Differentiaalvergelijkingen Hoorcollege 11

Maat: px
Weergave met pagina beginnen:

Download "Differentiaalvergelijkingen Hoorcollege 11"

Transcriptie

1 Differentiaalvergelijkingen Hoorcollege 11 Partiële differentiaalvergelijkingen: De Eendimensionale Golfvergelijking; De Tweedimensionale Laplacevergelijking A. van der Meer DV HC11 p. 1/17

2 De eendimensionale golfvergelijking (Polking, 13.3, p. 649.) 2 u t 2 (x,t) = c2 2 u x 2(x,t) notatie: u tt(x,t) = c 2 u xx (x,t). Met homogene Dirichlet randvoorwaarden komen x en t in de basisoplossingen in de vorm: x + ct en x ct d Alembert: introduceer nieuwe variabelen: ξ = x + ct, η = x ct en kijk of de PDV daarmee makkelijker wordt, We moeten daarvoor de partiële afgeleiden naar x en t herschrijven in partiële afgeleiden naar ξ en η om een PDV voor de functie u(ξ,η) te krijgen. DV HC11 p. 2/17

3 De eendimensionale golfvergelijking Gegeven u tt (x,t) = c 2 u xx (x,t), ξ = x + ct, η = x ct. Gevraagd: Druk u xx en u tt uit in partiële afgeleiden naar ξ en η We schrijven nu: u(x,t) = u(ξ(x,t),η(x,t)) differentiëren naar x (kettingregel!) u x = u ξ ξ x + u η η x = u ξ + u η, ξ omdat x = η x = 1 DV HC11 p. 3/17

4 De eendimensionale golfvergelijking Gegeven: u tt (x,t) = c 2 u xx (x,t), ξ = x + ct, η = x ct. Al gevonden: u x = u ξ + u η. Zo doorgaand: Uitdrukkingen voor u xx en u tt, invullen in de PDV geeft uiteindelijk: met als oplossing: 2 u η ξ = 0 u(ξ,η) = F(ξ) + G(η) met F en G willekeurige functies. DV HC11 p. 4/17

5 De eendimensionale golfvergelijking Kortom: Elke functie van de vorm u(x,t) = F(x + ct) + G(x ct) voldoet aan de PDV u tt = c 2 u xx. De onbekende functies F en G moeten dus helemaal uit de rand- en beginvoorwaarden worden gehaald. u Beginvoorwaarden: u(x, 0) = f(x), (x, 0) = 0. t voor 0 x L dus: u(x, 0) = F(x) + G(x) = f(x) en u t (x,t) = cf (x + ct) cg (x ct) dus u t (x, 0) = c (F (x) G (x)) = 0 = F(x) G(x) = C. DV HC11 p. 5/17

6 De eendimensionale golfvergelijking { Uit de beginvoorwaarden volgt dus: F(x) + G(x) = f(x) F(x) G(x) = C = { 2F(x) = f(x) + C (optellen) 2G(x) = f(x) C (aftrekken) Omdat in de oplossing u(x,t) de functies F en G bij elkaar moeten worden opgeteld, valt de constante C weg. Het maakt dus niks uit wat we voor C nemen, het gemakkelijkst is C = 0 Uit de beginvoorwaarden volgt dus: F(x) = G(x) = 1 2 f(x), als 0 x L. DV HC11 p. 6/17

7 De eendimensionale golfvergelijking Oplossing tot nu toe: u(x,t) = F(x + ct) + F(x ct). Uit de beginwaarde volgt dat F(y) = 1 f(y), zolang y tussen 2 0 en L ligt. Maar de functie F moet op de hele reële as worden gedefinieerd, omdat x + ct en x ct alle waarden aannemen. Randvoorwaarden: u(0,t) = u(l,t) = 0 u(0,t) = F(ct) + F( ct) = 0 = F( ct) = F(ct) Dus F is een oneven functie. Op [0,L] kennen we hem al, namelijk 2 1 f(y), dus we kunnen nu het definitiegebied uitbreiden tot [ L, L]: F(y) = 1 2 f o(y), waarbij f o (y) = { f(y) als y 0 f( y) als y < 0. DV HC11 p. 7/17

