Het brachistochroonprobleem van een magneet in een niet-uniform magneetveld

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Het brachistochroonprobleem van een magneet in een niet-uniform magneetveld"

Transcriptie

1 Het brachistochroonprobleem van een magneet in een niet-uniform magneetveld Willem Elbers 5 april 013 Inleiding Het traditionele brachistochroonprobleem betreft de vraag welke weg een object onder invloed van de zwaartekracht het snelst van punt A naar punt B brengt. Nadat het probleem in 1638 was geïntroduceerd door Galileo Galilei, werd het als eerste door Johann Bernoulli opgelost: het optimale pad heeft een cycloïdische vorm. Het doel van dit artikel is om een variatie op het brachistochroonprobleem op te lossen. Dit maal betreft het geen object dat beweegt onder invloed van de zwaartekracht, maar een kleine magneet die beweegt onder invloed van het niet-uniforme magnetische veld van een veel grotere magneet. Zie figuur 1. De precieze afleiding volgt hieronder. Grotemagneet Mogelijkebanen P B P A Kleinemagneet Figuur 1: De opstelling voor het brachistochroonprobleem van een magneet in een niet-uniform magneetveld. De vraag is welke van alle mogelijke banen, waaronder de twee afgebeelde, in de kortste reistijd resulteert. 1

2 I R dl m x r φ y P B y z P A m 1 Figuur : De opstelling voor het brachistochroonprobleem van een magneet in een niet-uniform magneetveld. Een kleine magneet met magnetisch moment m 1 beweegt van punt P A naar P B, onder invloed van het magnetische veld van een grotere magneet met magnetisch moment m. De grote magneet wordt voorgesteld als een enkele stroomlus met straal R en stroomsterkte I. De afstandsvector tussen een infinitesimaal stukje dl van de stroomlus en de kleine magneet is r. Deze vector maakt een hoek φ met de y-as. De sterkte van het magnetische veld hangt af van de y-afstand tussen de middelpunten van de magneten.

3 1 Opzet Het magnetische veld van de blokmagneet Beschouw een kleine, sferische magneet die beweegt onder invloed van het magnetische veld van een veel grotere blokmagneet. Om de beweging te kunnen beschrijven, moeten we eerst een uitdrukking vinden voor het magnetische veld B van de blokmagneet 1. Het veld van de grote blokmagneet kan beschouwd worden als het gevolg van een cirkelvormige stroomlus (straal R en stroomsterkte I) in het xz-vlak. De afstand tussen een infinitesimaal stukje dl van de lus en de kleine magneet is r. Deze vector maakt een hoek φ met de y-as. Zie figuur. Volgens de wet van Biot-Savart, veroorzaakt het stuk dl van de lus op het punt van de kleine magneet een veld db met grootte: db = µ 0 I(dl ˆr ) 4π r De symmetrie van de cirkel in acht houdende, merken we op dat de componenten van db in de x- en z-richtingen worden opgeheven, terwijl de component in de y-richting gelijk is aan: B(y) = µ 0 4π I dl cos φ r Waarin dl cos φ de projectie van dl ˆr in de y-richting is. Aangezien cos φ en r constanten zijn, is dl simpelweg de omtrek van de cirkel πr. Als we bovendien opmerken dat R, r en de y-afstand tussen de kleine magneet en het middelpunt van de lus een rechthoekige driehoek vormen, vinden we dat cos φ = R r. Hierdoor is het magneetveld te schrijven als: B(y) = µ ( ) 0 cos φ 4π r πr = µ 0I ( + y ) 3 Het definiëren van het magnetische moment m van de blokmagneet als m = IA = I(π ) resulteert in de volgende uitdrukking voor het magnetische veld: B(y) = µ 0m π 1 ( + y ) 3 Waarin m uitsluitend de y-component van m is. De potentiële energie van de kleine magneet Met de hierboven gevonden uitdrukking voor de magnetische veldsterkte B, is het mogelijk om de potentiële energie voor de kleine magneet te vinden: 1 Afleiding van B naar Introduction to Electromagnetism, vierde uitgave, David J. Griffiths, pagina 7 3

