H3: Deeltjesversneller: LHC in CERN

Maat: px
Weergave met pagina beginnen:

Download "H3: Deeltjesversneller: LHC in CERN"

Transcriptie

1 H3: Deeltjesversneller: LHC in CERN CERN = Conseil Européen pour la Recherche Nucléaire = Europese organisatie voor nucleair onderzoek CERN ligt op de grens tussen Frankrijk en Zwitserland, dicht bij Genève. Er zijn 20 Europese landen die meedoen aan dit project, maar er zijn ook nog buitenlandse landen die geld investeren. Fig 3.1: Luchtfoto CERN Een deeltjesversneller is een apparaat waarin geladen elementaire deeltjes of antiprotonen tot hoge energieniveaus gebracht worden door ze te versnellen tot snelheden in de buurt van de lichtsnelheid (c = km/s). Dit versnellen gebeurt met behulp van sterke elektrische en/of magnetische velden. Bij de LHC begint men met waterstofatomen waarvan men de elektronen wegneemt, zodat enkel de kern (= een proton) overblijft. Deze protonen worden in pakketjes uitgestuurd en ondergaan de volgende stappen van de LHC: Een lineaire versnelling: door het aanleggen van een elektrisch veld, krijgen de protonen een hogere snelheid: tot 1/3 van de lichtsnelheid. De pakketjes worden in 4 deelpakketjes opgesplitst, die allen een cirkelvormige (met een diameter van 157 m) beweging beschrijven en ondertussen een gepulseerd elektrisch veld ondergaan, waardoor ze versneld worden tot 95,6% van de lichtsnelheid de pakketjes worden weer samengevoegd en komen in de protonsynchrotron terecht, die een diameter heeft van 628 m en waar ze versneld worden tot 99,9% van de lichtsnelheid. Je kan dan nog wel energie toevoegen, maar deze heeft als resultaat dat de massa van de protonen toeneemt (bij die snelheid kan niets meer bij), tot elk proton ongeveer 25 maal zoveel weegt als in rust.

2 Fig 3.2: Baan die de proton aflegd in CERN 3.1 De lineaire versneller Je kan eenvoudige versnellen door een lineaire baan op te stellen van elektroden. Je polariseert voordurend de elektroden en zit deze op een bepaalde afstand van elkaar en je krijgt na lange tijd een snelheid die 100% van de lichtsnelheid bedraagt. Fig. 3.3: Principe van een lineaire versneller

3 We vertrekken van geladen deeltjes. Hier nemen we dus als voorbeeld positieve deeltjes. Willen we die naar rechts versnellen, dan zorgen we voor een negatieve elektrische pool rechts en/of een positieve elektrische pool links. De positieve deeltjes worden dus naar rechts getrokken en/of geduwd. Zijn de deeltjes een beetje verder en zijn ze de negatieve pool net gepasseerd, dan wordt die negatieve pool omgeschakeld naar een positieve pool, zodat die de deeltjes wegduwt in plaats van aantrekt. Een beetje verder is weer een negatieve pool om die deeltjes aan te trekken, die dan ook weer verandert in een positieve pool eens de deeltjes er voorbij zijn, enzovoort. Het geladen deeltje ondervindt zo een kracht (F=m.a) (aantrekking en afstoting) dus krijgt het ook een versnelling. Omdat de snelheid van de deeltjes steeds toeneemt, wordt de lengte van de elektroden onderweg aangepast. De buisvormige elektroden worden steeds langer. Het tijdstip van ompolen en de afstand tussen de buisjes zijn van zeer groot belang bij het sturen en stabiliseren van de deeltjesbundel. De deeltjesbundel zit in een buis die hoog vacuüm is om interacties van bundeldeeltjes met gas te vermijden. Er worden alleen geladen deeltjes versneld in een deeltjesversneller. Om die deeltjes te versnellen worden elektrische velden gebruikt. Er is geen magnetisch veld aanwezig die de richting van de deeltjes kan wijzigen tijdens de versnelling. Wanneer deeltjes bewegen in het veld-vrije regio van een elektrode, dan kan je de batterij polariseren zodanig dat het protondeeltje aangetrokken wordt en dus altijd versneld word in de gaten tussen de elektroden. Dit gebeurt zo tot het einde van de buis waarin de deeltjes bewegen. Om deeltjes te versnellen tot heel hoge snelheden, zou een dergelijke buis veel te lang worden. Daarom worden circulaire deeltjesversnellers gemaakt, volgens precies hetzelfde principe. Op deze manier kunnen de deeltjes voortdurend in dezelfde baan versnellen. In de LHC gebruikt men als bron: Voor een protonbundel vertrekt men van H-kernen: ionisatie van een H 2 gas Men gebruikt een thermionische kathode voor elektronen

4 3.2 Cirkelvormige versneller We kiezen niet volledig voor een rechtlijnige versneller omdat we te veel plaats zouden nodig hebben, daarom gebruiken we een synchroton. Deze vormt een cirkel waardoor we minder plaats nodig hebben. In cern hebben we een tunnel van 27 km met een diameter van 7 km. Als een geladen deeltje een cirkelbaan beschrijft dan krijgt dit deeltje een versnelling ( a=v²/r). Als gevolg daarvan geeft dit deeltje straaling af en verliest daardoor energie in de vorm van γ-fotonen, dit heet synchrotonstraling. Hoe groter de straal, hoe minder versnelling hoe minder stralingsverliezen. Fig. 3.4: Synchrotron In het schema zijn de oranje objecten de versnellende elementen, de witte elementen zijn de afbuigmagneten en de blauwe vierkante elementen zijn de focusserings magneten Berekeningen * Massa van een proton: m p = 1, u 1 u = massa van een koolstofatoom / 12 = 12g / 12 N A = 1,66054 x kg m p = 1, x kg * Eenheid voor energie: 1eV = 1e.1V = 1,6022 x C. 1V = 1,6022 x J 1J = 6,2414 x ev

5 * Energie per proton: E = m.c² c = km/s c² = m²/s² E 0 proton = 1, x x E 0 proton = 1, x J E 0 proton = ,9 ev = 938,30 MeV * Aantal keer dat een proton draait in de synchrotron per seconde s = v. t v = 0,9999 * = m/s s = π * 7000 = ,149 m t = s/v = 7,336 x 10-6 s Aantal keer per seconde = Per seconde draaien de protonen dus keer rond. * Lorentz-kracht = I v.l..sinα Met l : lengte van het beschouwde element van de geleider (m) I v : intensiteit van de stroom in de geleider (A) B : magnetische veldvector ( inductievector) van een homogeen veld (T) Vermits Iv : de hoeveelheid lading die per seconde door de doorsnede van de geleider stroomt F = (v.a).n.q Met n.q : hoeveelhied lading per volume-eenheid v.a : in beslag genomen volume per seconde

6 n : het aantal vrije landingsdragers ( vrije elektroenen ) bevat in 1 volume-eenheid q : de grootte van de lading van één ladingsdrager (C) A : oppervlakte van de doorsnede van de draad (m²) v : driftsnelheid van de vrije ladingsdragers(m/s) dus: F = v.a.n.q.l.b.sinα = v.q tot.b.sinα q tot : de totale hoeveelheid bewegende lading in het beschouwde draadelement Hetgeen eveneens besluit dat de bewegende q een lorentzkracht ondervindt Met q : de beschouwde puntlading (C) : de snelheidsvector van deze puntlading (m/s) : de magnetische veldvector (T) De kracht die een magneetveld uitoefent op bewegende geladen deeltjes noemt men de lorentzkracht. Ze staat altijd loodrecht op de bewegingsrichting van de bewegende geladen deeltjes. Ze verandert daardoor niet de grootte van de snelheid maar wel de richting van de snelheid.