8 De eendimensionale golfvergelijking Oplossing tot nu toe: u(x,t) = F(x + ct) + F(x ct), met F(y) = 1 2 f o(y), zolang y tussen L en L ligt. Tweede randvoorwaarde: u(l,t) = F(L + ct) + F(L ct) = 0. Noem ct L = y, dus ct = L + y. Invullen in de randvoorwaarde: F(y + 2L) + F( y) = F(y + 2L) F(y), want F is oneven, en dit moet 0 zijn, dus: F(y + 2L) = F(y), voor alle y R. Dus F is periodiek, met periode 2L: de periodieke uitbreiding van 1 2 f o(y). DV HC11 p. 8/17

9 De eendimensionale golfvergelijking Samengevat: u tt (x,t) = c 2 u xx (x,t) 0 < x < L, beginvoorwaarden: u(x, 0) = f(x), u t (x, 0) = 0, 0 x L, randvoorwaarden: u(0,t) = u(l,t) = 0. Oplossing: u(x,t) = f op(x + ct) + f op (x ct) 2 met f op de oneven periodieke voortzetting van f. Zie Maple-demonstratie van Polking, voorbeeld DV HC11 p. 9/17

10 De Laplacevergelijking Warmtevergelijking: Stationaire situatie: u t = k 2 u u t = 0, dus 2 u = 0 In twee dimensies (cartesische coördinaten): gevraagd: u(x, y) met 2 u x u y 2 = 0 kort: u xx + u yy = 0 voor (x,y) G R 2. Randvoorwaarde (Dirichlet): (x,y) G. u(x, y) = f(x, y) voor DV HC11 p. 10/17

11 De Laplacevergelijking: Lineariteit u xx + u yy = 0 voor (x,y) G Stel u 1 is de oplossing die voldoet aan de randvoorwaarde u(x,y) = f(x,y), en u 2 is de oplossing die voldoet aan de randvoorwaarde u(x,y) = g(x,y), (x,y) G, dan is de som u = u 1 + u 2 óók een oplossing van de Laplacevergelijking, en voldoet aan de randvoorwaarde u(x,y) = f(x,y) + g(x,y). Bewijs: Invullen. DV HC11 p. 11/17

12 Laplacevergelijking op een rechthoek Zie Polking, 13.4, figuur 1. DV HC11 p. 12/17

13 Toegift: Harmonische functies Definitie: Een functie φ : D R 2 R is harmonisch als voor alle (x,y) D geldt: 2 φ x φ y 2 = 0 (dus φ is een oplossing van de Laplace-vergelijking) Stelling: (Riley, 24.2, of Saff & Snider, Theorem 2.5.7) Als f(z) = u(x,y) + iv(x,y) analytisch is, dan zijn u en v harmonische functies. Bewijs: u x = v y Volgt uit de Cauchy-Riemann-vergelijkingen: u en y = v x, dus 2 u x u y 2 = x u x + y u y = x v y y v x = 0 DV HC11 p. 13/17

14 Toepassing op Dirichlet-probleem u xx + u yy = 0 voor (x,y) G R 2. Randvoorwaarde (Dirichlet): constant voor (x,y) G. u(x, y) is (stuksgewijs) Vertaling: Vind een harmonische functie u(x, y) (met (x,y) G), zodat G uit niveaukrommen van u bestaat. Gebruik zo nodig: Als u(x,y) een harmonische functie is, dan is u(x + a,y + b) óók een harmonische functie; Als u en v harmonische functies zijn, dan is au(x,y) + bv(x,y) + c óók een harmonische functie. DV HC11 p. 14/17

