kere e eem als schattig voor de waarde va de portefeuille het gemiddelde va de som va de verdiscoteerde kasstrome i (8). Bij bovestaade recept moete we eige kattekeige plaatse. De eerste is dat bij gebrek aa data de meeeem-optie e de optie om vervroegd af te losse meestal i ee model gegote worde. De tweede kattekeig is dat voor de retebedektijdoptie sec modelle gehateerd kue worde die lijke op de vervroegde-aflossigsmodelle. We merke og op dat de retebedektijd-optie eigelijk ee Amerikaas call optie is (geschreve door de bak). Teslotte stelle we vast, dat i ee retemodel vaak de lage rete op staatsobligaties gemodelleerd wordt. I ee verfijde versie va het model zou het verbad tusse de markt- e de hypotheekretes ook beschreve moete worde. Ee 1-jaars redemet op staatsobligities veradert atuurlijk vaker da de 1-jaars hypotheekrete. Vaak volgt de hypotheekverstrekker de marktrete op eige afstad. I tabel 4 zie we de resultate va ee simulatie. De karakteristieke va de hypotheek staa i tabel 1. We eme aa dat de 1-jaars marktrete op de kapitaalmarkt 5.2% is (het hypotheektarief ligt dus,8% hoger da de marktrete). Het aflossigspatroo va de hypotheek is ee auïteit e de hypotheek wordt i 3 jaar afgelost. We hebbe deze hypotheek gewaardeerd met behulp va ee Hull e White model e met ee vervroegde-

7 48 NAW 5/3 r. 1 maart 22 Rekee aa hypotheke Fras Boshuize, Peter Spreij Hoofdsom 1 Rete 6% Looptijd Retevaste looptijd Type Tabel 1 Modelhypotheek θ 3 jaar 5 jaar Auïteit Basis.1 1.% Hoog.1 3.% Laag.1.5% Tabel 2 Parameters Hull & White model α β γ Basis 7%.1.7 Nul % Hoog 14% Laag I 3.5%.5.35 Laag II %.1.7 Tabel 3 Parameters vervroegd-aflossigsmodel Vervr.-aflossigsmodel/rete Laag Basis Hoog Basis Nul Laag I Laag II Hoog Tabel 4 Uitkomste waarderig modelhypotheek aflossigsfuctie als i formule (6). I tabel 2 staa de waarde voor θ e σ. We hebbe θ costat gehoude e σ late variëre. Hoog e Laag zij dus modelle met hoge respectievelijk lage beweeglijkheid va de rete. Basis zit er tusse i. I tabel 3 staa vijf verschillede drietalle voor de parameters α, β e γ i formule (6). We lichte de uitkomste va tabel 4 ader toe. We zie dat zoder opties, dus met vervroegde-aflossigsparameters gelijk aa ul, de hypotheek voor de verstrekker 14,13 waard is. Dit is meer da de hoofdsom va 1 omdat de wistmarge va de σ hypotheekverstrekker i de 14,13 verdiscoteerd is. Omdat de kasstrome va de hypotheek zeker zij (parameters vervroegd-aflossigsmodel op ul) heeft de beweeglijkheid va de rete gee ivloed op de waarde als we het vervroegdaflossigsmodel uitzette. Kijke we u aar het basistripel vervroegde-aflossigsparameters da zie we dat de waarde va de hypotheek (wederom voor de verstrekker) hoger wordt, aarmate de beweeglijkheid va de rete lager is. Dit komt omdat da de kas dat de optie voor de klat voordeel oplevert kleier is. Bij de parameters Laag I, Laag II e Hoog i het vervroegdaflossigsmodel bekijke we de resultate va de waarderig allee voor het basistripel parameters i het Hull & White model. I de regel is het zo dat de hypotheek mider waard wordt voor de verstrekker als de parameter γ hoger wordt. Klate gaa da immers hu hypotheek aflosse e wellicht herfiaciere als de rete laag is. De parameter α heeft ee dubbele werkig op de waarde va de hypotheek. Ee hoge α ka gustig zij voor de verstrekker i ee klimaat met hogere rete da bij verstrekkig va hypotheek, maar is juist ogustig i geval va lagere rete da bij de verstrekkig. Om te bekijke of hogere α ee hogere of lagere waarde voor de modelhypotheek impliceert, moete we wete met welke kas het gebruikte retemodel hogere of lagere retes gaat simulere. I vergelijkig met het basistripel zie we da de modelhypotheek meer waard is i situaties Laag I e Laag II. De extreem hoge γ i Hoog verklaart dat de modelhypotheek mider waard is da voor de basiswaarde va α, β e γ. 7 Tot slot I de gepreseteerde aalyse is gekoze voor ee populair retemodel (Hull e White), dat zich leet voor ee aalytische aapak met voor ee deel formules i geslote vorm. Er bestaa echter veel meer retemodelle, waarva sommige bepaalde karakteristieke va het verloop va de rete beter weergeve. I [1], [3] of [2] is hierva ee overzicht te vide. Voorts hebbe we ee aatal gedragige va klate, e de verschillede mogelijkhede tot het uitoefee va sommige opties iet volledig gemodelleerd. Het otwikkele va retemodelle is ee levedig oderwerp va oderzoek waari og bij lage a iet het defiitieve woord gesproke is. k Refereties 1 L. Bachelier (19), Théorie de la spéculatio, Aales scietifiques de l Ecole Normale Supérieure, 3e série, tome 17, Paris, Gauthier-Villars. 2 T. Björk (1998), Arbitrage theory i cotiuous time, Oxford Uiversity Press. 3 D. Brigo ad F. Mercurio (21), Iterest Rate Models: Theory ad Practice, Spriger Fiace, Heidelberg. 4 Robert Brow (1828), A brief accout of microscopical observatios made i the moths of Jue, July, ad August, 1827, o the particles cotaied i the polle of plats; ad o the geeral existece of active molecules i orgaic ad iorgaic bodies, Philosophical Magazie (2d series) 4, Comptes Redus de l Academie des Scieces - Series I - Mathematics, 331, Issue 12, Part 2, December 2 6 K.L. Chug ad R. Williams (1997), Itroductio to Stochastic Itegratio, Secod Editio (3rd Pritig), Birkhäuser. 7 J. Hull ad A. White (1987), The pricig of optios o assets with stochastic volatilities, Joural of Fiace 42 (2), K. Itô (1944), Stochastic itegral, Proc. Imperial Acad. Tokyo 2, I. Karatzas ad S. Shreve (1991), Browia motio ad Stochastic calculus, Spriger. 1 A. Pelsser (2), Efficiet Methods for Valuig Iterest Rate Derivatives, Spriger. 11 S.F. Richard ad R. Roll (1989), Prepaymets o fixed-rate mortgage-backed securities, Joural of Portfolio Maagemet, Sprig 1989, E.S. Schwartz ad W.N. Torous (1989), Prepaymet ad the valuatio of mortgagebacked securities, Joural of Fiace 44 (2), N. Wieer (1923), Differetial space, J. Math. Phys. 2,

