Toetsmodule Hoofdstuk 10: Probleemoplossend denken - Oplossingen

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Toetsmodule Hoofdstuk 10: Probleemoplossend denken - Oplossingen"

Transcriptie

1 Toetsmodule Hoofdstuk 10: Probleemoplossend denken - Oplossingen Procentberekeningen 1 Wat is het voordeligst? Luigi wil een draagbare CD/MP-speler van 99 euro kopen. Een eerste elektrozaak geeft 0% korting en daarboven nog een extra korting van 5,5% op het overblijvende bedrag. Een tweede elektrozaak geeft 5 % korting op het oorspronkelijke bedrag. Bereken nu het te betalen bedrag in beide gevallen (rond af op 1 eurocent). Oplossing: = 99 = = = 79, Eerste elektrozaak: 79, 5,5 45,6 79, = 79, = 79, 4,56 = 74, In de eerste elektrozaak moet Luigi 74,84 euro betalen. Tweede elektrozaak: = 99 = = = 74, In de tweede elektrozaak moet Luigi 74,5 euro betalen, dit is natuurlijk het voordeligst. Katrien zet euro op een spaarrekening. a) Na een jaar ontvangt ze 54 euro intrest. Wat was de intrest op die spaarrekening, uitgedrukt in procenten? b) Bereken de intrest als ze op 1 jaar een intrest van,5% ontvangt. Welk bedrag moet Katrien op een spaarrekening met 5% intrest zetten als ze na 1 jaar 105 euro intrest wil ontvangen? 54 7 Oplossing a) = = 0,086 =,86% De bank geeft,86%. b) ,05 = 49 Het kapitaal van Katrien neemt met 49 euro toe. c) = 105 : 0, Katrien moet 100 euro op een spaarrekening zetten.

2 Hoeveel procent van de volgende figuur is er gekleurd? Oplossing: + + = + + = + + = = 0,89 = 8,9% ,9% van de figuur is gekleurd. 4 Een supermarkt heeft de volgende aanbiedingen: a) kipburger (per kg) 6,0 5,60 b) Bordeaux Château Moulin Lafitte (per fles) 4,95 4,1 c) ontbijtgranen (per 750g) 4,,5 Hoeveel procent korting geeft de supermarkt op elk product? Rond de procenten af op 1 cijfer na de komma. Oplossing: a) kipburger: 6,0-5,60 = 0,6 0,6 : 6,0 = 0,097 = 9,7% b) Bordeaux: 4,95 4,1 =0,8 0,8 : 4,95 = 0,168 = 16,8% c) ontbijtgranen: 4, -,5 =1,08 1,08 : 4, = 0,49 = 4,9% 5 Roger belegt een bepaald bedrag in aandelen op de beurs. Na het eerste jaar heeft hij een winst van 10%, het jaar daarop boekt hij echter een verlies van 10%. Zijn aandelen zijn dan nog euro waard. Welk bedrag belegde Roger (los dit op aan de hand van een rekenschema)? : 1,10 0, :1,10 :0, : 0,9 :1,10 = 55,5 Roger belegde 5 5,5 euro.

3 Vergelijkingen en vraagstukken 6 Los de volgende vergelijkingen op. a) x 7 = 8 b) x + 6 x = -4 x = x x = 4 6 x = 1 x = 0 x = 1 : x = 0 x = 7 c) 4 8x = 0 d) 8x +. ( x) = 1 8x = 4 8x x = x = 8 5x = x = x = 4 5 e) 16 = x + f) x + = 16 x - 5 = x - = 5 x = 16 5x 0 9 = x = 19 5x = 9 x = 19 x = x g) 4 =. (x + 6) h) = (x + 6) = 4 x 7 = 5 11 x 18 = 4 x = x = x = x = 6 x = 10 x = 6 : ( ) x = 10 0 x = x = 1

4 i) 4. (8 x) = j) g +x = x = x = x = + 7x = x = 5 7x = 1 + x = 5 4 7x = 18 x = 18-7 Los de volgende vraagstukken op met een vergelijking. 7 De som van drie vijfde van een getal en 1 is 7. Zoek het getal. a) x = het getal b) + ( 1) = 7 5 x c) + ( 1) = 7 5 x 1= 7 5 x x = x = 9 x = 9. 5 x = 155 d) Het getal is 155. e) ( 1) = 9 1 = dus LL = RL