7 Om deeltjes op de juiste baan te houden worden magnetische velden gebruikt. Hier berust het hele principe op de Lorentzkracht: een positief deeltje dat in een x-zin beweegt met een uitwendig magnetisch veld in de y-zin, zal een kracht ondervinden in de z-zin, met grootte (Hoe groter de snelheid van het deeltje, hoe groter de kracht. Hoe sterker het magnetisch veld, hoe groter de kracht. De lading q verandert niet en wordt bepaald door het type van de geladen deeltjes.) Het zorgvuldig uitbalanceren van die magnetische velden zorgt dus voor meer of minder kracht in de gewenste richting. De magneten staan dan zo opgesteld zodat ze de nodige Lorentz-kracht krijgen die zorgt voor de nodige middelpuntzoekende kracht om een deeltje op de cirkel te laten bewegen in plaats van rechtdoor. In de synchrotron wordt de energie nog verhoogd tot 450 GeV, 450 keer de energie in rust dus. De protonen worden stuk voor stuk in de LHC (met een diameter van 27 km) gebracht. Hier bewegen ze in 2 tegengestelde richtingen in 2 vacuümbuizen, die elkaar op bepaalde plaatsen kruisen. Door met "kickers" te werken, kunnen de onderzoekers ervoor zorgen dat de toegevoegde protonen in een bestaand pakketje terecht komen. Na een halfuur protonen toevoegen, zijn er 2808 pakketjes, waarbij elk proton een energie heeft van 7 TeV (= 7000 keer de energie in rust). 3.3 Synchrotron straling De protonen die bewegen in de synchrotron versnellen en zijn onderhevig aan een magnetisch veld, verliezen energie onder vorm van synchrotron straling, X-stralen, radiogolven, Synchrotronstraling is een straling die veroorzaakt wordt door de versnelling van een elektrisch geladen deeltje. Die versnelling is veroorzaakt door een magnetisch veld. Het zijn fotonen die worden uitgestraald in de richting waarin de deeltjes in het synchrotron zich bewegen, en komen tangentieel aan de ring naar buiten. Deze straling wordt ook gebruikt in de geneeskunde bij röntgen technologie.

8 δe is het energieverlies per omwenteling in MeV. ρ is de straal van de cirkelvormige versneller. Voor relativistische deeltjes stelt men ρ ~ E. e is de lading van het versnelde deeltje. Bij LHC verwacht men dat het energieverlies per omwenteling ongeveer 6 kev zal bedragen. Het energieverlies per omwenteling, δe, moet gecompenseerd Oplossing: - Een sterker elektrisch veld wat de kostprijs aanzienlijk verhoogt - Men kan ook de straal vergroten, wat ook de kostprijs verhoogt Fig. 3.5 Synchrotron straling 3.4 Supergeleidende magneten Fig. 3.6: Magneten

9 Supergeleidende magneten hebben de deeltjesfysici in staat gesteld een hogere energie te bereiken in cirkelvormige versnellers. De LHC maakt gebruik van enkele 1800 supergeleidende magneet systemen. Deze elektromagneten worden gebouwd van supergeleidende materialen. Bij lage temperaturen kunnen ze spoelen zonder weerstand maken en zo kun je veel sterkere magnetische velden krijgen dan gewone elektromagneten. In gewone elektromagneten veroorzaakt de weerstand een verhitting van de spoel, en dan gaat zoveel energie verloren aan warmte dat een zeer hoog vermogen nodig is. Met supergeleidende magneten kan op een betrouwbare manier een sterker magnetisch veld onderhouden worden met minder vermogen. Wel moet de temperatuur naderen van het absolute nulpunt. Bij de LHC zijn niobium titanium (NbTi ) magneten gebruikt, deze werken bij een temperatuur van slechts 1,9 K (-271 C). De sterkte van het magnetisch veld wordt gemeten in units genaamd Tesla. De LHC zal werken op ongeveer 8 Tesla, terwijl gewone "warme" magneten een maximaal gebied kunnen bereiken van ongeveer 2 Tesla. 3.5 Principe van de detector Eens de deeltjes heel sterk versneld zijn, moet er natuurlijk iets mee gedaan worden. In de detectoren richt men de bundels versnelde deeltjes op elkaar, zodat deeltjes gaan botsen. Een dergelijk botsing levert "brokstukken", die dus nieuwe, kleinere, deeltjes zijn. In de detector heerst een sterk magnetisch veld. Zijn de brokstukken geladen, dan zullen ze door het magnetisch veld een kromme baan maken, waarbij de richting van kromming verraadt of de lading positief of negatief is. De detector bevat verder allerlei apparatuur waarmee het mogelijk is te kijken wat hun massa is. In de LHC zal men protonen laten botsen. De detectoren zijn zo gemaakt dat ze de baan en de energie van de aparte "brokstukken" kunnen meten. Eens die baan en energie van een deeltje gekend is, berekenen de computers welk soort deeltje het is (elektrische lading, massa,...). Er zijn drie grote soorten detectoren, waar de "brokstukken" achtereenvolgens door gaan. Deze detectoren liggen 3-dimensioneel (als een aantal lange buizen rond elkaar) rond de plaats van de botsing.