We kennen in de wiskunde de volgende getallenverzamelingen:

We kennen in de wiskunde de volgende getallenverzamelingen: Masteropleidig Fiacial Plaig Kwatitatieve Methode Relevate wiskude We kee i de wiskude de volgede getalleverzamelige: De atuurlijke getalle: N = {0,,,,4, } De gehele getalle: Z = {, -,-,-,0,,,, } (egels:

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame HAVO 2013 tijdvak 2 woesdag 19 jui 13.30-16.30 uur wiskude A Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 21 vrage. Voor dit exame zij maximaal 80 pute te behale. Voor elk vraagummer

Nadere informatie

Betrouwbaarheid. Betrouwbaarheidsinterval

Betrouwbaarheid. Betrouwbaarheidsinterval Betrouwbaarheid Ee simulatie beoogt éé of i.h.a. twee of meerdere sceario s te evaluere e te vergelijke, bij Mote Carlo (MC) simulatie voor ee groot aatal istelwaarde, voor éé of meerdere parameters. Hierbij

Nadere informatie

Werktekst 1: Een bos beheren

Werktekst 1: Een bos beheren Werktekst : Ee bos behere Berekeige met rije op het basisscherm Op ee perceel staa 3000 kerstbome. Ee boomkweker moet beslisse hoeveel bome er jaarlijks gekapt kue worde e hoeveel ieuwe aaplat er odig

Nadere informatie

Een andere kijk op Financiële Rekenkunde Wim Pijls, Erasmus Universiteit Rotterdam

Een andere kijk op Financiële Rekenkunde Wim Pijls, Erasmus Universiteit Rotterdam Ee adere kijk op Fiaciële Rekekude Wim Pijls, Erasmus Uiversiteit Rotterdam. Ileidig Het vak Fiaciële Rekekude levert vawege zij sterk wiskudig karakter ogal wat probleme op i het oderwijs. Veel leerlige

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100...

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100... Opgave OPGAVE 1 a. Itereer met F( ) = e als startwaarde 1 e 1. 16 1............... 16 1............... b. Stel de bae grafisch voor i ee tijdgrafiek. c. Formuleer het gedrag va deze bae. (belagrijk is

Nadere informatie

Wijzigingsformulier Ziektekostenverzekering

Wijzigingsformulier Ziektekostenverzekering De Amersfoortse Verzekerige Stadsrig 15, postbus 42 3800 AA Amersfoort Tel. (033) 464 29 11 Fax (033) 464 29 30 Wijzigigsformulier Ziektekosteverzekerig Gegevesverwerkig Bij deze wijzigig worde persoosgegeves

Nadere informatie

Examen PC 2 onderdeel 4A

Examen PC 2 onderdeel 4A Exame PC 2 oderdeel 4A Istructieblad Betreft: exame: PC 2 oderdeel 4A leergag 3 oderdeel: Fiaciële Rekekude datum: 30 mei 2012 tijdsduur: 90 miute (09:30-11:00 uur) Deze aawijzige goed leze voor u met

Nadere informatie

Periodiciteit bij breuken

Periodiciteit bij breuken Periodiciteit bij breuke Keuzeodracht voor wiskude Ee verdieede odracht over eriodieke decimale getalle, riemgetalle Voorkeis: omrekee va ee breuk i ee decimale vorm Ileidig I deze odracht leer je dat

Nadere informatie

1. Recursievergelijkingen van de 1 e orde

1. Recursievergelijkingen van de 1 e orde Recursievergelijkige va de e orde Rekekudige rije Het voorschrift va ee rekekudige rij ka gegeve wordt met de volgede recursievergelijkig: u = u + b Idie we deze vergelijkig i de vorm u = u u = b otere

Nadere informatie

Wijzigingsformulier Ziektekostenverzekering

Wijzigingsformulier Ziektekostenverzekering De Amersfoortse Verzekerige Stadsrig 15, postbus 42 3800 AA Amersfoort Tel. (033) 464 29 11 Fax (033) 464 29 30 Gegevesverwerkig Wijzigigsformulier Ziektekosteverzekerig Bij deze wijzigig worde persoosgegeves

Nadere informatie

DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED

DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED Prof. ir. P. Ampe, Prof. dr. ir. A. De Wulf, ig. J. De Corte. 1. Ileidig e probleemstellig. Sedert deceia gebruike schatters zowel i België

Nadere informatie

Examen PC 2 onderdeel 4A

Examen PC 2 onderdeel 4A Exame PC 2 oderdeel 4A Istructieblad Betreft: exame: PC 2 oderdeel 4A leergag 1 oderdeel: Fiaciële Rekekude datum: 27 mei 2011 tijdsduur: 90 miute (10.00-11.30 uur) Deze aawijzige goed leze voor u met