5 8 Deze maand moet Pienter 16,40 euro betalen voor zijn telefoonrekening. Maandelijks betaalt hij 4 euro abonnementsgeld. Hoeveel uren heeft hij gebeld als hij per minuut 0, euro moet betalen? a) x = het aantal minuten dat Pienter gebeld heeft. b) 4 + 0,x = 16,40 c) 4 + 0,x = 16,40 0,x = 16,40 4 0,x = 9,40 x = 9,40 : 0, x = 40 d) Pienter heeft 40 minuten of 7 uren gebeld. e) 4 + 0,. 40 = 4 + 9,40 = 16,40 16,40 dus LL = RL 9 Klaas, Jeroen en Hichem hebben samen 56 wafels verkocht. Hoeveel heeft elk er verkocht als Hichem er dubbel zoveel heeft verkocht als Klaas en Klaas er 4 meer verkocht heeft als Jeroen? a) x = aantal wafels dat Jeroen heeft verkocht. x + 4 = aantal wafels dat Klaas heeft verkocht.. (x + 4) = aantal wafels dat Hichem heeft verkocht. b) x + x (x + 4) = 56 c) x + x (x + 4) = 56 x + x x + 8 = 56 x + x + x = x = 44 x = 61 d) Jeroen heeft 61 wafels verkocht, Klaas (61 + 4) of 65 en Hichem (. 65) of 10 e) = = dus LL = RL

6 Regelmaat en formules 10 Bereken. a) = ( ) b) De som van de eerste 100 natuurlijke getallen ( ) c) = aantal termen = 59 = = = d) ( ) + 1 som eerste termen = 4 = = 561 ( ) som eerste 785 termen = = = Gevraagde som : =

7 11 Maak een tabel bij de volgende rijen en geef de formule. a) 5, 6, 7, 8, 9, Volgnummer (n) Getal in de rij (g) De formule: g = n + 4 b) -6, 0, 6, 1, 18, Volgnummer (n) Getal in de rij (g) De formule: g = 6n - 1 c) 1, 8, 7, 64, 15, Volgnummer (n) Getal in de rij (g) De formule: g = n³ d), 7, 1, 17,, Volgnummer (n) Getal in de rij (g) De formule: g = 5n -

8 1 Bekijk het volgende tegelpatroon. a) Teken het volgende patroon. b) Vul de tabel in. aantal zwarte tegels (z) aantal witte tegels (w) c) Zoek een formule waarmee we het aantal witte tegels kunnen berekenen als we het aantal zwarte tegels (z) weten. w = z. (z 1) d) Hoeveel witte tegels heeft een patroon met 60 zwarte tegels? w = 60. (60 1) = = 540 e) Is er een patroon dat 1 00 witte tegels heeft? Verklaar. Neen, het patroon gaat van 99 ( zwarte tegels) naar ( zwarte tegels).

9 1 Bekijk onderstaande patronen. a) Teken het volgende patroon. b) Vul onderstaande tabel in. Aantal blokjes zijde vierkant (a) aantal zwarte blokjes (z) c) Zoek een formule waarmee we het aantal zwarte blokjes kunnen berekenen als we het aantal blokjes weten van een zijde van een figuur. z = a - 1 d) Hoeveel zwarte blokjes heeft een patroon met 0 blokjes als zijde. z =. 0 1 z = 60 1 z = 59

e) 124 op 300 b) 15 op 45 f) 412 op 500 c) 38 op 45

e) 124 op 300 b) 15 op 45 f) 412 op 500 c) 38 op 45 Extra oefeningen hoofdstuk 0: Probleemoplossend denken Schrijf de volgende resultaten in procenten. a) 20 op 30 e) 24 op 300 b) 5 op 45 f) 42 op 500 c) 38 op 45 g) 42 op 60 d) 8 op 25 h) 625 op 800 2 Vul

Nadere informatie

7 a patroonnummer a patroonnummer a h = z

7 a patroonnummer a patroonnummer a h = z Hoofdstuk 3 FORMULES 3.1 PATRONEN EN FORMULES 3 a 10 22 c? d De beweringen a b = b a en a + b = b + a zijn juist. e 15 a 12 a 18 a f a + 8 10 + a a + 14 b zijde vierkant 3 4 5 6 7 aantal gekleurde hokjes

Nadere informatie

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd?

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd? Procenten Zoals op de basisschool is aangeleerd kunnen we een taart verdelen in een aantal stukken. Hierbij krijgen we een breuk. We kunnen ditzelfde stuk taart ook aangegeven als een percentage. Procenten:

Nadere informatie

Compex wiskunde A1-2 vwo 2004-I

Compex wiskunde A1-2 vwo 2004-I KoersSprint In deze opgave gebruiken we enkele Excelbestanden. Het kan zijn dat de uitkomsten van de berekeningen in de bestanden iets verschillen van de exacte waarden door afrondingen. Verder kunnen

Nadere informatie

Hieronder zie je een figuur die bestaat uit vier rijen. De figuur is gemaakt van witte en grijze vierkanten.