10 Fig. 3.7 verschillende detectoren Onderdelen van een detector Spoordetector Deze detectoren meten de baan van de deeltjes. Er heerst binnen in die detectoren een magnetisch veld, en een bewegend geladen deeltje ondervindt een Lorentz-kracht die het deeltje de een of andere kant zal uitduwen. In plaats van rechtdoor, beschrijft het deeltje dus een gebogen baan. Naar de ene kant als het deeltje positief is, naar de andere kant als het deeltje negatief is, sterk gekromd als de lading groot is, minder gekromd als de lading kleiner is,... Werk voor de computer dus. Deeltjes die niet geladen zijn, ziet men hier dus niet, maar die kan men wel zien in de volgende detectoren. Spoorreconstructie Fig. 3.8 Spoorreconstructie

11 Een deeltje zal in het magnetisch veld een helixvormige baan volgen. Wat de foto toont is de projectie in het vlak loodrecht op het magneetveld. In dat vlak is de projectie van de helix een cirkel. De kromming van de cirkel vergroot (straal R verkleint) omdat de deeltjes onderweg energie verliezen, en bijgevolg hun impuls kleiner wordt. Calorimeters (Deze "calorimeters" zijn niet dezelfde als de calorimeters waarmee warmte-uitwisseling gemeten wordt.) Deze calorimeters meten de energie van de deeltjes. Het komt erop neer dat de deeltjes door een stof gestuurd worden (lood of ijzer) waar ze botsen op de deeltjes van die stof, zo dat de oorspronkelijke "brokstukken" waarvan je de energie wil bepalen, afgeremd worden en in dat lood of ijzer een regen van "secundaire deeltjes" (van lood of ijzer) doen ontstaan. De grootte van de regen van die secundaire deeltjes, is een maat voor de energie van het oorspronkelijke deeltje. Deze detectoren vertragen de oorspronkelijke "brokstukken" dus zodanig, dat die geen energie meer hebben om uit de calorimeter te geraken. De brokstukken worden hier dus opgeslorpt, nadat alles gemeten werd wat men ervan kon meten. Muondetectoren Dit zijn heel grote detectoren die nog buiten de andere detectoren staan. Er zijn namelijk 2 soorten deeltjes die niet tegengehouden worden door de vorige calorimeters: muonen en neutrino s. Neutrino s gaan overal door en reageren hierbij praktisch niet met de omringende stof, wat neutrino s zeer moeilijk detecteerbaar maakt. In de detectoren van de LHC vindt men die niet terug, hoewel ze er zeker zijn. (Er bestaan andere, zeer grootschalige, neutronendetectoren, maar dat is de bedoeling niet van de LHC.) Muonen hebben ook een grote "doordringingcapaciteit". Ze waren door de vorige calorimeters gevlogen, en er is gewoon meer materiaal nodig om die muonen af te remmen om zo hun energie te bepalen. Eigenlijk werken muondetectoren op hetzelfde principe als de calorimeters, alleen zijn ze nog veel groter.

12 3.5.2 ATLAS detector Fig 3.9 ATLAS detector ATLAS is bedoeld als een algemene detector. Als de bundels protonen die worden geproduceerd door de Large Hadron Collider in het midden van de detector botsen, kan een verscheidenheid van de verschillende deeltjes met een breed spectrum van energieën worden geproduceerd. In plaats van zich te concentreren op een bepaald fysisch proces, is ATLAS ontworpen voor het meten van de breedst mogelijke waaier van signalen. Dit is gedaan om ervoor te zorgen dat ongeacht hoe nieuwe fysische processen of deeltjes zich gedragen, ATLAS in staat zal zijn om hun eigenschappen te bepalen. Fig Tracking chamber

13 In de tracking chamber worden geladen deeltjes afgebogen in een sterk magneetveld. Met behulp van een soort CCD systeem met een totaal oppervlak van 270 m 2 worden paden van deeltjes geregistreerd en opgeslagen. In de elektromagnetische calorimeter wordt de energie gemeten van fotonen (licht) en elektronen/positronen die vrijkomen bij de botsing. Zwaardere hadronen (pions, protonen, neutronen) komen verder. In de hadron calorimeter wordt hun energie gemeten. Het verste komen de muonen. Zij worden gemeten helemaal aan de buitenkant van de detector. Fig 3.11 Voorbeeld computerbeeld na botsing

Meesterklas Deeltjesfysica. Universiteit Antwerpen

Meesterklas Deeltjesfysica. Universiteit Antwerpen Meesterklas Deeltjesfysica Universiteit Antwerpen Programma 9u45 10u00 11u00 11u15 11u45 12u00 13u00 15u00 15u30 17u00 Verwelkoming Deeltjesfysica Prof. Nick van Remortel Pauze Versnellers en Detectoren

Nadere informatie

Hoofdstuk 6: Elektromagnetisme

Hoofdstuk 6: Elektromagnetisme Hoofdstuk 6: lektromagnetisme Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 6: lektromagnetisme Natuurkunde 1. Mechanica 2. Golven en straling 3. lektriciteit en magnetisme 4. Warmteleer Rechtlijnige

Nadere informatie

Large Hadron Collider. Werkbladen. HiSPARC. 1 Inleiding. 2 Voorkennis. 3 Opgaven atoombouw. C.G.N. van Veen

Large Hadron Collider. Werkbladen. HiSPARC. 1 Inleiding. 2 Voorkennis. 3 Opgaven atoombouw. C.G.N. van Veen Werkbladen HiSPARC Large Hadron Collider C.G.N. van Veen 1 Inleiding In het voorjaar van 2015 start de LHC onieuw o. Ditmaal met een hogere energie dan ooit tevoren. Protonen met een energie van 7,0 TeV

Nadere informatie

Opgave: Deeltjesversnellers

Opgave: Deeltjesversnellers Opgave: Deeltjesversnellers a) Een proton is een positief geladen en wordt dus versneld in de richting van afnemende potentiaal. Op het tijdstip t1 is VA - VB negatief, dat betekent dat de potentiaal van

Nadere informatie

HET PROJECT LARGE HADRON COLLIDER

HET PROJECT LARGE HADRON COLLIDER HET PROJECT LARGE HADRON COLLIDER LHC of Large Hadron Collider zal in de 21 ste eeuw voor een groot deel de natuurkunde van de elementaire deeltjes reviseren. Het voorbereidingswerk heeft meer dan 10 jaar

Nadere informatie

Newton - HAVO. Elektromagnetisme. Samenvatting

Newton - HAVO. Elektromagnetisme. Samenvatting Newton - HAVO Elektromagnetisme Samenvatting Het magnetisch veld Een permanente magneet is een magneet waarvan de magnetische werking niet verandert Een draaibare kompasnaald draait met zijn noordpool

Nadere informatie

Zoektocht naar het Higgs deeltje. De Large Hadron Collider in actie. Stan Bentvelsen

Zoektocht naar het Higgs deeltje. De Large Hadron Collider in actie. Stan Bentvelsen Zoektocht naar het Higgs deeltje De Large Hadron Collider in actie Stan Bentvelsen KNAW Amsterdam - 11 januari 2011 1 Versnellen op CERN De versneller Large Hadron Collider sub- atomaire deeltjes botsen

Nadere informatie

1 Leerlingproject: Kosmische straling 28 februari 2002

1 Leerlingproject: Kosmische straling 28 februari 2002 1 Leerlingproject: Kosmische straling 28 februari 2002 1 Kosmische straling Onder kosmische straling verstaan we geladen deeltjes die vanuit de ruimte op de aarde terecht komen. Kosmische straling is onder

Nadere informatie

Mkv Magnetisme. Vraag 1 Twee lange, rechte stroomvoerende geleiders zijn opgehangen in hetzelfde verticale vlak, op een afstand d van elkaar.