Nadere informatie

Rekenen met levensduurkosten

Rekenen met levensduurkosten Colibri Advies www.colibri-advies.l Rekee met levesduurkoste ir. Martie va de Boome MBA Colibri Advies -4-25 Pagia va 5 Rekee met levesduurkoste Auteur: Martie va de Boome - Colibri Advies BV. Materiaal

Nadere informatie

Praktische opdracht: Complexe getallen en de Julia-verzameling

Praktische opdracht: Complexe getallen en de Julia-verzameling Praktische opdracht: Complexe getalle e de Julia-verzamelig Auteur: Wiebe K. Goodijk, Zerike College Hare Beodigde Voorkeis: 1 = i Het complexe vlak. Notatie: z = a + bi of z = r(cosϕ + i si ϕ) Regel va

Nadere informatie

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten Hoofdstuk 4 Compressore Doelstellige 1. Wete dat i het geval va compressore rekeig moet gehoude worde met thermische effecte 2. Wete dat er ee gres is aa het verhoge va de druk va ee gas 3. Wete welke

Nadere informatie

Stochastische loadflow. Beschrijving model belasting.

Stochastische loadflow. Beschrijving model belasting. Stochastische loadflow. eschrijvig model belastig. 95 pmo 5-- Phase to Phase V Utrechtseweg 3 Postbus 68 AC Arhem T: 6 356 38 F: 6 356 36 36 www.phasetophase.l 95 pmo INHOUD Ileidig...3 eschrijvig belastig...

Nadere informatie

Ongelijkheden. IMO trainingsweekend 2013

Ongelijkheden. IMO trainingsweekend 2013 Ogelijkhede IMO traiigsweeked 0 Deze tekst probeert de basis aa te brege voor het bewijze va ogelijkhede op de IMO. Het is de bedoelig om te bewijze dat ee bepaalde grootheid (ee uitdrukkig met ee aatal

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Commissie Pensioenhervorming 2020-2040. Nota over de actuariële neutraliteit. Bijlage III

Commissie Pensioenhervorming 2020-2040. Nota over de actuariële neutraliteit. Bijlage III Commissie Pesioehervormig 00-040 Nota over de actuariële eutraliteit Bijlage III. I het kader va de ivoerig va ee «deeltijds pesioe» wordt de kwestie va de actuariële correctie va de uitkerige i geval

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

RAADS IN FORMATIE BRIE F

RAADS IN FORMATIE BRIE F RAADS IN FORMATIE BRIE F gemeete WOERDEN Va: college va burgemeester e wethouders Datum: 1 december 2011 Portefeuillehouder(s): Titia Cosse Portefeuille(s): portefeuille Moumete e Archeologie Cotactpersoo:

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eideame wiskude B vwo 200 - II Sijde met ee hoogtelij Op ee cirkel kieze we drie vaste pute, B e C, waarbij lijstuk B gee middellij is e put C op de kortste cirkelboog B ligt. Ee put doorloopt dat deel

Nadere informatie

Overlijden: uw rechten in Duitsland en Nederland

Overlijden: uw rechten in Duitsland en Nederland Regelige e voorzieige CODE 1.1.3.46 Overlijde: uw rechte i Duitslad e Nederlad brochure broe Bureau voor Duitse Zake, www.svb.l/bdz Ihoudsopgave Overlijde Uw rechte i Duitslad e Nederlad Deskudig e betrouwbaar

Nadere informatie

Deel A. Breuken vergelijken 4 ----- 12

Deel A. Breuken vergelijken 4 ----- 12 Deel A Breuke vergelijke - - 0 Breuke e brokke (). Kleur va elke figuur deel. Doe het zo auwkeurig mogelijk.. Kleur va elke figuur deel. Doe het telkes aders.. Kleur steeds het deel dat is aagegeve. -

Nadere informatie

Op zoek naar een betaalbare starterswoning? Koop een eigen huis met korting

Op zoek naar een betaalbare starterswoning? Koop een eigen huis met korting Op zoek aar ee betaalbare starterswoig? Koop ee eige huis met kortig Op zoek aar ee betaalbare starterswoig? Koop ee eige huis met kortig Pagia Ee eige huis waar u zich helemaal thuis voelt. Dat wil iederee!

Nadere informatie

Klanten binden door excellente dienstverlening

Klanten binden door excellente dienstverlening Klate bide door excellete diestverleig Customer excellece als oderscheided vermoge De wijze waarop cosumete aar diestverleig kijke, veradert met hoge selheid. Steeds meer cosumete gebruike de digitale

Nadere informatie

Discrete dynamische systemen

Discrete dynamische systemen Cahiers T 3 Europe Vlaadere r. 19 Discrete dyamische systeme Recursievergelijkige met de TI-84 Joha Deprez Discrete dyamische systeme Joha Deprez HUBrussel, Uiversiteit Atwerpe, Katholieke Uiversiteit

Nadere informatie

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking 1. Wat is iteratie? Iteratie is het steeds herhale va eezelfde proces, verwerkig op het bekome resultaat. INPUT Verwerkig OUTPUT Idie de verwerkig gebeurt met ee (reële) fuctie geldt voor ee startwaarde

Nadere informatie

Evaluatie pilot ipad onder docenten

Evaluatie pilot ipad onder docenten Evaluatie pilot ipad oder docete Oderwerp equête Geëquêteerde Istellig Evaluatie pilot ipad Docete OSG Sigellad locatie Drachtster Lyceum Datum aamake equête 19-06-2012 Datum uitzette equête 21-06-2012

Nadere informatie

Inleiding. 1. Rijen. 1.1 De rij van Fibonacci. 2 Zou je deze regelmatigheden kunnen verklaren met wiskunde? déäçéáç=çççê=táëâìåçé=éå=téíéåëåü~éééå=