Hieronder zie je een figuur die bestaat uit vier rijen. De figuur is gemaakt van witte en grijze vierkanten. VIERKANTEN LEGGEN Hieronder zie je een figuur die bestaat uit vier rijen. De figuur is gemaakt van witte en grijze vierkanten. rijnummer 1 rijnummer 2 rijnummer 3 rijnummer 4 Onder rij 3 wordt nog een

Nadere informatie

Examenopgaven VMBO-KB 2003

Examenopgaven VMBO-KB 2003 Examenopgaven VMBO-KB 2003 tijdvak 21 donderdag woensdag 22 18 mei juni 13.30-15.30 uur WISKUNDE CSE KB WISKUNDE VBO-MAVO C Bij dit examen hoort een uitwerkboekje. Dit examen bestaat uit 24 vragen. Voor

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

10 Junior Wiskunde Olympiade : eerste ronde

10 Junior Wiskunde Olympiade : eerste ronde 10 Junior Wiskunde Olympiade 2001-2002: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

---9. r-:- ------------------ I Getallenkenni:li. Tips voor de toets. Meetkunde. Bewerldngen. Meten en metend rekenen

---9. r-:- ------------------ I Getallenkenni:li. Tips voor de toets. Meetkunde. Bewerldngen. Meten en metend rekenen 5 r-:- ------------------ Getallenkenni:li Wat leerde ik? Een verhouding uitdrukken in percent en i omgekeerd Breuken vermenigvuldigen met een natuurlijk getal en omgekeerd Waar staat dit in het onthoudboek?

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

Naam:... Datum:... 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =.

Naam:... Datum:... 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =. Opvraging Wiskunde W1 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =. 2 Goed lezen en oplossen. Ik koop in de supermarkt een krant (80 cent), een brood

Nadere informatie

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7.

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7. Herhalingsoefeningen Rijen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Onderzoek of de

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Oplossing zoeken kwadratisch verband vmbo-kgt34

Oplossing zoeken kwadratisch verband vmbo-kgt34 Auteur VO-content Laatst gewijzigd Licentie Webadres 23 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74207 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet. Wikiwijs

Nadere informatie

Examen VWO-Compex. wiskunde A1,2

Examen VWO-Compex. wiskunde A1,2 wiskunde A1,2 Examen VWO-Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 1 juni 13.30 16.30 uur 20 04 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit 22 vragen.

Nadere informatie

2 Noteer de letter die de plaats aanduidt van het getal op de getallenas. nr. 8

2 Noteer de letter die de plaats aanduidt van het getal op de getallenas. nr. 8 Toetswijzer extra Naam : Klasnr: Getallenkennis 1 Noteer de getallen met cijfers nrs 6,7,19,en 20 5,9 miljoen vierhonderd en tien duizendste 2 Noteer de letter die de plaats aanduidt van het getal op de

Nadere informatie

Wortel en Machten vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.

Wortel en Machten vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74200 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

Examen VBO-MAVO-C. Wiskunde

Examen VBO-MAVO-C. Wiskunde Wiskunde Examen VBO-MAVO-C Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs Tijdvak 1 Vrijdag 6 mei 13.30 15.30 uur 0 00 Dit examen bestaat uit 3 vragen. Voor elk vraagnummer is

Nadere informatie

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen Getallenkennis Target 1 Les 1: getalbegrip to 10 000 000 wb. p. 1+2, sb 1 Les 5: kommagetallen tot 0,001 wb. p. 8-9, sb 5 Les 12: breuken vergelijken en sorteren wb. p. 15-16, sb 10 Les 13: breuk als operator,getal,verhouding,

Nadere informatie

Extra oefeningen Hoofdstuk 8: Rationale getallen

Extra oefeningen Hoofdstuk 8: Rationale getallen Extra oefeningen Hoofdstuk 8: Rationale getallen 1 Noteer met een breuk. a) Mijn stripverhaal is voor de helft uitgelezen. Een kamer is voor behangen. c) van de cirkel is gekleurd. 15 Gegeven : 18 teller

Nadere informatie

Doel Leerlingen kunnen in eigen woorden formuleren waarvoor en wanneer de berekeningen nodig zijn en deze op een correcte manier uitrekenen.

Doel Leerlingen kunnen in eigen woorden formuleren waarvoor en wanneer de berekeningen nodig zijn en deze op een correcte manier uitrekenen. Algemene informatie: De aankomende 2 lessen ga je in groepjes van drie personen je bezig houden met het berekenen van procenten. Er zijn drie vormen en iedereen behandeld alle vormen. Jullie wisselen om

Nadere informatie

Routeboekje. bij Pluspunt. Groep 8 Blok 4. Van...