Mkv Magnetisme. Vraag 1 Twee lange, rechte stroomvoerende geleiders zijn opgehangen in hetzelfde verticale vlak, op een afstand d van elkaar. Mkv Magnetisme Vraag 1 Twee lange, rechte stroomvoerende geleiders zijn opgehangen in hetzelfde verticale vlak, op een afstand d van elkaar. In een punt P op een afstand d/2 van de rechtse geleider is

Nadere informatie

Waarneming van een nieuw deeltje met massa 125 GeV

Waarneming van een nieuw deeltje met massa 125 GeV Waarneming van een nieuw deeltje met massa 125 GeV CMS Experiment, CERN 4 juli 2012 Samenvatting In een seminarie dat vandaag plaatsvond in het Europees Laboratorium voor Nucleair Onderzoek (CERN), en

Nadere informatie

Examen VWO. natuurkunde. tijdvak 1 dinsdag 14 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje.

Examen VWO. natuurkunde. tijdvak 1 dinsdag 14 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje. Examen VWO 2013 tijdvak 1 dinsdag 14 mei 13.30-16.30 uur natuurkunde Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal

Nadere informatie

Versnellers en Detectoren

Versnellers en Detectoren Versnellers en Detectoren Nieuwe deeltjes ontdekken, bestuderen Maken van nieuwe deeltjes: creëren van massa Meesterklassen Deeltjesfysica p.1/20 Versnellers en Detectoren Nieuwe deeltjes ontdekken, bestuderen

Nadere informatie

oefen vt vwo5 h6 Elektromagnetisme Opgaven en uitwerkingen vind je op www.agtijmensen.nl Oefen vt vwo5 h6 Elektromagnetisme Opgave 1.

oefen vt vwo5 h6 Elektromagnetisme Opgaven en uitwerkingen vind je op www.agtijmensen.nl Oefen vt vwo5 h6 Elektromagnetisme Opgave 1. Opgaven en uitwerkingen vind je op www.agtijmensen.nl Oefen vt vwo5 h6 Elektromagnetisme Opgave 1. Elektrisch veld In de vacuüm gepompte beeldbuis van een TV staan twee evenwijdige vlakke metalen platen

Nadere informatie

H2: Het standaardmodel

H2: Het standaardmodel H2: Het standaardmodel 2.1 12 Fundamentele materiedeeltjes De elementaire deeltjes worden in 2 groepen opgedeeld volgens spin (aantal keer dat een deeltje rond zijn eigen as draait), de fermionen zijn

Nadere informatie

Quantummechanica en Relativiteitsleer bij kosmische straling

Quantummechanica en Relativiteitsleer bij kosmische straling Quantummechanica en sleer bij kosmische straling Niek Schultheiss 1/19 Krachten en krachtdragers Op kerndeeltjes werkt de zwaartekracht. Op kerndeeltjes werkt de elektromagnetische kracht. Kernen kunnen

Nadere informatie

Start van de Large Hadron Collider te CERN

Start van de Large Hadron Collider te CERN Start van de Large Hadron Collider te CERN Zoektocht voor een Belgische Nobelprijs in de fysica Belgische Persmap Korte samenvatting: Wetenschappers en ingenieurs uit alle hoeken van de wereld leggen de

Nadere informatie

Zoektocht naar de elementaire bouwstenen van de natuur

Zoektocht naar de elementaire bouwstenen van de natuur Zoektocht naar de elementaire bouwstenen van de natuur Het atoom: hoe beter men keek hoe kleiner het leek Ivo van Vulpen CERN Mijn oude huis Anti-materie ATLAS detector Gebouw-40 globe 21 cctober, 2006

Nadere informatie

KERNEN & DEELTJES VWO

KERNEN & DEELTJES VWO KERNEN & DEELTJES VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan

Nadere informatie

NATUURKUNDE 8 29/04/2011 KLAS 5 INHAALPROEFWERK HOOFDSTUK

NATUURKUNDE 8 29/04/2011 KLAS 5 INHAALPROEFWERK HOOFDSTUK NATUURKUNDE KLAS 5 INHAALPROEFWERK HOOFDSTUK 8 29/04/2011 Deze toets bestaat uit 3 opgaven (32 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! Opgave 1: Afbuigen van geladen

Nadere informatie

Als de trapper in de stand van figuur 1 staat, oefent de voet de in figuur 2 aangegeven verticale kracht uit op het rechter pedaal.

Als de trapper in de stand van figuur 1 staat, oefent de voet de in figuur 2 aangegeven verticale kracht uit op het rechter pedaal. Natuurkunde Havo 1984-II Opgave 1 Fietsen Iemand rijdt op een fiets. Beide pedalen beschrijven een eenparige cirkelbeweging ten opzichte van de fiets. Tijdens het fietsen oefent de berijder periodiek een

Nadere informatie

Materie bouwstenen van het heelal FEW 2009

Materie bouwstenen van het heelal FEW 2009 Materie bouwstenen van het heelal FEW 2009 Prof.dr Jo van den Brand jo@nikhef.nl 2 september 2009 Waar de wereld van gemaakt is De wereld kent een enorme diversiteit van materialen en vormen van materie.

Nadere informatie

Deeltjes in Airshowers. N.G. Schultheiss

Deeltjes in Airshowers. N.G. Schultheiss 1 Deeltjes in Airshowers N.G. Shultheiss 1 Inleiding Deze module volgt op de module Krahten in het standaardmodel. Deze module probeert een beeld te geven van het ontstaan van airshowers (in de atmosfeer)

Nadere informatie

Examen VWO. natuurkunde (pilot) tijdvak 1 maandag 21 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje.

Examen VWO. natuurkunde (pilot) tijdvak 1 maandag 21 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje. Examen VWO 01 tijdvak 1 maandag 1 mei 13.30-16.30 uur natuurkunde (pilot) Bij dit examen hoort een uitwerkbijlage. Gebruik het tabellenboekje. Dit examen bestaat uit 7 vragen. Voor dit examen zijn maximaal

Nadere informatie

De Broglie. N.G. Schultheiss

De Broglie. N.G. Schultheiss De Broglie N.G. Schultheiss Inleiding Deze module volgt op de module Detecteren en gaat vooraf aan de module Fluorescentie. In deze module wordt de kleur van het geabsorbeerd of geëmitteerd licht gekoppeld

Nadere informatie

Kosmische straling: airshowers. J.W. van Holten NIKHEF, Amsterdam

Kosmische straling: airshowers. J.W. van Holten NIKHEF, Amsterdam Kosmische straling: airshowers J.W. van Holten NIKHEF, Amsterdam 1. Kosmische straling. Kosmische straling wordt veroorzaakt door zeer energetische deeltjes die vanuit de ruimte de aardatmosfeer binnendringen

Nadere informatie

De Zon. N.G. Schultheiss

De Zon. N.G. Schultheiss 1 De Zon N.G. Schultheiss 1 Inleiding Deze module is direct vanaf de derde of vierde klas te volgen en wordt vervolgd met de module De Broglie of de module Zonnewind. Figuur 1.1: Een schema voor kernfusie