15 Voorbeeld 1 G is het gebied dat wordt begrensd door de positieve x-as en de lijn y = x. Bepaal een niet-triviale oplossing van de Laplacevergelijking op G met de randvoorwaarden u(x,x) = u(x, 0) = 0. Voor elke n N is z n = (x + iy) n een analytische functie, dus Re(z n ) = r n cos(nθ) en Im(z n ) = r n sin(nθ) (met r = z en θ = arg z) zijn harmonisch. Nu moet u = 0 als θ = 0 en als θ = π 4, dus we kiezen u(x,y) = r n sin(nθ) met n = 4: u(x,y) = Im(z 4 ) = Im(x 4 + 4ix 3 y 6x 2 y 2 4ixy 3 + y 4 ) = 4x 3 y 4xy 3 DV HC11 p. 15/17

16 Voorbeeld 2 Gebied: rechter-halfvlak (dus { R 2, rechts van de y-as). 1 als 1 y 1 Randvoorwaarde: u(0, y) = 0 elders Bekijk de functie Log z = Log z + i Arg z, analytisch op C zonder de negatieve x-as. Dus u(x, y) = Arg(x + iy) is een harmonische functie. We gebruiken de harmonische functie: u(x,y) = A 1 Arg(z i) + A 2 Arg(z + i) + B We vullen de randvoorwaarde in: y > 1 : u(0,y) = A 1 π 2 + A 2 π 2 + B = 0 1 < y < 1 : u(0,y) = A 1 π 2 + A 2 π 2 + B = 1 y < 1 : u(0,y) = A 1 π 2 A 2 π 2 + B = 0 = A 1 = 1 π A 2 = 1 π B = 0 DV HC11 p. 16/17

17 Voorbeeld 2: Oplossing en plaatje Als we alles invullen: u(x,y) = 1 π Arg(z i) + 1 π Arg(z + i) Dit is voor x > 0 ook te schrijven als: u(x,y) = 1 π arctan(y 1 x ) + 1 π arctan(y + 1 x ) DV HC11 p. 17/17

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Functies van meer variabelen voor dummy s

Functies van meer variabelen voor dummy s Functies van meer variabelen voor dummy s Dit is een 'praktische gids voor dummy s'. Hieronder kun je een aantal voorbeelden met uitleg vinden, oefeningen en uitwerkingen. De voorbeelden komen deels uit

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top IWI-RuG & DIAMANT j.top@rug.nl 20 maart 2007 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Inleiding In de cursus Calculus 2 voor Bouwkunde (2DB90) wordt evenals in de cursus Calculus 1 gebruikt het boek: Calculus, Early Transcendental

Nadere informatie

Uit een handschrift gedateerd 26 Oktober 1675

Uit een handschrift gedateerd 26 Oktober 1675 Hoe een genie dacht. Van Leibniz zijn een groot aantal wiskundige handschriften bewaard. Leibniz deed wiskunde met de pen in zijn hand, en schreef al zijn gedachten direct op. Daardoor kunnen we zien hoe

Nadere informatie

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT Differentiaalvergelijkingen kunnen we ook oplossen met behulp van ICT. In dit geval zijn de oplossingen uitgewerkt met behulp van Derive. dy De differentiaalvergelijking = ky, met k een reëel getal Voorbeeld

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Functievergelijkingen

Functievergelijkingen Functievergelijkingen Trainingsweek juni 2008 Basistechnieken Je mag alle getallen in het domein invullen in je functievergelijking. Wat er precies handig is, hangt af van het domein en van de functievergelijking.

Nadere informatie

3.2 Kritieke punten van functies van meerdere variabelen

3.2 Kritieke punten van functies van meerdere variabelen Wiskunde voor kunstmatige intelligentie, 007/008 Als in een kritiek punt x 0 ook de tweede afgeleide f (x 0 ) = 0 is, kunnen we nog steeds niet beslissen of de functie een minimum, maximum of een zadelpunt

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Integratie voor meerdere variabelen

Integratie voor meerdere variabelen Wiskunde 2 voor kunstmatige intelligentie, 27/28 Les 4 Integratie voor meerdere variabelen In deze les bekijken we het omgekeerde van de afgeleide, de integratie, en gaan na hoe we een integraal voor functies

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Complexe getallen in context