Routeboekje. bij Pluspunt. Groep 8 Blok 4. Van... Routeboekje bij Pluspunt Groep 8 Blok 4 Van... Groep 8 Blok 4 Les 1 Leerkrachtgebonden LB 8 38 1 De perenoogst van fruitkweker Wim maken LB 8 38 1 De perenoogst van fruitkweker Wim meedoen en maken LB

Nadere informatie

Paracetamol in het bloed

Paracetamol in het bloed Paracetamol in het bloed Paracetamol is een veelgebruikte pijnstiller, die in tabletvorm te koop is. Voor volwassenen zijn er tabletten die 500 mg paracetamol bevatten. Na het innemen van een tablet wordt

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO 2010

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO 2010 MINISTERIE VAN ONDERWIJS EN VOLKSONTWIKKELING EXAMENBUREAU UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO 200 VAK : BEDRIJFSREKENEN DATUM : DINSDAG 06 JULI 200 TIJD : 09.45.25 UUR (MULO-III KANDIDATEN)

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 24 juni 13.30-16.30 uur

Examen HAVO. wiskunde A. tijdvak 2 woensdag 24 juni 13.30-16.30 uur Examen HAVO 2009 tijdvak 2 woensdag 24 juni 13.30-16.30 uur wiskunde A Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Examen VMBO-KB 2006 WISKUNDE CSE KB. tijdvak 1 dinsdag 30 mei 13.3013.30-15.30. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB 2006 WISKUNDE CSE KB. tijdvak 1 dinsdag 30 mei 13.3013.30-15.30. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2006 tijdvak 1 dinsdag 30 mei 13.3013.30-15.30 15.30 uur WISKUNDE CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 83 punten

Nadere informatie

STADSBOERDERIJ DE KEUKEN

STADSBOERDERIJ DE KEUKEN STADSBOERDERIJ DE KEUKEN Rekenen voor vmbo-groen en mbo-groen Colofon RekenGroen. Rekenen voor vmbo- groen en mbo- groen Module Stadsboerderij De keuken Leerlingtekst Versie 1.0. November 2012 Auteurs:

Nadere informatie

Voorbeeld 1 In een klas van 29 leerlingen hebben 3 leerlingen een onvoldoende behaald voor een toets.

Voorbeeld 1 In een klas van 29 leerlingen hebben 3 leerlingen een onvoldoende behaald voor een toets. 1. Het berekenen van een percentage Voorbeeld 1 In een klas van 29 leerlingen hebben 3 leerlingen een onvoldoende behaald voor een toets. Bereken (in 1 decimaal nauwkeurig) hoeveel procent van de leerlingen

Nadere informatie

Examen VBO-MAVO-D Wiskunde

Examen VBO-MAVO-D Wiskunde Examen VBO-MAVO-D Wiskunde Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 20 juni 13.30 15.30 uur 20 01 Voor dit examen zijn maximaal 87 punten te behalen;

Nadere informatie

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg.

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg. Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs! jij rekentrainer Bezoek alle leuke dingen. Teken de weg. Groep blad 1 Hoe komt de hond bij het bot? Teken. Kleur de tegels. Kleur

Nadere informatie

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10 B M De getallenlijn 0 + = = + = = Nee 0 0 = 9 = 0 6 = = 9 = 6 = 6 = = C a b a b 0 = 0 0 = 0 a b < 0 ; a b < 0 ; a > b ; b > a = = = = C Nee, hij loopt steeds maar verder. < x H x < x < x < x + + = x +

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 2

Uitwerkingen oefeningen hoofdstuk 2 Uitwerkingen oefeningen hoofdstuk 2 2.4.1 Basis Verhoudingen 1 13 cm : 390 km, dat is 13 cm : 390.000 m. Dat komt overeen met 13 cm : 39.000.000 cm en dat is te vereenvoudigen tot 1 : 3.000.000. 2 De schaal

Nadere informatie

Meer verbanden vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.

Meer verbanden vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74201 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

PADDESTOELEN. 3p 1 In de uitwerkbijlage bij vraag 1 staat de graaf nogmaals getekend. Daaronder staat een. Egmond.