Nadere informatie

Opgave 1. Voor de grootte van de magnetische veldsterkte in de spoel geldt: = l

Opgave 1. Voor de grootte van de magnetische veldsterkte in de spoel geldt: = l Opgave 1 Een kompasnaald staat horizontaal opgesteld en geeft de richting aan van de horizontale r component Bh van de magnetische veldsterkte van het aardmagnetische veld. Een spoel wordt r evenwijdig

Nadere informatie

Betekenis en Ontdekking van het Higgs-deeltje

Betekenis en Ontdekking van het Higgs-deeltje Betekenis en Ontdekking van het Higgs-deeltje Lezing bij de afsluiting van het studiejaar 2012-2013 van HOVO Universiteit Leiden op 13 mei 2013 Door prof. dr. Jos Engelen Universiteit van Amsterdam/NIKHEF

Nadere informatie

Massa: misschien denkt u er alleen aan als u op de weegschaal staat. Grote natuurkundigen hebben er mee geworsteld. Mensen zoals Newton, Einstein en

Massa: misschien denkt u er alleen aan als u op de weegschaal staat. Grote natuurkundigen hebben er mee geworsteld. Mensen zoals Newton, Einstein en Massa: misschien denkt u er alleen aan als u op de weegschaal staat. Grote natuurkundigen hebben er mee geworsteld. Mensen zoals Newton, Einstein en recent Higgs. 1 Als ik deze voetbal een trap geef schiet

Nadere informatie

IONISERENDE STRALING. Deeltjes-straling

IONISERENDE STRALING. Deeltjes-straling /stralingsbeschermingsdienst SBD 9673 Dictaat 98-10-26, niv. 5 A/B IONISERENDE STRALING Met de verzamelnaam straling bedoelen we vele verschillende verschijningsvormen van energie, die kunnen worden uitgezonden

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Vrijdag 27 mei totale examentijd 3 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Vrijdag 27 mei totale examentijd 3 uur natuurkunde 1,2 Examen VWO - Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Vrijdag 27 mei totale examentijd 3 uur 20 05 Vragen 1 tot en met 17. In dit deel staan de vragen waarbij de computer

Nadere informatie

Proloog. 1897 J.J.Thomson Ontdekking van het ELEKTRON

Proloog. 1897 J.J.Thomson Ontdekking van het ELEKTRON Proloog HEP: een jong onderzoeksdomein 1897 J.J.Thomson Ontdekking van het ELEKTRON Fundamenteel onderzoek met spin off o De meest elementaire bouwstenen van alle materie o De fundamentele krachten die

Nadere informatie

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud Higgs-deeltje Peter Renaud Heideheeren Inhoud 1. Onze fysische werkelijkheid 2. Newton Einstein - Bohr 3. Kwantumveldentheorie 4. Higgs-deeltjes en Higgs-veld 3 oktober 2012 Heideheeren 2 1 Plato De dingen

Nadere informatie

Deeltjes binnen het standaardmodel

Deeltjes binnen het standaardmodel 1 Deeltjes binnen het standaardmodel N.G. Schultheiss 1 Inleiding Rond het jaar 1900 was de samenstelling van atomen het onderwerp van onderzoek. Joseph John Thomson (1856-1940) dacht dat atomen een soort

Nadere informatie

Uitwerkingen VWO deel 1 H2 (t/m par. 2.5)

Uitwerkingen VWO deel 1 H2 (t/m par. 2.5) Uitwerkingen VWO deel 1 H2 (t/m par. 2.5) 2.1 Inleiding 1. a) Warmte b) Magnetische Energie c) Bewegingsenergie en Warmte d) Licht (stralingsenergie) en warmte e) Stralingsenergie 2. a) Spanning (Volt),

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Sterrenkunde Ruimte en tijd (3)

Sterrenkunde Ruimte en tijd (3) Sterrenkunde Ruimte en tijd (3) Zoals we in het vorige artikel konden lezen, concludeerde Hubble in 1929 tot de theorie van het uitdijende heelal. Dit uitdijen geschiedt met een snelheid die evenredig

Nadere informatie

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica Wat zie je? PositronEmissieTomografie (PET) Nucleaire geneeskunde: basisprincipe Toepassing van nucleaire geneeskunde Vakgebieden

Nadere informatie

7 Elektriciteit en magnetisme.

7 Elektriciteit en magnetisme. 7 Elektriciteit en magnetisme. itwerkingen Opgae 7. aantal 6, 0 9,60 0 8 elektronen Opgae 7. aantal,0 0,0 0 A,60 0 s 9,5 0 6 elektronen/s Opgae 7. O-atoom : +8-8 0 O-ion : +8-0 - Lading O-ion - x,6 0-9

Nadere informatie

Woensdag 17 februari 2010 5:30 Uit de veren 6:20 Verzamelen bij station Laan van Nieuw Oost Indië. Begeleiders Bram van Leeuwen en Robbert Stamm + 12

Woensdag 17 februari 2010 5:30 Uit de veren 6:20 Verzamelen bij station Laan van Nieuw Oost Indië. Begeleiders Bram van Leeuwen en Robbert Stamm + 12 Woensdag 17 februari 2010 5:30 Uit de veren 6:20 Verzamelen bij station Laan van Nieuw Oost Indië. Begeleiders Bram van Leeuwen en Robbert Stamm + 12 Leerlingen College Het Loo/ Huygens Lyceum Voorburg

Nadere informatie

Nikhef Workshop. 3de-jaars bachelor NIKHEF/UvA. docenten: Dr. Ivo van Vulpen (ivov@nikhef.nl) Dr. Auke-Pieter Colijn (z37@nikhef.

Nikhef Workshop. 3de-jaars bachelor NIKHEF/UvA. docenten: Dr. Ivo van Vulpen (ivov@nikhef.nl) Dr. Auke-Pieter Colijn (z37@nikhef. 2009/1 viii Nikhef Workshop Black Holes in de LHC 3de-jaars bachelor NIKHEF/UvA docenten: Dr. Ivo van Vulpen (ivov@nikhef.nl) Dr. Auke-Pieter Colijn (z37@nikhef.nl) Dr. Marcel Vreeswijk (h73@nikhef.nl)

Nadere informatie

Examen HAVO - Compex. natuurkunde 1,2 Compex

Examen HAVO - Compex. natuurkunde 1,2 Compex natuurkunde 1, Compex Examen HAVO - Compex? Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Dinsdag 30 mei totale examentijd 3,5 uur 0 06 n dit deel van het examen staan de vragen waarbij de computer niet

Nadere informatie

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale

Nadere informatie

Elektriciteit. Elektriciteit

Elektriciteit. Elektriciteit Elektriciteit Alles wat we kunnen zien en alles wat we niet kunnen zien bestaat uit kleine deeltjes. Zo is een blok staal gemaakt van staaldeeltjes, bestaat water uit waterdeeltjes en hout uit houtdeeltjes.