Inleiding. 1. Rijen. 1.1 De rij van Fibonacci. 2 Zou je deze regelmatigheden kunnen verklaren met wiskunde? déäçéáç=çççê=táëâìåçé=éå=téíéåëåü~éééå= Ileidig Waarom vorme zoebloempitte 2 bochte i de ee richtig e 34 i de adere? E wat heeft ee huisjesslak te make met + 5 2 Zou je deze regelmatighede kue verklare met wiskude? Heeft wiskude cocrete toepassige

Nadere informatie

Toelichting bij Opbrengstgegevens VAVO 2011-2013

Toelichting bij Opbrengstgegevens VAVO 2011-2013 Toelichtig bij Opbregstgegeves VAVO 2011-2013 Ihoud Ileidig Aatal deelemers exame Kegetalle toezicht exames CE-cijfer alle vakke CE-cijfer alle vakke - tred SE-cijfer mius CE cijfer alle vakke Percetage

Nadere informatie

Eindexamen wiskunde A vwo 2010 - I

Eindexamen wiskunde A vwo 2010 - I Eidexame wiskude A vwo - I Beoordeligsmodel Maratholoopsters maximumscore 3 uur, 43 miute e 3 secode is 98 secode De selheid is 495 98 (m/s) Het atwoord: 4,3 (m/s) maximumscore 3 Uit x = 5 volgt v 4,4

Nadere informatie

Een samenvatting van de CAO voor Uitzendkrachten 2012-2017

Een samenvatting van de CAO voor Uitzendkrachten 2012-2017 Ee samevattig va de CAO voor Uitzedkrachte 2012-2017 Uitgave juli 2015 Ihoudsopgave 1. Ileidig 5 2. Fasesysteem 5 2.1 Fase A 6 2.2 Fase B 6 2.3 Fase C 6 2.4 Oderbrekigsregels 7 2.5 Overgagsregelig fase

Nadere informatie

Hoe los ik het op, samen met Thuisvester? Ik heb een klacht

Hoe los ik het op, samen met Thuisvester? Ik heb een klacht Klachte? Hoe los ik het op, same met Thuisvester? Ik heb ee klacht Thuisvester doet haar uiterste best de beste service te verlee aa haar huurders. We vide ee goede relatie met oze klate erg belagrijk.

Nadere informatie

Waar moet je aan denken? Verhuizen. Stap 1: Hoe zeg ik de huur op?

Waar moet je aan denken? Verhuizen. Stap 1: Hoe zeg ik de huur op? Verhuize Waar moet je aa deke? Verhuize Bij verhuize komt heel wat kijke. Naast het ipakke va spulle e doorgeve va adreswijzigige, is het ook belagrijk dat u same met Thuisvester ee aatal zake regelt.

Nadere informatie

Appendix A: De rij van Fibonacci

Appendix A: De rij van Fibonacci ppedix : De rij va Fiboacci Het expliciete voorschrift va de rij va Fiboacci We otere het het e Fiboaccigetal met F De rij va Fiboacci wordt gegeve door: F F F F 4 F F 6 F 7 F De volgede afleidig is gebaseerd

Nadere informatie

Evaluatierapport. Tevredenheidsonderzoek NMV Nederlandse Montessori Vereniging 2005. Eindrapportage. BvPO

Evaluatierapport. Tevredenheidsonderzoek NMV Nederlandse Montessori Vereniging 2005. Eindrapportage. BvPO Evaluatierapport Tevredeheidsoderzoek NMV Nederladse Motessori Vereigig 2005 Eidrapportage BvPO Bureau voor praktijkgericht oderzoek, Groige BvPO BUREAU VOOR PRAKTIJKGERICHT ONDERZOEK POSTBUS 9505, 9703

Nadere informatie

Oefeningen op Rijen. Leon Lenders, Bree

Oefeningen op Rijen. Leon Lenders, Bree Oefeige op Rije Leo Leders, Bree I de tekst staa ee aatal oefeige i verbad met rije. De moeilijkere oefeige zij volledig uitgewerkt. Volgede oderwerpe kome aa bod : Plooie va ee blad papier Salaris Het

Nadere informatie

TAF GoedGezekerd AOV. De eerste AOV waarmee u zelf de touwtjes in handen heeft

TAF GoedGezekerd AOV. De eerste AOV waarmee u zelf de touwtjes in handen heeft TAF GoedGezekerd AOV De eerste AOV waarmee u zelf de touwtjes i hade heeft Als zelfstadig oderemer bet u gewed aa het eme va risico s. Daarbij beoordeelt u per situatie hoe groot het risico is dat u wilt

Nadere informatie

Enquête social media gebruik ROC West-Brabant

Enquête social media gebruik ROC West-Brabant Equête social media gebruik ROC West-Brabat Jauari / februari 2012 I jauari 2012 is ee studeteequête geoped, met als thema social media i het oderwijs. De equête is door 514 mbo-studete igevuld. Afhakelijk

Nadere informatie

12 Kansrekening. 12.1 Kansruimten WIS12 1

12 Kansrekening. 12.1 Kansruimten WIS12 1 WIS12 1 12 Kasrekeig 12.1 Kasruimte Kasmaat Ee experimet is ee hadelig of serie hadelige met ee of meer mogelijke resultate uitkomste geoemd). De uitkomsteruimte, die we steeds zulle aageve met Ω, is de

Nadere informatie

Levende Statistiek, een module voor VWO wiskunde D

Levende Statistiek, een module voor VWO wiskunde D Op het Stedelijk Gymasium te Leide is de module Levede Statistiek uitgeprobeerd, Ee verslag va Jacob va Eeghe e Liesbeth de Wreede. Levede Statistiek, ee module voor VWO wiskude D Statistiek is typisch

Nadere informatie

Combinatoriek. Nota s in samenwerking met Anja Struyf en Sabine Verboven (Universiteit Antwerpen)