Complexe getallen in context Complexe getallen in context voor wiskunde D ( 5 VWO) R.A.C. Dames H. van Gendt Versie 4, juni 0 In deze vierde versie zijn alleen een aantal zetfouten verbeterd. Inhoudelijk is deze versie geheel gelijk

Nadere informatie

Complexe getallen in context

Complexe getallen in context Complexe getallen in context voor wiskunde D ( 5 VWO) R.A.C. Dames H. van Gendt Versie, november 006 Deze module is ontwikkeld in opdracht van ctwo. Copyright 006 R.Dames en H. van Gendt Inhoud Inhoud...3

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 1 collegejaar college build slides Vandaag : : : : 14-15 1 25 september 214 28 1 2 3 4 otatie Green De wet van Faraday 1 VA vandaag 4.5.6 ection 16.7 telling Vergeleijking (4.62) Theorem 6 Het

Nadere informatie

Schuifbanden in vloeistoffen (Engelse titel: Shear bands in fluids)

Schuifbanden in vloeistoffen (Engelse titel: Shear bands in fluids) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Schuifbanden in vloeistoffen (Engelse titel: Shear bands in fluids Verslag ten behoeve

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Afdeling Wiskunde. Onderwijs. Onderzoek

Afdeling Wiskunde. Onderwijs. Onderzoek Wiskunde nu Afdeling Wiskunde Onderwijs Onderzoek Afdeling Wiskunde In recente jaren aanzienlijk uitgebreid en verjongd Nu ± 25 vaste medewerkers en postdocs, ook aanzienlijk aantal deeltijd hoogleraren

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Hoofdstuk 11: Eerstegraadsfuncties in R

Hoofdstuk 11: Eerstegraadsfuncties in R - 229 - Hoofdstuk 11: Eerstegraadsfuncties in R Definitie: Een eerstegraadsfunctie in R is een functie met een voorschrift van de gedaante y = ax + b (met a R 0 en b R ) Voorbeeld 1: y = 2x Functiewaardetabel

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

Convexe Analyse en Optimalisering

Convexe Analyse en Optimalisering Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

De Laplace-transformatie

De Laplace-transformatie De Laplace-transformatie De Laplace-transformatie is een instrument dat functies omzet in andere functies. Deze omzetting, de transformatie, heeft nette wiskundige eigenschappen. Zowel in de kansrekening

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

3 Opgaven bij Hoofdstuk 3

3 Opgaven bij Hoofdstuk 3 3 Opgaven bij Hoofdstuk 3 Opgave 3. Voor k beschouwen we de functie f k : x sin(x/k). Toon aan dat f k 0 uniform op [ R, R] voor iedere R > 0. Opgave 3.2 Zij V een verzameling. Een functie f : V C heet

Nadere informatie

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen?

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen? Vraag Een vloeistoftank met onbeperkte capaciteit, bevat aanvankelijk V liter zuiver water. Tijdens de eerste faze stroomt water, dat zout bevat met een concentratie van k kilogram per liter, de tank binnen

Nadere informatie

Wiskunde 3 partim Analyse: oefeningen

Wiskunde 3 partim Analyse: oefeningen Wiskunde 3 partim Analyse: oefeningen Lijnintegralen 1. Bereken de lijnintegraal waarbij C xdx + ydy (x 2 + y 2 ) 5/2 C : P (t) = exp t sin t e x + exp t cos t e y, 0 t 2π. Antwoord: 1 (1 exp ( 6π)) 3

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Wiskunde 20 maart 2014 versie 1-1 -

Wiskunde 20 maart 2014 versie 1-1 - Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6

Nadere informatie

Niet-standaard analyse (Engelse titel: Non-standard analysis)

Niet-standaard analyse (Engelse titel: Non-standard analysis) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Niet-standaard analyse (Engelse titel: Non-standard analysis) Verslag ten behoeve

Nadere informatie

Inleiding Wiskundige Systeemtheorie 156056

Inleiding Wiskundige Systeemtheorie 156056 Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/28 Elektrotechniek, Wiskunde en Informatica EWI Evenwichtspunt.x 0 ; y 0 ; u 0 / heet een evenwichtspunt