Nadere informatie

De large hadron collider: Hoe zien de eerste botsingen eruit? Ivo van Vulpen

De large hadron collider: Hoe zien de eerste botsingen eruit? Ivo van Vulpen De large hadron collider: Hoe zien de eerste botsingen eruit? Ivo van Vulpen Het grootste en het kleinste volgens mijn dochter van 3 volgens haar vader Olifant Klein muisje Grootst Kleinst 10 +22 m 10-9

Nadere informatie

1 Overzicht theorievragen

1 Overzicht theorievragen 1 Overzicht theorievragen 1. Wat is een retrograde beweging? Vergelijk de wijze waarop Ptolemaeus deze verklaarde met de manier waarop Copernicus deze verklaarde. 2. Formuleer de drie wetten van planeetbeweging

Nadere informatie

Vrijdag 19 augustus, 9.30-12.30 uur

Vrijdag 19 augustus, 9.30-12.30 uur EINDEXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1977 Vrijdag 19 augustus, 9.30-12.30 uur NATUURKUNDE Zie ommezijde Deze opgaven zijn vastgesteld door de commissie bedoeld in artikel 24 van het Besluit

Nadere informatie

HiSPARC High-School Project on Astrophysics Research with Cosmics. Interactie van kosmische straling en aardatmosfeer

HiSPARC High-School Project on Astrophysics Research with Cosmics. Interactie van kosmische straling en aardatmosfeer HiSPARC High-School Project on Astrophysics Research with Cosmics Interactie van kosmische straling en aardatmosfeer 2.3 Airshowers In ons Melkwegstelsel is sprake van een voortdurende stroom van hoogenergetische

Nadere informatie

Inleiding stralingsfysica

Inleiding stralingsfysica Inleiding stralingsfysica Historie 1896: Henri Becquerel ontdekt het verschijnsel radioactiviteit 1895: Wilhelm Conrad Röntgen ontdekt Röntgenstraling RadioNucliden: Inleiding Stralingsfysica 1 Wat maakt

Nadere informatie

Voorkennistoets De Bewegende Aarde Voorkennis voor het basisdeel H1, H2, H3

Voorkennistoets De Bewegende Aarde Voorkennis voor het basisdeel H1, H2, H3 Voorkennistoets De Bewegende Aarde Voorkennis voor het basisdeel H1, H2, H3 A. wiskunde Differentiëren en primitieve bepalen W1. Wat is de afgeleide van 3x 2? a. 3x b. 6x c. x 3 d. 3x 2 e. x 2 W2. Wat

Nadere informatie

Deze Informatie is gratis en mag op geen enkele wijze tegen betaling aangeboden worden. Vraag 1

Deze Informatie is gratis en mag op geen enkele wijze tegen betaling aangeboden worden. Vraag 1 Vraag 1 Twee stenen van op dezelfde hoogte horizontaal weggeworpen in het punt A: steen 1 met een snelheid v 1 en steen 2 met snelheid v 2 Steen 1 komt neer op een afstand x 1 van het punt O en steen 2

Nadere informatie

TENTAMEN ELEKTROMAGNETISME (8N010)

TENTAMEN ELEKTROMAGNETISME (8N010) TENTAMEN ELEKTROMAGNETISME (8N010) 25 april, 2008, 14.00-17.00 uur Opmerkingen: 1. Dit tentamen bestaat uit 4 vragen met in totaal 18 deelvragen. 2. Het is toegestaan gebruik te maken van bijgeleverd formuleblad

Nadere informatie

. Vermeld je naam op elke pagina.

. Vermeld je naam op elke pagina. Tentamen: Elektriciteit en Magnetisme Docent: J. F. J. van den Brand R. J. Wijngaarden Datum: 30 Mei 2006 Zaal: Q112/M143 Tijd: 15:15-18.00 uur. Vermeld je naam op elke pagina.. Vermeld je collegenummer..

Nadere informatie

Opgave 5 Een verwarmingselement heeft een weerstand van 14,0 Ω en is opgenomen in de schakeling van figuur 3.

Opgave 5 Een verwarmingselement heeft een weerstand van 14,0 Ω en is opgenomen in de schakeling van figuur 3. Opgave 5 Een verwarmingselement heeft een weerstand van 14,0 Ω en is opgenomen in de schakeling van figuur 3. figuur 3 De schuifweerstand is zo ingesteld dat de stroomsterkte 0,50 A is. a) Bereken het

Nadere informatie

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd Samenvatting Inleiding De kern Een atoom bestaat uit een kern en aan de kern gebonden elektronen, die om de kern cirkelen. Dat de elektronen aan de kern gebonden zijn, komt doordat er een kracht werkt

Nadere informatie

The Color of X-rays. Spectral Computed Tomography Using Energy Sensitive Pixel Detectors E.J. Schioppa

The Color of X-rays. Spectral Computed Tomography Using Energy Sensitive Pixel Detectors E.J. Schioppa The Color of X-rays. Spectral Computed Tomography Using Energy Sensitive Pixel Detectors E.J. Schioppa Samenvatting Het netvlies van het oog is niet gevoelig voor deze straling: het oog dat vlak voor het

Nadere informatie

Het berekenbare Heelal

Het berekenbare Heelal Het berekenbare Heelal 1 BETELGEUSE EN HET DOPPLEREFFECT HET IS MAAR HOE JE HET BEKIJKT NAAR EEN GRENS VAN HET HEELAL DE STRINGTHEORIE HET EERSTE BEREKENDE WERELDBEELD DE EERSTE SECONDE GUT, TOE, ANTROPISCH

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrostatica. 25 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrostatica. 25 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Elektrostatica 25 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier.

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier. Alfa -, bèta - en gammastraling Al in 1899 onderscheidde Ernest Rutherford bij de uraniumstraling "minstens twee" soorten: één die makkelijk wordt geabsorbeerd, voor het gemak de 'alfastraling' genoemd,

Nadere informatie

Medische Toepassingen van pixel detectors. Jan Visser

Medische Toepassingen van pixel detectors. Jan Visser Medische Toepassingen van pixel detectors Courtesy ATLAS collaboration Jan Visser Viva Fysica, Amsterdam January 2015 Courtesy Linda B. Glaser Foto s maken in Hoge Energie Fysica Vertex resolutie ~ 15

Nadere informatie

In deze eindtoets willen we met jullie samenvatten waar we het in het afgelopen kwartiel over gehad hebben:

In deze eindtoets willen we met jullie samenvatten waar we het in het afgelopen kwartiel over gehad hebben: Eindtoets 3DEX1: Fysica van nieuwe energie 21-1- 2014 van 9:00-12:00 Roger Jaspers & Adriana Creatore In deze eindtoets willen we met jullie samenvatten waar we het in het afgelopen kwartiel over gehad

Nadere informatie

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel.