PADDESTOELEN. 3p 1 In de uitwerkbijlage bij vraag 1 staat de graaf nogmaals getekend. Daaronder staat een.  Egmond. PADDESTOELEN In het duinengebied van Noord-Holland staan veel wegwijzers in de vorm van een paddestoel. Op zo n paddestoel staan pijlen die de richting naar een bepaalde plaats aangeven. Ook staat daarop

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Per deelnemer méér gaat er e 0,- van de prijs per persoon af, dus bij 4 personen zal de prijs per persoon e 500,- zijn, bij 30 personen e 50,- 7 3 e 0,- = e 380,-. b n = 0 geeft p = 0 3

Nadere informatie

Naam:... Nr... SPRONG 7

Naam:... Nr... SPRONG 7 Naam:... Nr.... SPRONG 7 G Vul de verhoudingstabel aan. Tijdens de winterperiode worden de karretjes van de roetsjbaan geschilderd. Voor karretje is /5 liter rode verf, 3/5 liter zwarte verf en /2 liter

Nadere informatie

Bij deze opgave horen de informatiebronnen 4 tot en met 6.

Bij deze opgave horen de informatiebronnen 4 tot en met 6. Opgave 5 Bij deze opgave horen de informatiebronnen 4 tot en met 6. De Stichting Bedrijfspensioenfonds voor Medewerkers in het Notariaat (hierna te noemen Het Pensioenfonds) verzorgt de pensioenen van

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

werkschrift vergelijkingen

werkschrift vergelijkingen werkschrift vergelijkingen 1 raadsels 11 Los zo ook de andere vier vergelijkingen van de vorige opgave op. En controileer je antwoorden. 4x + 1 = 2 + 2x 7t + 1 = 15t + 9 3y + 66 = 7y + 36 3a + 5 = 2a +

Nadere informatie

Examen VWO-Compex. wiskunde A1

Examen VWO-Compex. wiskunde A1 wiskunde A1 Examen VWO-Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 1 juni 13.30 16.30 uur 20 04 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit 24 vragen.

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

----18. o na blok Naam:. Klasnr.:

----18. o na blok Naam:. Klasnr.: o na blok Naam:. Klasnr.: Getallenkermis Wat leerde ik? Herhaling en inoefening - Breuken: herhaling en inoefening - Breuken vermenigvuldigen met een breuk Waar staat dit in het onthoudboek? les 95: nrs.

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 23 juni 13.30 16.30 uur

Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 23 juni 13.30 16.30 uur wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 23 juni 13.30 16.30 uur 20 04 Voor dit examen zijn maximaal 82 punten te behalen; het examen bestaat uit 21 vragen. Voor

Nadere informatie

Examen VWO. Bedrijfseconomie, ondernemerschap en financiële zelfredzaamheid. Voorbeeldopgaven PNO. PNO Voorbeeldopgave VWO.

Examen VWO. Bedrijfseconomie, ondernemerschap en financiële zelfredzaamheid. Voorbeeldopgaven PNO. PNO Voorbeeldopgave VWO. Examen VWO 2017 Voorbeeldopgaven PNO Bedrijfseconomie, ondernemerschap en financiële zelfredzaamheid PNO Voorbeeldopgave VWO.doc - 23-6-2016 Voorbeeldopgave nieuwe programma onderdelen bij Bedrijfseconomie,

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

Financiële algebra. Wilfried Van Hirtum. Versie 1.02 26 april 2011

Financiële algebra. Wilfried Van Hirtum. Versie 1.02 26 april 2011 Financiële algebra Wilfried Van Hirtum Versie 1.02 26 april 2011 Copyright 2011 Wilfried Van Hirtum Dit werk wordt vrij gegeven aan de gemeenschap en mag dus gekopieerd, verspreid en aangepast worden mits

Nadere informatie

In de bovenstaande voorbeelden legden Einstein en jijzelf verbanden tussen grootheden. We spreken over een verband als de ene grootheid afhangt van

In de bovenstaande voorbeelden legden Einstein en jijzelf verbanden tussen grootheden. We spreken over een verband als de ene grootheid afhangt van 47 3.0 INTRO Einstein ontdekte de beroemde formule E = m c 2 (in dit hoofdstuk leer je wat de en c 2 betekenen). Dankzij die formule kunnen we kernenergie opwekken en - helaas - atoombommen maken. In hoofdstuk

Nadere informatie

UNIFORM HEREXAMEN MULO tevens 2 e ZITTING STAATSEXAMEN 2008

UNIFORM HEREXAMEN MULO tevens 2 e ZITTING STAATSEXAMEN 2008 MNSTERE VN ONERWJS EN VOLKSONTWKKELNG EXMENUREU VK : ERJFSREKENEN TUM: ONERG 07 UGUSTUS 008 TJ : 07.30 09.30 UUR EZE TK ESTT UT 36 TEMS. UNFORM HEREXMEN MULO tevens e ZTTNG STTSEXMEN 008 NTREST e juiste

Nadere informatie

In de handel is het gebruikelijk om korting te geven als een klant veel exemplaren van een bepaald product bestelt.