Nadere informatie

differentiaalvergelijkingen. oscillaties en planeetbanen

differentiaalvergelijkingen. oscillaties en planeetbanen 1 270 NAW 5/8 nr. 4 december 2007 Differentiaalvergelijkingen, oscillaties en planeetbanen Joost Hulshof Joost Hulshof Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen, afdeling Wiskunde

Nadere informatie

Tentamen: Kwantitatieve methoden 1.2(wiskundige methoden) Opleiding: Bacheloropleiding Economie Vakcode: 60121110

Tentamen: Kwantitatieve methoden 1.2(wiskundige methoden) Opleiding: Bacheloropleiding Economie Vakcode: 60121110 Vrije Universiteit Amsterdam Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Kwantitatieve methoden.2(wiskundige methoden) Opleiding: Bacheloropleiding Economie

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

maplev 2010/7/12 14:02 page 135 #137 Plaatjes in drie dimensies

maplev 2010/7/12 14:02 page 135 #137 Plaatjes in drie dimensies maplev /7/ 4: page 35 #37 Module Plaatjes in drie dimensies Onderwerp Voorkennis Expressies Bibliotheken Zie ook Driedimensionale plots. Module 9. plot3d, spacecurve, contourplot, gradplot, cylinderplot

Nadere informatie

5 Lineaire differentiaalvergelijkingen

5 Lineaire differentiaalvergelijkingen 5 Lineaire differentiaalvergelijkingen In veel toepassingen in de techniek en de exacte wetenschappen wordt gewerkt met differentiaalvergelijkingen om continue processen te modelleren. Het gaat dan meestal

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

Verrassende uitkomsten in stromingen

Verrassende uitkomsten in stromingen Verrassende uitkomsten in stromingen Deel 2 G.A. Bruggeman De wiskundige theorie van de grondwaterstroming biedt nu en dan uitkomsten die opvallen door hun eenvoud of anderszins door hun bijzonder structuur,

Nadere informatie

Inleiding Complexe Functietheorie

Inleiding Complexe Functietheorie Dictaat Inleiding Complexe Functietheorie voor TN behorende bij het gelijknamige college met vakcode wi243tn G. Sweers versie van juli 2003 Inhoud Inleiding. Enkelebegrippen..... Complexegetallen.....2

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Calculus. P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam

Calculus. P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam Calculus P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam 30 november 2006 Hoofdstuk 1 Complexe getallen 1.1 Introductie In dit hoofdstuk gaat het over complexe getallen. We voeren

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

INLEIDING TOT DE HOGERE WISKUNDE

INLEIDING TOT DE HOGERE WISKUNDE INLEIING TOT E HOGERE WISKUNE EEL 2: Analyse van reële functies van meerdere reële veranderlijken Arno KUIJLAARS Stefaan POETS epartement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 2 B,

Nadere informatie

7. Hamiltoniaanse systemen

7. Hamiltoniaanse systemen 7. Hamiltoniaanse systemen In de moleculaire dynamica, maar ook in andere gebieden zoals de hemelmechanica of klassieke mechanica, worden oplossingen gezocht van het Hamiltoniaanse systeem van differentiaalvergelijkingen

Nadere informatie

Waarom functies met complexe getallen?

Waarom functies met complexe getallen? Waarom functies met complexe getallen? Joost Hulshof Een essentieel onderdeel van iedere studie wiskunde of natuurkunde is het leren werken met en begrijpen van de basistechnieken voor complexe functies,

Nadere informatie

Stochastische Wandelingen en Elektrische Netwerken

Stochastische Wandelingen en Elektrische Netwerken Vrije Universiteit Amsterdam Opleiding Wiskunde - Scriptie bij het vak Presentatiecursus Wiskunde Stochastische Wandelingen en Elektrische Netwerken Arno E. Weber email: aeweber cs.vu.nl Maart 2004 i Inhoudsopgave