Combinatoriek. Nota s in samenwerking met Anja Struyf en Sabine Verboven (Universiteit Antwerpen) 1 Combiatoriek Nota s i samewerkig met Aja Struyf e Sabie Verbove (Uiversiteit Atwerpe) I het dagelijkse leve worde we vaak gecofroteerd met vraagstukke waarva de oplossig het telle va het aatal elemete

Nadere informatie

Semi-orthopedische schoenen (OSB)

Semi-orthopedische schoenen (OSB) Semi-orthopedische schoee speciaal voor uw voete gemaakt Om i aamerkig te kome voor vergoedig zij gemachtigd voor te schrijve: Eerste verstrekkig: Revalidatieartse Orthopedische chirurge Reumatologe AWBZ

Nadere informatie

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl Kastheorie 2de bachelor wiskude Vrije Uiversiteit Brussel U. Eimahl Academiejaar 2011/2012 Ihoudsopgave 1 Kasruimte 1 1.1 Toevallige experimete................................. 1 1.2 De axioma s va Kolmogorov.............................

Nadere informatie

Rijen en reeksen. Mei 2008. Remy van Bergen Peter Mulder

Rijen en reeksen. Mei 2008. Remy van Bergen Peter Mulder Rije e reekse Keuzeoderwerp Atheeum 5 wiskude B e B Mei 008 Remy va Berge Peter Mulder Dit boekje gaat over rije e reekse. Wiskudige rije! Rije worde i de wiskude op verschillede maiere gedefiieerd. Met

Nadere informatie

Financial accounting:

Financial accounting: Fiacial accoutig: DE PENSIOENVERPLICHTING VAN DE ONDERNEMING I dit artikel wordt de stellig uitgewerkt dat Iteratioal Accoutig Stadard 19, Employee Beefits, i het algemee, maar i de huidige volatiele omgevig

Nadere informatie

Verbeterbeleid. Avonturijn

Verbeterbeleid. Avonturijn Verbeterbeleid Avoturij 2 Als u ee keer mider tevrede over os bet... Ee verbeterput Odaks dat wij os best doe de opvag va uw kid zo goed mogelijk te verzorge, ka het voorkome dat u ees wat mider tevrede

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHISCHE UIVERSITEIT EIDHOVE Tetame Ileidig Experimetele Fysica (3A10 of 3AA10) Tetame OGO Fysisch Experimetere voor mior AP (3M10) d.d. 0 jauari 010 va 9:00 1:00 uur Vul de presetiekaart i blokletters

Nadere informatie

betreffende het doorgeven van orders via fax en telefoon

betreffende het doorgeven van orders via fax en telefoon Reglemet Tele-Equity betreffede het doorgeve va orders via fax e telefoo (Retail Cliëte) 02541 Om redee va efficiëtie e selheid ka de Cliët wese om zij orders per fax e/of telefoo aa de Bak over te make.

Nadere informatie

Strategic Workforce Management

Strategic Workforce Management Strategic Workforce Maagemet Ee strategische focus op persoeelsplaig is belagrijker da ooit. Itroductie Het is aa de orde va de dag; persoeel wordt otslage e de werkloosheid stijgt, maar tegelijkertijd

Nadere informatie

Eindrapport Leerlingtevredenheidsonderzoek Floracollege Eindexamenklassen 2013

Eindrapport Leerlingtevredenheidsonderzoek Floracollege Eindexamenklassen 2013 Eidrapport Leerligtevredeheidsoderzoek Floracollege Eidexameklasse 2013 Juli 2013 Ihoudsopgave Samevattig 3 Vrage over schoolwerk 5 Vrage over jezelf 6 Vrage over docete 8 Vrage over de metor 11 Vrage

Nadere informatie

1 Het trekken van ballen uit een vaas

1 Het trekken van ballen uit een vaas Het trekke va balle uit ee vaas Combiatorische kasprobleme moete worde aagepakt met ee kasmodel dat bestaat uit ee eidige uitkomsteverzamelig Ω va gelijkwaarschijlijke uitkomste Dit wil zegge dat de kas

Nadere informatie

Sloopbesluit en verhuizen

Sloopbesluit en verhuizen Sloopbesluit e verhuize waar je thuis bet... Wat kut u verwachte als uw woig wordt gesloopt Op verschillede plaatse werkt HEEMwoe aa de verbeterig va de wijk. Soms heeft dat grote gevolge voor u als huurder.

Nadere informatie

Buren en overlast. waar je thuis bent...

Buren en overlast. waar je thuis bent... Bure e overlast waar je thuis bet... Goed wooklimaat HEEMwoe vidt het belagrijk dat bewoers prettig woe i ee fije buurt. De meeste buurtbewoers kue het goed met elkaar vide. Soms gaat het sameleve i ee

Nadere informatie

Hoe werkt het? Zelf uw woning aanpassen

Hoe werkt het? Zelf uw woning aanpassen Woig aapasse Hoe werkt het? Zelf uw woig aapasse Prettig woe beteket woe i ee huis aar uw smaak. Om og fijer te kue woe, wille veel huurders kleie of grote veraderige aabrege i hu huis. Thuisvester begrijpt

Nadere informatie

Proeftentamen IBK1LOG01

Proeftentamen IBK1LOG01 Proeftetame IBK1LOG01 Opgave 1 ( 20 pute) Beatwoord de oderstaade vrage met waar of iet waar: 1.De bereikbaarheid va iformatie over ee product bij ee iteretwikel is ee voorbeeld va pre-trasactie elemet

Nadere informatie

www.hbospiegel.nl Hogeschool Utrecht Faculteit Educatie Enquete studenten Farel College Instituut Archimedes Online Evaluatie Instrument juli 2014

www.hbospiegel.nl Hogeschool Utrecht Faculteit Educatie Enquete studenten Farel College Instituut Archimedes Online Evaluatie Instrument juli 2014 Equete studete Farel College Pagia 1 va 11 www.hbospiegel.l Olie Evaluatie Istrumet Hogeschool Utrecht Faculteit Educatie Istituut Archimedes Equete studete Farel College juli 201 Alle rechte voorbehoude.