In de handel is het gebruikelijk om korting te geven als een klant veel exemplaren van een bepaald product bestelt. Korting In de handel is het gebruikelijk om korting te geven als een klant veel exemplaren van een bepaald product bestelt. Kwantumkorting Een manier om klanten korting te geven, is de kwantumkorting.

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Kangoeroewedstrijd editie Wallaroe: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Wallaroe: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. Boe volgt de weg van de pijl. Hij eindigt dus op de plaats van de. Het juiste antwoord is dus de tweede figuur. Kangoeroewedstrijd editie Wallaroe: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade

Nadere informatie

Vergelijkingen met één onbekende

Vergelijkingen met één onbekende - 89 - Hoofdstuk 3: ergelijkingen met één onbekende Opgave boek pag 67 nr. 5: Los op in R a. 3 ( + ) 4 7.................. {... }... proef : 1 e lid :... e lid :... b. ( 3 ) + 7 5 ( )........................

Nadere informatie

Examen VWO. wiskunde A1. tijdvak 1 maandag 25 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde A1. tijdvak 1 maandag 25 mei uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2009 tijdvak 1 maandag 25 mei 13.30-16.30 uur wiskunde A1 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen Uitsluitend te gebruiken

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

Toets gecijferdheid mei 2004

Toets gecijferdheid mei 2004 Toets gecijferdheid mei 2004 Naam: Datum: Klas: score cijfer Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de

Nadere informatie

sfeerlichthouders. Daarnaast staat een tekening van het bovenaanzicht van deze figuur.

sfeerlichthouders. Daarnaast staat een tekening van het bovenaanzicht van deze figuur. SFEERLICHT Op de foto hieronder zie je een houder waarin een sfeerlichtje zit Deze sfeerlichthouder heeft de vorm van een prisma met een gelijkzijdige driehoek als grondvlak 2p 1 Op de foto hieronder zie

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

Een functie is een kant en klare formule. Via de knop Som in de groep Bewerken van het tabblad Start kun je een aantal veelgebruikte functies kiezen:

Een functie is een kant en klare formule. Via de knop Som in de groep Bewerken van het tabblad Start kun je een aantal veelgebruikte functies kiezen: SAMENVATTING HOOFDSTUK 6 De functies Gemiddelde en Afronding Een functie is een kant en klare formule. Via de knop Som in de groep Bewerken van het tabblad Start kun je een aantal veelgebruikte functies

Nadere informatie

Examenopgaven VMBO-GL en TL 2003

Examenopgaven VMBO-GL en TL 2003 Examenopgaven VMBO-GL en TL 2003 tijdvak 1 donderdag 22 mei 13.30-1.30 uur WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO-D Bij dit examen hoort een uitwerkboekje. Dit examen bestaat uit 26 vragen. Voor dit examen

Nadere informatie

Blok 1 Herhalingstoets

Blok 1 Herhalingstoets herhalingstoetsen Blok 1 Herhalingstoets 1 Reken uit en maak vast. Vul het getallenkaartje in. 1 0 00 00 H T E 1 00 + 00 = Hoeveel potloden? Vul in. Hoeveel krijgt ieder? Verdeel met vier kinderen. 0 00

Nadere informatie

UNIFORM HEREXAMEN EIND MULO tevens II E ZITTING STAATSEXAMEN MULO 2007

UNIFORM HEREXAMEN EIND MULO tevens II E ZITTING STAATSEXAMEN MULO 2007 MNSTERE VN ONERWJS EN VOLKSONTWKKELNG EXMENUREU UNFORM HEREXMEN EN MULO tevens E ZTTNG STTSEXMEN MULO 2007 VK : ERJFSREKENEN TUM: WOENSG 08 UGUSTUS 2007 TJ : 07.30-09.30 UUR EZE TK ESTT UT 36 TEMS. ntrest

Nadere informatie

Sterrenwerk. Rekenen. voor 9-11 jaar. combineren en visualiseren 2

Sterrenwerk. Rekenen. voor 9-11 jaar. combineren en visualiseren 2 Sterrenwerk Rekenen voor 9-11 jaar combineren en visualiseren 2 2 Hexomino s 1 Die dekselse figuren van zes! Deze figuren bestaan uit zes vierkanten die elkaar met ten minste een zijde raken. Ze heten

Nadere informatie

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Hoofdstuk 5 5A Grote getallen Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Miljoen 6 getallen achter de komma 230 miljoen

Nadere informatie

Examen VWO. wiskunde A1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur

Examen VWO. wiskunde A1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur Examen VWO 2008 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde A1,2 Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 82 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen

Nadere informatie

Bereken hoeveel populieren hiervoor gebruikt zijn. Schrijf je berekening op.