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel. H7: Radioactiviteit Als een bepaalde kern van een element te veel of te weinig neutronen heeft is het onstabiel. Daardoor gaan ze na een zekere tijd uit elkaar vallen, op die manier bereiken ze een stabiele

Nadere informatie

Samengesteld door Werner Poets. Nagelezen en aangevuld door het Belgische Instituut voor Ruimte-Aeronomie (BIRA), dr.

Samengesteld door Werner Poets. Nagelezen en aangevuld door het Belgische Instituut voor Ruimte-Aeronomie (BIRA), dr. 1 Rosetta, een venster op onze oorsprong, een springplank naar de toekomst Samengesteld door Werner Poets Nagelezen en aangevuld door het Belgische Instituut voor Ruimte-Aeronomie (BIRA), dr. Johan De

Nadere informatie

Eindexamen vwo natuurkunde pilot 2012 - I

Eindexamen vwo natuurkunde pilot 2012 - I Eindexamen vwo natuurkunde pilot 0 - I Opgave Lichtpracticum maximumscore De buis is aan beide kanten afgesloten om licht van buitenaf te voorkomen. maximumscore 4 De weerstanden verhouden zich als de

Nadere informatie

Tentamen Natuurkunde A. 9.00 uur 12.00 uur woensdag 10 januari 2007 Docent Drs.J.B. Vrijdaghs. Vul Uw gegevens op het deelnameformulier in

Tentamen Natuurkunde A. 9.00 uur 12.00 uur woensdag 10 januari 2007 Docent Drs.J.B. Vrijdaghs. Vul Uw gegevens op het deelnameformulier in Tentamen Natuurkunde A 9. uur. uur woensdag januari 7 Docent Drs.J.B. Vrijdaghs Aanwijzingen: Vul Uw gegevens op het deelnameformulier in Dit tentamen omvat 8 opgaven met totaal deelvragen Maak elke opgave

Nadere informatie

Eindexamen natuurkunde compex vwo 2010 - I

Eindexamen natuurkunde compex vwo 2010 - I - + Eindexamen natuurkunde compex vwo 2010 - I Opgave 1 Massaspectrometer Lood in ertsen uit mijnen bestaat voornamelijk uit de isotopen lood-206, lood-207 en lood-208. De herkomst van lood in loden voorwerpen

Nadere informatie

Repetitie magnetisme voor 3HAVO (opgavenblad met waar/niet waar vragen)

Repetitie magnetisme voor 3HAVO (opgavenblad met waar/niet waar vragen) Repetitie magnetisme voor 3HAVO (opgavenblad met waar/niet waar vragen) Ga na of de onderstaande beweringen waar of niet waar zijn (invullen op antwoordblad). 1) De krachtwerking van een magneet is bij

Nadere informatie

Hoofdstuk 9: Radioactiviteit

Hoofdstuk 9: Radioactiviteit Hoofdstuk 9: Radioactiviteit Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 9: Radioactiviteit Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige

Nadere informatie

Muonen. Auteur: Hans Uitenbroek Datum: 5 februari 2013. Opleiding: VWO 6

Muonen. Auteur: Hans Uitenbroek Datum: 5 februari 2013. Opleiding: VWO 6 Muonen Auteur: Hans Uitenbroek Datum: 5 februari 2013 Opleiding: VWO 6 1 Inhoudsopgave Voorwoord 1. Inleiding 1.1. Aanleiding van het onderzoek 1.2. Probleemstelling 2. Methode en werkwijze 3. Onderzoek

Nadere informatie

Wisselwerking. van ioniserende straling met materie

Wisselwerking. van ioniserende straling met materie Wisselwerking van ioniserende straling met materie Wisselwerkingsprocessen Energie afgifte en structuurverandering in ontvangende materie Aard van wisselwerking bepaalt het juiste afschermingsmateriaal

Nadere informatie

Samenvatting. Spin? Wat is dat eigenlijk?

Samenvatting. Spin? Wat is dat eigenlijk? Samenvatting Spin? Wat is dat eigenlijk? In de zomer van het jaar 1925 werd door twee Nederlandse promovendi, Samuel Goudsmit en George Uhlenbeck, de spin van het elektron ontdekt. Deze ontdekking werd

Nadere informatie

1 Leerlingproject: Relativiteit 28 februari 2002

1 Leerlingproject: Relativiteit 28 februari 2002 1 Leerlingproject: Relativiteit 28 februari 2002 1 Relativiteit Als je aan relativiteit denkt, dan denk je waarschijnlijk als eerste aan Albert Einstein. En dat is dan ook de bedenker van de relativiteitstheorie.

Nadere informatie

EXAMEN VOORBEREIDEND WETENSCHAPPELUK ONDERWIJS IN 1979 , I. Dit examen bestaat uit 4 opgaven. " '"of) r.. I r. ',' t, J I i I.

EXAMEN VOORBEREIDEND WETENSCHAPPELUK ONDERWIJS IN 1979 , I. Dit examen bestaat uit 4 opgaven.  'of) r.. I r. ',' t, J I i I. .o. EXAMEN VOORBEREDEND WETENSCHAPPELUK ONDERWJS N 1979 ' Vrijdag 8 juni, 9.00-12.00 uur NATUURKUNDE.,, Dit examen bestaat uit 4 opgaven ',", "t, ', ' " '"of) r.. r ',' t, J i.'" 'f 1 '.., o. 1 i Deze

Nadere informatie

Nieuwe resultaten van de zoektocht naar het Higgs deeltje in ATLAS

Nieuwe resultaten van de zoektocht naar het Higgs deeltje in ATLAS Nieuwe resultaten van de zoektocht naar het Higgs deeltje in ATLAS Op 4 juli 2012 presenteerde het ATLAS experiment een update van de actuele resultaten van de zoektocht naar het Higgs deeltje. Dat gebeurde

Nadere informatie

Bachelorproject: Onderscheiden van signaal en achtergrond in de CMS-detector van LHC te CERN. Promotor: Jorgen D'Hondt. Academiejaar 2006-2007

Bachelorproject: Onderscheiden van signaal en achtergrond in de CMS-detector van LHC te CERN. Promotor: Jorgen D'Hondt. Academiejaar 2006-2007 Academiejaar 2006-2007 Faculteit Wetenschappen Departement Natuurkunde Michael Maes Bachelorproject: Onderscheiden van signaal en achtergrond in de CMS-detector van LHC te CERN. Promotor: Jorgen D'Hondt

Nadere informatie

natuurkunde (pilot) Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

natuurkunde (pilot) Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen VWO 214 tijdvak 1 maandag 19 mei 13.3-16.3 uur natuurkunde (pilot) Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Nadere informatie

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme 2009-2010

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme 2009-2010 Schriftelijk examen: theorie en oefeningen 2009-2010 Naam en studierichting: Aantal afgegeven bladen, dit blad niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de vermelding