Nadere informatie

Efficiënt communiceren met uw zakenrelaties 09/2012

Efficiënt communiceren met uw zakenrelaties 09/2012 Mobile Busiess Mobile Busiess Efficiët commuicere met uw zakerelaties 9040413 09/2012 Ik kies voor mij bedrijf Het geheim achter efficiët zakedoe? De juiste beslissige eme, odersteud door ee optimale commuicatie.

Nadere informatie

Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa Inleiding. Studiemateriaal

Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa Inleiding. Studiemateriaal Algemee iformatie http://www.wi.tue.l/wsk/oderwijs/s95 College e istructies College: woesdag uur - HG6.96 Istructies maadag uur 5-6 HG6.09 Auditorium oodgebouw, uit Opdrachte: opgave uit boek e dictaat

Nadere informatie

One Office Voice Pack Vaste en mobiele telefonie in één pack

One Office Voice Pack Vaste en mobiele telefonie in één pack Oe Office Voice Pack Vaste e mobiele telefoie i éé pack I alle vrijheid commuicere e zakedoe Mobistar biedt geïtegreerde oplossige die uw zaak mobieler e productiever make. U ka overal e altijd i de beste

Nadere informatie

Deel I. Kenmerken van ADHD. Hoofdstuk 1. Wat we weten over de stoornis ADHD. 1.1 De basiskenmerken

Deel I. Kenmerken van ADHD. Hoofdstuk 1. Wat we weten over de stoornis ADHD. 1.1 De basiskenmerken Deel I hoofdstuk 1 Deel I Wat we wete over de stooris ADHD Hoofdstuk 1 Kemerke va ADHD Altijd druk? De letters ADHD staa volges sommige vooral voor: Alle Dage Heel Druk. Dat klopt lag iet altijd. Niet

Nadere informatie

imtech Arbodienst (versie 2.0)

imtech Arbodienst (versie 2.0) imtech Arbodiest (versie.0) veilig e gezod werke Wat is beeldschermwerk? Vrijwel alle katoormedewerkers va Imtech verrichte regelmatig beeldschermwerk. Oder ivloed va ee verdere automatiserig va werktake

Nadere informatie

SYMPOSIUM BETERE ZORG? MIJN IDEE!

SYMPOSIUM BETERE ZORG? MIJN IDEE! SYMPOSIUM BETERE ZORG? MIJN IDEE! 6 maart 2015, Proviciehuis Lelystad Het etwerkplatform voor iovaties, treds e otwikkelige i zorg e welzij. Voor iformatie e registratie: www.beterezorgmijidee.l Op vrijdag

Nadere informatie

Mobile Business Efficiënt communiceren met uw zakenrelaties

Mobile Business Efficiënt communiceren met uw zakenrelaties Mobile Busiess Efficiët commuicere met uw zakerelaties Uiek! Exteded Fleet Obeperkt belle aar alle Mobistar-ummers e vaste lije! Ik kies voor mij bedrijf Het geheim achter efficiët zakedoe? De juiste beslissige

Nadere informatie

7. Betrouwbaarheidsintervallen voor proporties

7. Betrouwbaarheidsintervallen voor proporties VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 7. Betrouwbaarheidsitervalle voor proporties Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg

Nadere informatie

HANDLEIDING CONDITIONELE ORDERS

HANDLEIDING CONDITIONELE ORDERS hadleidig coditioele orders HANDLEIDING CONDITIONELE ORDERS Ee coditioele order kut u vergelijke met ee istructie die u geeft aa uw wekkerradio: als het 7.30 uur is, wil ik dat de radio aagaat e ik gewekt

Nadere informatie

Schoenen voor diabetes en reuma

Schoenen voor diabetes en reuma Schoee voor diabetes e reuma Comfortschoee gemaakt voor de extra kwetsbare voet Officieel gee vergoedig via zorgverzekeraar. Echter bij ekele zorgverzekeraars is door middel va idividuele aavraag vergoedig

Nadere informatie

Huisstijl en logogebruik Associatie KU Leuven

Huisstijl en logogebruik Associatie KU Leuven Huisstijl e logogebruik Associatie KU Leuve Associatie huisstijlhadboek > Ihoudstafel 1 Ihoudstafel 1. Gebruik va de huisstijl of opame va het associatielogo 3 2. Huisstijl Associatie KU Leuve 4 2.1 Opame

Nadere informatie

OV-Taxi Zuid-Kennemerland/IJmond

OV-Taxi Zuid-Kennemerland/IJmond P r o v i c i e N o o r d - H o l l a d jaarverslag OV-Taxi Zuid-Keemerlad/IJmod 2007 jaarverslag OV-Taxi Zuid-Keemerlad/IJmod 2007 1 jauari 2007 t/m 31 december 2007 P R O V I N C I E N O O R D - H O

Nadere informatie

STUDIEKEUZESTAPPENPLAN

STUDIEKEUZESTAPPENPLAN STUDIEKEUZESTAPPENPLAN www.uva.l/studie-kieze Hoe kies je ee studie? studiekeuzestappepla Weet je og iet wat je wilt studere? Begeleidig bij het studiekeuzestappepla Misschie ka dit studiekeuzestappepla

Nadere informatie

Ja, ik wil. Trouwen in Vlaardingen

Ja, ik wil. Trouwen in Vlaardingen Ja, ik wil Trouwe i Vlaardige Ihoud Pagia 4 Locatie kieze Pagia 5 Tijdstip kieze Pagia 6 De plechtigheid Pagia 8 I odertrouw Pagia 9 Tot slot Pagia 11 Bijlage Gefeliciteerd met uw voorgeome huwelijk of