Bereken hoeveel populieren hiervoor gebruikt zijn. Schrijf je berekening op. Lucifers Lucifers worden meestal gemaakt van het hout van de ratelpopulier. Van één populier worden gemiddeld 6 miljoen lucifers gemaakt. In een luciferdoosje zitten gemiddeld 60 lucifers. 3p 1 Het bedrijf

Nadere informatie

Examen HAVO. Wiskunde A1,2

Examen HAVO. Wiskunde A1,2 Wiskunde A1,2 Examen AVO oger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 21 juni 1.0 16.0 uur 20 00 Dit examen bestaat uit 21 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar De Graankorrel Wervik Mijn wiskundehulpschrift van 1 tot 6 leerjaar We gebruiken de rekenmethode Zo gezegd, zo gerekend! van het eerste tot het zesde leerjaar. Eerste leerjaar blz. 2 Tweede leerjaar blz.

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO 2007

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO 2007 MNSTERE VAN ONDERWJS EN VOLKSONTWKKELNG EXAMENUREAU UNFORM ENDEXAMEN MULO tevens TOELATNGSEXAMEN VWO/HAVO 2007 VAK : EDRJFSREKENEN DATUM: DONDERDAG 05 JUL 2007 TJD : 09.45 11.25 UUR (MULO- KANDDATEN) 09.45

Nadere informatie

Werkblad Voortgezet Onderwijs Gemengd-Theoretisch

Werkblad Voortgezet Onderwijs Gemengd-Theoretisch Werkblad 4 Bedrijfsmiddelen Werkblad Voortgezet Onderwijs Gemengd-Theoretisch Via Day for Change heeft jullie klas een microkrediet gekregen. Hier gaan jullie je eigen bedrijf mee beginnen. Dit bedrag

Nadere informatie

PROBLEEMOPLOSSEND DENKEN MET

PROBLEEMOPLOSSEND DENKEN MET PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

Procenten. Een percentage van iets nemen. Handige percentages. Het percentage vinden

Procenten. Een percentage van iets nemen. Handige percentages. Het percentage vinden Procenten Een percentage van iets nemen 1% Percentages kom je overal tegen: Deze stof is % katoen. Dat is 99% zeker. Op deze bankrekening krijg je 4% rente. Wat is 1%? 1% (één procent) betekent 1 per.

Nadere informatie

Bereken hoeveel er voor de patat betaald moest worden. Schrijf je berekening op. ... ...

Bereken hoeveel er voor de patat betaald moest worden. Schrijf je berekening op. ... ... Voor het goede doel Op school De Cirkel verzorgen de leerlingen dit jaar een braderie voor een kinderziekenhuis in Sierra Leone. 2p 1 Anouk, Fatima en Vincent zorgen voor de verkoop van patat. Ze hebben

Nadere informatie

Vastgesteld: naam... datum... Paraaf... cijfer = score x 0, ,8588 (met een minimum van 1).

Vastgesteld: naam... datum... Paraaf... cijfer = score x 0, ,8588 (met een minimum van 1). Tentamen rekenen 2F Naam... klas... locatie... Datum... tijdsduur 60 minuten. (versie: 30-3-2015) Vastgesteld: naam... datum... Paraaf... cijfer = score x 0,42353-1,8588 (met een minimum van 1). Opgave

Nadere informatie

Naam:... Nr... SPRONG 5. a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft.

Naam:... Nr... SPRONG 5. a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft. Naam:... Nr.... SPRONG 5 G G 1 Percenten T a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft. Kleur 20 % blauw. 25 % maak je geel. 50 % krijgt een groene kleur. Er blijft

Nadere informatie

Kangoeroewedstrijd editie Koala: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Koala: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. In de linkerschaal ligt in totaal 20+26 = 46 kg. De holbewoner heeft dus nog een rotsblok van 46 37 = 9 kg nodig. Kangoeroewedstrijd editie Koala: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

De markt. Gebruik je liniaal. 1 hokje = 1 m 2

De markt. Gebruik je liniaal. 1 hokje = 1 m 2 34 blok 5 C 1 Hoeveel knikkers? 2 bonken kosten evenveel als 5 krieltjes. In je knikkerzak zitten 1050 knikkers. Je hebt net zoveel uitgegeven voor de bonken als voor de krieltjes. Er zitten 750 krieltjes

Nadere informatie

Examen Rekenen/ Wiskunde

Examen Rekenen/ Wiskunde Examen Rekenen/ Wiskunde Deel Niveau :

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13

Nadere informatie

Routeboekje. bij Rekenrijk. Groep 7 Blok 6. Van...