Nadere informatie

BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN

BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN 1ste Kandidatuur ARTS of TANDARTS Academiejaar 2002-2003 Oefening 11 (p29) BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN Bereken de stromen in de verschillende takken van het netwerk

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

Open Universiteit Nederland Leerstofgebied technische wetenschappen. Cursusteamleiding mw. drs. J.S. Lodder

Open Universiteit Nederland Leerstofgebied technische wetenschappen. Cursusteamleiding mw. drs. J.S. Lodder Cursusdeel Blok 7 7 Continue wiskunde 2 Differentiaalvergelijkingen Open Universiteit Nederland Leerstofgebied technische wetenschappen Cursusteamleiding mw. drs. J.S. Lodder Cursusteam dhr. dr. A.G. van

Nadere informatie

Appendix: Zwaartepunten

Appendix: Zwaartepunten Appendi: Zwaartepunten Enkele opmerkingen vooraf: Maak altijd eerst een schets van het betreffende gebied (en dat hoeft heus niet zo precies te zijn als de grafieken die ik hier door de computer kan laten

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch staan. Die

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Lineaire differentiaalvergelijkingen met constante coëfficienten

Lineaire differentiaalvergelijkingen met constante coëfficienten Lineaire differentiaalvergelijkingen met constante coëfficienten 1 Differentiaalvergelijkingen Als we een functie y : t y(t) expliciet, in formulevorm, kennen, dan is het niet zo moeilijk hiervan de afgeleide

Nadere informatie

Primitiveren. Omgekeerd differentiëren (primitieve bepalen)

Primitiveren. Omgekeerd differentiëren (primitieve bepalen) Primitiveren WISNET-HBO update april 2006 Inleiding Soms moet je juist de functie bepalen waarvan de afgeleide bekend is. Dit omgekeerd differentiëren (de primitieve bepalen) heet in het Engels de antiderivative.

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Het tentamen levert maximaal 30 punten op, waarvan de verdeling hieronder is aangegeven.

Het tentamen levert maximaal 30 punten op, waarvan de verdeling hieronder is aangegeven. TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA Tentamen Fysische Transportverschijnselen voor W (3B47) op donderdag 8 april 5, 14.-17. uur. Het tentamen levert

Nadere informatie

Veeltermafbeeldingen. Pim Heesterbeek, Edo van Veen 9 juli 2009

Veeltermafbeeldingen. Pim Heesterbeek, Edo van Veen 9 juli 2009 Veeltermafbeeldingen Pim Heesterbeek, Edo van Veen 9 juli 2009 Inhoudsopgave 1 Inleiding 5 2 Theorie 7 2.1 Definitie veeltermafbeelding..................... 7 2.2 Definitie strikte driehoeksvorm...................

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

Reëelwaardige functies van één of meer reële veranderlijken

Reëelwaardige functies van één of meer reële veranderlijken Reëelwaardige functies van één of meer reële veranderlijken Functie en scalaire functie Relatie van A naar B A B = {(, ) A & B} Een relatie van A naar B is functie als verschillende beelden zelfde origineel

Nadere informatie

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden Hoofdstuk : Formules en grafieken.. Lineaire verbanden Opgave : in 0 minuten daalt het water 40 cm, dus 4 cm per minuut dus na minuut geldt: h 40 4 6 cm en na minuten geldt: h 40 4 cm b. formule II Opgave

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies voor beginners Jan van de Craats Universiteit van Amsterdam Open Universiteit craats@science.uva.nl Complexe getallen worden

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Wiskundige vaardigheden

Wiskundige vaardigheden Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 6 van een vectorveld collegejaar college build slides Vandaag : : : : 14-15 6 22 september 214 51 1 2 3 4 5 Gradiënt van een vectorveld 1 VA vandaag Section 16.2 Hoofdstu 4 Definitie Een vectorveld

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie.