Nadere informatie

Vuilwaterafvoersystemen voor hoogbouw

Vuilwaterafvoersystemen voor hoogbouw Vuilwaterafvoersysteme voor hoogbouw 1.2 Vuilwaterafvoersysteme voor hoogbouw Nu er steeds hogere e extremere gebouwe otworpe worde, biedt ee ekelvoudig stadleidigsysteem de mogelijkheid om gemakkelijker

Nadere informatie

WOONHUISVERZEKERING. In de voorwaarden van de Thomas Assuradeuren Woonhuisverzekering

WOONHUISVERZEKERING. In de voorwaarden van de Thomas Assuradeuren Woonhuisverzekering Cambuur Fapolis Pakket Uw Woohuisverzekerig I de voorwaarde va de Thomas Assuradeure Woohuisverzekerig leest u: Wat u va os mag verwachte e wat wij va u verwachte (pagia 2). Voor welke schade wij wel e

Nadere informatie

Het beste scenario voor uw belegging

Het beste scenario voor uw belegging belegge Best Strategy 2012 Het beste sceario voor uw beleggig Gediversifieerde beleggig Eemalige coupo va 0% tot 50% bruto* op vervaldag Korte looptijd: 4,5 jaar 100% kapitaalbeschermig De voordele voor

Nadere informatie

Analyse wijze en stimuleren van invullen Nationale Studenten Enquête 2012. Pascal Brenders 19 juni 2013

Analyse wijze en stimuleren van invullen Nationale Studenten Enquête 2012. Pascal Brenders 19 juni 2013 Aalyse wijze e stimulere va ivulle atioale Studete Equête 20. Pascal Breders 19 jui 2013 Aaleidig Studiekeuze3 is veratwoordelijk voor de uitvoerig va de atioale Studete Equête (SE). De atioale Studete

Nadere informatie

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178 Ope Ihoud Uiversiteit leereeheid 6 Wiskude voor ilieuweteschappe Machtsfucties e wortelfucties Itroductie 77 Leerker 7 Machtsfucties et ee atuurlijk getal als epoet 7 Machtsfucties et ee egatief geheel

Nadere informatie

REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING

REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING I de voorwaarde va de REAAL Woohuisverzekerig leest u: Wat u va os mag verwachte e wat wij va u verwachte (pagia 2). Voor welke schade wij wel e iet betale

Nadere informatie

Eindexamen natuurkunde 1-2 compex havo 2007-I

Eindexamen natuurkunde 1-2 compex havo 2007-I Ogave 1 Kerfusie I de zo fusere waterstofkere tot heliumkere. Bij fusie komt eergie vrij. O deze maier roduceert de zo er secode 3,9 10 26 J. Alle eergiecetrales o aarde roducere same i éé jaar ogeveer

Nadere informatie

consultancy ontwerp project management exploitatie onderhoud audits optimalisatie opleidingen Uw bedrijfswater in ervaren handen

consultancy ontwerp project management exploitatie onderhoud audits optimalisatie opleidingen Uw bedrijfswater in ervaren handen cosultacy otwerp project maagemet exploitatie oderhoud audits optimalisatie opleidige Uw bedrijfswater i ervare hade Over Aquaplus cosultacy otwerp project maagemet exploitatie oderhoud audits optimalisatie

Nadere informatie

Levensverzekerings wiskunde

Levensverzekerings wiskunde Levesverzekerigs wiskude e pesioecalculaties D.P.G. va As, J. Klouwe, L.J. va de Leur Derde druk LEVENSVERZEKERINGSWISKUNDE EN PENSIOENCALCULATIES D.P.G. va As J. Klouwe L.J. va de Leur derde druk Meer

Nadere informatie

BELGISCH INSTITUUT VOOR POSTDIENSTEN EN TELECOMMUNICATIE

BELGISCH INSTITUUT VOOR POSTDIENSTEN EN TELECOMMUNICATIE BELGISCH INSTITUUT VOOR POSTDIENSTEN EN TELECOMMUNICATIE BESLUIT VAN DE RAAD VAN HET BIPT VAN 22 FEBRUARI 2011 MET BETREKKING TOT DE A POSTERIORI GOEDKEURING VAN DE TARIEFVERHOGINGEN VAN DE AANGEWEZEN

Nadere informatie

REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING

REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING I de voorwaarde va de REAAL Woohuisverzekerig leest u: Wat u va os mag verwachte e wat wij va u verwachte (pagia 2). Voor welke schade wij wel e iet betale

Nadere informatie

Aanstekelijkheid gevangen in een getal

Aanstekelijkheid gevangen in een getal 38 NAW 5/4 r. 1 maart 2003 Aastekelijkheid gevage i ee getal Odo Diekma Odo Diekma Mathematisch Istituut Uiversiteit Utrecht Postbus 80010 3508 TA Utrecht O.Diekma@math.uu.l Vakatiecursus 2002 Aastekelijkheid

Nadere informatie

Bindend advies. Stichting Klachten en Geschillen Zorgverzekeringen. c. d. Partijen. : A te B, in deze vertegenwoordigd door C vs.