Routeboekje. bij Rekenrijk. Groep 7 Blok 6. Van... Routeboekje bij Rekenrijk Groep 7 Blok 6 Van... Groep 7 Blok 6 Les 1 Leerkrachtgebonden LB 7a 142 1 Hoeveel bussen? meedoen LB 7a 142 2 Reken uit - LB 7a 142 3 Reken uit maken LB 7a 143 4 Schat eerst,

Nadere informatie

Opdrachtbladen (I) Hoe komt een formule tot stand?

Opdrachtbladen (I) Hoe komt een formule tot stand? Opdrachtbladen (I) Hoe komt een formule tot stand? Adriaan Herremans Dag van de wiskunde Kortrijk 14/11/2015 Hieronder vinden jullie opdrachten. Je werkt samen met je buur en kan overleggen met je overburen.

Nadere informatie

Examenopgaven VMBO-KB 2003

Examenopgaven VMBO-KB 2003 Examenopgaven VMBO-KB 2003 tijdvak1 donderdag 22 mei 13.30-15.30 uur WISKUNDE CSE KB WISKUNDE VBO-MAVO-C Bij dit examen hoort een uitwerkboekje. Dit examen bestaat uit 25 opdrachten. Voor dit examen zijn

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Eindexamen wiskunde A1 vwo 2004-I

Eindexamen wiskunde A1 vwo 2004-I Bevolkingsgroei Begin jaren negentig verscheen in NRC Handelsblad een artikel over de bevolkingsgroei en de gevolgen van deze groei. Bij dit artikel werden onder andere de onderstaande figuren 1A, 1B,

Nadere informatie

Eindexamen wiskunde A 1-2 havo 2000 - II

Eindexamen wiskunde A 1-2 havo 2000 - II Opgave 1 ypotheken Als je een huis koopt, moet je meer betalen dan alleen de koopsom. Je moet bijvoorbeeld belasting betalen en de kosten van de notaris. Deze bijkomende kosten zijn voor een nieuwbouwhuis

Nadere informatie

INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel.

INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel. Hoofdstuk 5 Het Assenstelsel 5.1 Het Assenstelsel INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel. Dit assenstelsel is een idee van de Franse filosoof en wiskundige René Descartes(1596-1650).

Nadere informatie

2015 Voorronde Vragenbundel voor het 5 leerjaar

2015 Voorronde Vragenbundel voor het 5 leerjaar Wiskundequiz editie 8 2015 Voorronde Vragenbundel voor de het 5 leerjaar 01. Welke van de volgende rekensommen geeft de grootste uitkomst? (A) 2 x 0 x 1 x 4 (B) 2 + 0 + 1 + 4 (C) 20 x 1 x 4 (D) (2 + 0)

Nadere informatie

7. 123 187 45 - - - - - - + 355 8. 35/595\17 59 35 245 245

7. 123 187 45 - - - - - - + 355 8. 35/595\17 59 35 245 245 Antwoorden CITO 14-15 1. 295 187 - - - - - - + 482 2. 11/935\85 93 Hoe vaak past 11 in 93 88 8*11=88, dit is het grootste getal dat we van 93 af kunnen halen. 55 93-88=5 dan schuiven we de andere 5 ook

Nadere informatie

Examenopgaven VMBO-GL en TL 2004

Examenopgaven VMBO-GL en TL 2004 Examenopgaven VMBO-GL en TL 2004 tijdvak 2 woensdag 23 juni 13.30 15.30 uur WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO-D Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit

Nadere informatie

Eindexamen wiskunde B 1 havo 2009 - I

Eindexamen wiskunde B 1 havo 2009 - I Vetpercentage Al heel lang onderzoekt men het verband tussen enerzijds het gewicht en de lengte van volwassen mensen en anderzijds hun gezondheid. Hierbij gebruikt men vaak de Body Mass Index (BMI). De

Nadere informatie

1. Rekenen en formules

1. Rekenen en formules 9 1. Rekenen en formules Microsoft Excel is een zogenaamd spreadsheetprogramma. Het woord spreadsheet is zo n typische computerterm die u pas gaat begrijpen als u met zo n programma werkt. Te vertalen

Nadere informatie

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam:

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam: Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs recept voor glazen bananenmilkshake bananen, l ijs, l melk,1 l limonadesiroop 1 cl ijs 1 liter Schil de bananen. Snijd ze in grote

Nadere informatie