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie. Katholieke Universiteit Leuven September 2008 Poolcoördinaten (versie 27 juni 2008) Inleiding Y y p o θ r X fig In fig worden er op twee verschillende manieren coördinaten gegeven aan het punt p Een eerste

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

de optelling en vermenigvuldiging van complexe getallen, de beschrijving van complexe getallen in termen van poolcoördinaten,

de optelling en vermenigvuldiging van complexe getallen, de beschrijving van complexe getallen in termen van poolcoördinaten, Hoofdstuk 1 Complexe getallen 1.1 Rekenen met complexe getallen 1.1.1 We kunnen reële getallen opvatten als punten van een rechte lijn, de getallenrechte. Net zo kunnen we complexe getallen opvatten als

Nadere informatie

Inhoudsopgave. 0.1 Netwerkmodel voor passieve geleiding langs een zenuwcel.. 2

Inhoudsopgave. 0.1 Netwerkmodel voor passieve geleiding langs een zenuwcel.. 2 Inhoudsopgave 01 Netwerkmodel voor passieve geleiding langs een zenuwcel 2 1 01 Netwerkmodel voor passieve geleiding langs een zenuwcel I Figuur 1: Schematische voorstelling van een deel van een axon Elk

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 8 Complexe getallen (versie 22 augustus 2011) Inhoudsopgave 1 De getallenverzameling C 1 2 Het complex vlak of het vlak van Gauss 7 3 Vierkantsvergelijkingen

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1 Eindexamen wiskunde B havo 0 - II Beoordelingsmodel Tonregel van Kepler maximumscore 6 G = B = π 9 ( 64) (cm ) Voor de cirkel op halve hoogte geldt: πr = (met r de straal van de cirkel in cm) Hieruit volgt

Nadere informatie

Differentiaalvergelijkingen

Differentiaalvergelijkingen Analyse Differentiaalvergelijkingen Jens Bossaert 2013 Gottfried Leibniz Isaac Newton Inhoudsopgave 1 Terminologie 4 2 Algemene technieken 5 2.1 Factorisatie..............................................

Nadere informatie

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)!

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)! Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)! Inhoudsopgave! Wiskunde en psychologie! Doelstelling van de module! Opzet van de module! Algebra: reken regels!

Nadere informatie

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β. 1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

Wiskunde voor bedrijfseconomen. Herbert Hamers, Bob Kaper, John Kleppe

Wiskunde voor bedrijfseconomen. Herbert Hamers, Bob Kaper, John Kleppe Wiskunde voor bedrijfseconomen Herbert Hamers, Bob Kaper, John Kleppe Wiskunde voor bedrijfseconomen Herbert Hamers Bob Kaper John Kleppe Meer informatie over deze en andere uitgaven kunt u verkrijgen

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis Wiskunde voor economie drs. H.J.Ots Hellevoetsluis 15-2-2004, Wiskunde voor economie, ISBN 90-70619-05-9,drs. H.J. Ots, www.webecon.nl Wiskunde voor economie Drs. H.J. Ots ISBN 90-70619-05-9 Webecon, Hellevoetsluis,

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2 1 INLEIDING 1 Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2 Volg stap voor stap de tekst en los de vragen op. Bedoeling is dat je op het einde van de rit een verzorgd verslag afgeeft

Nadere informatie

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 7 Poolcoördinaten (versie 22 augustus 2011) Inhoudsopgave 1 Poolcoördinaten 1 2 Poolvergelijkingen 3 21 Cartesiaanse coördinaten versus poolcoördinaten

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde N460 op donderdag 4 juni 010, 14.00-17.00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

INLEIDING TOT DE HOGERE WISKUNDE

INLEIDING TOT DE HOGERE WISKUNDE INLEIDING TOT DE HOGERE WISKUNDE DEEL : Analyse van functies van één veranderlijke Arno KUIJLAARS Stefaan POEDTS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 300 Heverlee

Nadere informatie

3 De stelling van Kleene

3 De stelling van Kleene 18 3 De stelling van Kleene Definitie 3.1 Een formele taal heet regulier als hij wordt herkend door een deterministische eindige automaat. Talen van de vorm L(r) met r een reguliere expressie noemen we

Nadere informatie