Bindend advies. Stichting Klachten en Geschillen Zorgverzekeringen. c. d. Partijen. : A te B, in deze vertegenwoordigd door C vs. c. d. Stichtig Zorgverzekerige f I- I J /' Bided advies Partije, Zaak Zaakummer Zittigsdatum : A te B, i deze vertegewoordigd door C vs. D te E : Hulpmiddelezorg, MOTOmed : 2006,02175 : 2 mei 2007 Geschillecommissie

Nadere informatie

Hogeschool Utrecht. Standaard Rapport. Online Rapport. Faculteit Educatie. HBOspiegel.nl 10-9-2013

Hogeschool Utrecht. Standaard Rapport. Online Rapport. Faculteit Educatie. HBOspiegel.nl 10-9-2013 Olie Rapport Hogeschool Utrecht Faculteit Educatie Stadaard Rapport HBOspiegel.l 10-9-2013 Dit rapport is automatisch gegeereerd: 11-9-2013 14:0:03 DigiDoc Web Hostig Aalyse: Aalyse: ROCMN - Tech College

Nadere informatie

Kwaliteit van de persoonsgegevens. Resultaten Gemeente Alpen aan den Rijn

Kwaliteit van de persoonsgegevens. Resultaten Gemeente Alpen aan den Rijn Kwaliteit va de persoosgegeves Resultate Gemeete Alpe aa de Rij Klik Ted om Dicks, de titelstijl Hek-Ja va Wieseekker het model te bewerke Ageda Doel va het oderzoek Irichtig va het oderzoek Resultate

Nadere informatie

Haal het maximale uit jezelf. valkenburg. m a s t e r e x p e r i e n c e. p r o g r a m m a 2012-2015 1

Haal het maximale uit jezelf. valkenburg. m a s t e r e x p e r i e n c e. p r o g r a m m a 2012-2015 1 Haal het maximale uit jezelf valkeburg m a s t e r e x p e r i e c e p r o g r a m m a 2012-2015 1 Maximaal redemet voor mes e orgaisatie De Valkeburg Master Experiece is bedoeld voor mese die het maximale

Nadere informatie

fíéê~íáéi=çóå~ãáëåüé=éêçåéëëéå=éå= åìãéêáéâé=ãéíüççéå=

fíéê~íáéi=çóå~ãáëåüé=éêçåéëëéå=éå= åìãéêáéâé=ãéíüççéå= fíéê~íáéiçóå~ãáëåüééêçåéëëéåéå åìãéêáéâéãéíüççéå oçöéêi~äáé hçéåpíìäéåë Iteratie, dyamische processe e umerieke methode Roger Labie Koe Stules www.scholeetwerk.be 005, UHasselt (België), Scholeetwerk Weteschappe

Nadere informatie

OOM Verzekeringen. De specialistische verzekeraar

OOM Verzekeringen. De specialistische verzekeraar Jaa rov erzi cht 201 3 Bra dv erze keri ge e g i r e k dverze a l e t i Bu OOM Verzekerige De specialistische verzekeraar Kercijfers verzekerigsactiviteite (x 1.000) Resultate 2013 2012 Omzet Bruto verdiede

Nadere informatie

Financiële Wiskunde. 1

Financiële Wiskunde. 1 1. BRIGGSE LOGARITMEN... 3 DEFINITIES EN EIGENSCHAPPEN VAN MACHTEN...3 DEFINITIE VAN LOGARITME...5 DE BRIGGSE LOGARITME...6 Omiddellijke eigeschappe...6 Eigeschappe va (Briggse) logaritme...7 DE EXPONENTIËLE

Nadere informatie

we willen graag zelf klussen in onze nieuwe woning.

we willen graag zelf klussen in onze nieuwe woning. ZELF AANGEBRACHTE VOORZIENINGEN we wille graag zelf klusse i oze ieuwe woig. ECHT WEL. Zelf uw woig aar wes veradere De woig die u va os huurt, wilt u atuurlijk aar uw eige smaak irichte. U kiest zelf

Nadere informatie

imtech Arbodienst (versie 2.0)

imtech Arbodienst (versie 2.0) imtech Arbodiest (versie.0) veilig e gezod werke Wat is lichamelijke belastig? Oder lichamelijke of fysieke belastig verstaa we het aaeme va houdige, het make va bewegige e het zette va kracht. Alle medewerkers,

Nadere informatie

One Office Voice Pack Vaste en mobiele telefonie in één pack

One Office Voice Pack Vaste en mobiele telefonie in één pack Uiek! Exteded Fleet Obeperkt belle aar alle Mobistar-ummers e vaste lije! Oe Office Voice Pack Vaste e mobiele telefoie i éé pack I alle vrijheid commuicere e zakedoe Mobistar biedt geïtegreerde oplossige

Nadere informatie

Mexicaanse griep: A/H1N1 griep

Mexicaanse griep: A/H1N1 griep Mexicaase griep: A/H1N1 griep Wat is de Mexicaase griep? De zogeaamde Mexicaase of varkesgriep is ee ieuwe variat va het griepvirus, met ame A/H1N1. Weiig mese hebbe immuiteit voor dit virus. Hierdoor

Nadere informatie

Thermodynamica HWTK PROEFTOETS- AT02 - UITWERKING.doc 1/9

Thermodynamica HWTK PROEFTOETS- AT02 - UITWERKING.doc 1/9 VAK: hermodyamica HWK Set Proeftoets A0 hermodyamica HWK PROEFOES- A0 - UIWERKING.doc /9 DI EERS LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 00 miute Uw aam:... Klas:... Leerligummer:

Nadere informatie

De vernieuwing van Slotjes-Midden. Sociaal Statuut

De vernieuwing van Slotjes-Midden. Sociaal Statuut De verieuwig va Slotjes-Midde Sociaal Statuut Ihoudsopgave Sociaal Statuut voor de verieuwig va Slotjes-Midde 3 Artikel 1: Overwegige 4 Artikel 2: Algemee 4 Artikel 3: Procedure bij sloop 4 Artikel 4:

Nadere informatie

Aanvraag voor een woning in de gemeente(n)... 1. Personalia aanvrager huurwoning

Aanvraag voor een woning in de gemeente(n)... 1. Personalia aanvrager huurwoning Aavraagformulier Huurwoig Hoofdkatoor: J.L. va Rijweg 20, Postbus 612 2700 AP Zoetermeer Tel. : 079-329 66 66 Fax : 079-329 66 00 Iteret : www.hof-rijlad.l E-mail : ifo@hof-rijlad.l Regiokatore: Groeewoudsedijk

Nadere informatie