Nadere informatie

Wetenschappelijke Begrippen

Wetenschappelijke Begrippen Wetenschappelijke Begrippen Isotoop Als twee soorten atoomkernen hetzelfde aantal protonen heeft (en dus van hetzelfde element zijn), maar een ander aantal neutronen (en dus een andere massa), dan noemen

Nadere informatie

Inhoud. Scheidingsmethoden (onder- en bovenbouw)... 2 Massaspectrometrie(bovenbouw)... 3

Inhoud. Scheidingsmethoden (onder- en bovenbouw)... 2 Massaspectrometrie(bovenbouw)... 3 Scheidingsmethoden Samenvattingen Je kunt bij een onderwerp komen door op de gewenste rubriek in de inhoud te klikken. Wil je vanuit een rubriek terug naar de inhoud, klik dan op de tekst van de rubriek

Nadere informatie

formules havo natuurkunde

formules havo natuurkunde Subdomein B1: lektriciteit De kandidaat kan toepassingen van het gebruik van elektriciteit beschrijven, de bijbehorende schakelingen en de onderdelen daarvan analyseren en de volgende formules toepassen:

Nadere informatie

Alice en de quarkgluonsoep

Alice en de quarkgluonsoep Alice en de quarkgluonsoep Designer: Jordi Boixader Geschiedenis en tekst: Federico Antinori, Hans de Groot, Catherine Decosse, Yiota Foka, Yves Schutz en Christine Vanoli Productie: Christiane Lefèvre

Nadere informatie

Exact Periode 5 Niveau 3. Dictaat Licht

Exact Periode 5 Niveau 3. Dictaat Licht Exact Periode 5 Niveau 3 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is

Nadere informatie

LDR naar CERN. LDR naar CERN, pag. 1. Door: F.Horsten & F.Smit

LDR naar CERN. LDR naar CERN, pag. 1. Door: F.Horsten & F.Smit Door: F.Horsten & F.Smit LDR naar CERN De Lastechnische Discussiegroep Rotterdam is de grootste lasgroep van Nederland en nog steeds groeiende. Door o.a. het enthousiasme van de leden wordt het LDR-bestuur

Nadere informatie

Tentamen Natuurkunde 1A 09.00 uur - 12.00 uur vrijdag 14 januari 2011 docent drs.j.b. Vrijdaghs

Tentamen Natuurkunde 1A 09.00 uur - 12.00 uur vrijdag 14 januari 2011 docent drs.j.b. Vrijdaghs Tentamen Natuurkunde 1A 09.00 uur - 12.00 uur vrijdag 14 januari 2011 docent drs.j.b. Vrijdaghs Aanwijzingen: Dit tentamen omvat 6 opgaven met totaal 20 deelvragen Begin elke opgave op een nieuwe kant

Nadere informatie

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur).

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

1 Uitgewerkte opgaven: relativistische kinematica

1 Uitgewerkte opgaven: relativistische kinematica 1 Uitgewerkte opgaven: relativistische kinematica 1. Impuls van een π + meson Opgave: Een π + heeft een kinetische energie van 200 MeV. Bereken de impuls in MeV/c. Antwoord: Een π + meson heeft een massa

Nadere informatie

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012 - Biologie Schriftelijk examen 2e Ba Biologie 2011-2012 Naam en studierichting: Aantal afgegeven bladen, deze opgaven niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de

Nadere informatie

TENTAMEN NATUURKUNDE

TENTAMEN NATUURKUNDE CENTRALE COMMISSIE VOORTENTAMEN NATUURKUNDE TENTAMEN NATUURKUNDE tweede voorbeeldtentamen CCVN tijd : 3 uur aantal opgaven : 5 aantal antwoordbladen : 1 (bij opgave 2) Iedere opgave dient op een afzonderlijk

Nadere informatie

Opgave 3 N-16 in een kerncentrale 2014 II

Opgave 3 N-16 in een kerncentrale 2014 II Opgave 3 N-16 in een kerncentrale 2014 II In de reactor binnen in het reactorgebouw van een kerncentrale komt warmte vrij door kernsplijtingen. Die warmte wordt afgevoerd door het water in het primaire

Nadere informatie

De gewichtigste bouwsteen

De gewichtigste bouwsteen NWT_p70_75_Higgs 20-09-2004 15:00 Pagina 70 De gewichtigste bouwsteen Ernst van Eijk Het heelal is gevuld met onzichtbare deeltjes die de beweging van alle materie dwarsbomen, geloven natuurkundigen. Zonder

Nadere informatie

2. (regulier vraag 3) 10-6 vergeten bij opzoeken ρ: eerste bolletje weg. bij werken met de dichtheid kan de berekening nog wel worden gecompleteerd.

2. (regulier vraag 3) 10-6 vergeten bij opzoeken ρ: eerste bolletje weg. bij werken met de dichtheid kan de berekening nog wel worden gecompleteerd. Verslag examenbespreking pilot-examen VWO 2014 (eerste tijdvak) Utrecht, 19 mei 2015 Eerste resultaten: Totaal 62 kandidaten. Gemiddeld 40,3 punten. 5 lln 32+37+28+39+26 punten. (32,4 gemiddeld). 16 lln

Nadere informatie

Alles om je heen is opgebouwd uit atomen. En elk atoom is weer bestaat uit protonen, elektronen en neutronen.

Alles om je heen is opgebouwd uit atomen. En elk atoom is weer bestaat uit protonen, elektronen en neutronen. 2 ELEKTRICITEITSLEER 2.1. Inleiding Je hebt al geleerd dat elektriciteit kan worden opgewekt door allerlei energievormen om te zetten in elektrische energie. Maar hoe kan elektriciteit ontstaan? En waarom

Nadere informatie

natuurkunde pilot vwo 2015-II

natuurkunde pilot vwo 2015-II Formuleblad Formules die bij het pilot-programma horen en die niet in Binas staan. C Beweging en wisselwerking F w,l 1 2 c Av w 2 E p chem voor rv v Echem m p na r m D Lading en veld I GU E Straling en

Nadere informatie

Eindexamen natuurkunde 1-2 havo 2000-I

Eindexamen natuurkunde 1-2 havo 2000-I - + - + Eindexamen natuurkunde -2 havo 2000-I 4 Antwoordmodel Opgave LEDs voorbeelden van schakelschema s: 50 Ω V LED A 50 Ω A V LED Als slechts één meter juist is geschakeld: punt. 2 uitkomst: R = 45

Nadere informatie

Grootste examentrainer en huiswerkbegeleider van Nederland. Natuurkunde. Trainingsmateriaal. De slimste bijbaan van Nederland! lyceo.

Grootste examentrainer en huiswerkbegeleider van Nederland. Natuurkunde. Trainingsmateriaal. De slimste bijbaan van Nederland! lyceo. Grootste examentrainer en huiswerkbegeleider van Nederland Natuurkunde Trainingsmateriaal De slimste bijbaan van Nederland! lyceo.nl Traininingsmateriaal Natuurkunde Lyceo-trainingsdag 2015 Jij staat op

Nadere informatie