4 U = m 1 B Aangezien er alleen een magnetisch veld in de y-richting is, is het resultaat van dit scalaire product: U = m 1 B(y) = µ 0m 1 m π 1 ( + y ) 3 µ 0, m 1 en m zijn constant, dus met de introductie van een constante K, is de energie ook te schrijven als: K U = ( + y ) 3 De bewegingsenergie van de kleine magneet In eerste instantie zal de kleine magneet zo gaan draaien dat zijn magnetische moment m 1 in dezelfde richting staat als het magnetische moment m van de blokmagneet. Na deze korte draai, zal de magneet alleen nog een translatiebeweging uitvoeren, waardoor de totale rotationele beweging te verwaarlozen is. De potentiële energie wordt dus volledig omgezet in de translationele kinetische energie van de kleine magneet T = 1 Mv, met M de massa van de kleine magneet. Door deze uitdrukking gelijk te stellen aan de hierboven gevonden uitdrukking voor de potentiële energie, vinden we dat: v = ds dt = K M 1 ( + y ) 3 De belemmering, die de kleine magneet in zijn baan houdt is: ds = ( ) (dx) + () = 1 + dx dx Na substitutie van deze vergelijking in de vorige vinden we dat: ( ) M(R dt = + y ) dx K dx T (y) = xb x A M( + y ) 3 K 1 + ( ) dx dx waarbij x A en x B de x-coördinaten van het begin- en eindpunt zijn. Afleiding van T (y) en inzet van de formule van Beltrami gebasseerd op: Weisstein, Eric W. Brachistochrone Problem. From MathWorld A Wolfram Web Resource. wolfram.com/brachistochroneproblem.html 4

5 Voor de brachistochrooncurve zoeken we het pad waarin de tijd T geminimaliseerd wordt. Het minimum van de functionaal T is te vinden met behulp van de Euler-Lagrange vergelijking. Echter, constaterende dat T niet rechtstreeks afhangt van x, kan met behulp van de formule van Beltrami een versimpelde Euler-Langrange vergelijking worden opgesteld: h y h y = C Waarin h de integrand is uit de formule voor T en C een constante. Subsitutie van de integrand h in de formule van Beltrami geeft: C = = M( + y ) 3 K M( + y ) 3 K(1 + (y ) ) 1 + (y ) (y ) 1 + (y ) De oplossingen voor y worden na enige algebraische manipulatie gevonden: dx = ± 1 + = ± M KC (R + y ) MR3 KC Een numerieke benadering ( ) y Helaas is deze differentiaalvergelijking niet triviaal op de lossen. De vergelijking wordt daarom numeriek benaderd. Dit gebeurt aan de hand van een voorbeeld. Neem aan dat de parameters van het probleem de volgende waarden hebben: Parameter Beschrijving Waarde M Massa kleine magneet kg R Straal stroomlus 0.0 m µ 0 Magnetische veldconstante NA m 1 Magnetisch moment kleine magneet 10 3 Am m Magnetisch moment grote magneet 4 Am C Integratieconstante 1 x A Coördinaat beginpunt 0 y A Coördinaat beginpunt 0.06 m y B Coördinaat eindpunt 0.0 m Na substitutie van bovenstaande waarden, wordt met behulp van de NDSolvefunctie van het softwarepakket Wolfram Mathematica, het volgende systeem van vergelijking numeriek opgelost: 5

6 ( ) 3 dx = ± 1 + πmr3 µ 0 m 1 m C 1 + y (1) y(x A ) = y A () Merk op dat de integratieconstante C zo gekozen dient te worden dat het systeem tevens voldoet aan de randvoorwaarde y(x B ) = y B. In dit geval is voor het gemak C = 1 gekozen en wordt x B als afhankelijke variabele genomen. Het gebruik van de NDSolve-functie resulteert in een verzameling datapunten, die weergegeven is figuur 3. De vorm van deze brachistochrone kromme is intuïtief goed te begrijpen. Naar mate de kleine magneet dichter bij de grote magneet komt (bij kleinere y), wordt de magnetische kracht sterker. De baan in figuur 3 daalt in eerste instantie snel af en blijft vervolgens bijna constant. Een magneet ondervind langs deze baan dus de grootste versnelling over de langst mogelijke afstand. Hierdoor wordt de reistijd geminimaliseerd. Aan de andere kant is de baan ook niet helemaal kaasrecht, omdat dit voor een langere baan en dus een langere reistijd zou zorgen. De getoonde baan is het optimum: het heeft van alle mogelijke banen de kortste reistijd. Daarom is dit de brachistochrone kromme. De baan is grafisch weergeven in figuur Figuur 3: De optimale (brachistochrone) baan voor een magneet in een nietuniform magnetisch veld. We hebben nu een kwalitatief verband tussen de vorm van de kromme en de totale reistijd vastgesteld. Echter, om betere voorspellingen te kunnen doen, is het van belang om te bepalen wat voor functie y(x) precies is. In figuur 3 is alleen het deel van de oplossingskromme in het eerste kwadrant weergeven, omdat negatieve y-coördinaten in de context van dit probleem geen betekenis 6

7 m x P B y z m 1 P A Figuur 4: De optimale (brachistochrone) kromme, weergeven in de orginele setting van het probleem. hebben. Het plotten van de negatieve waarden kan ons echter wel een idee geven van de achterliggende functie. Zie figuur 5. 7

8 Figuur 5: De optimale (brachistochrone) baan voor een magneet in een nietuniform magnetisch veld. Na het plotten van de negatieve waarden, rijst het vermoeden dat de brachistochrone kromme een tangens-functie is. Om dit vermoeden te bevestigen, wordt een poging gewaagd het probleem analytisch op te lossen. 3 Een analytische benadering Een eerste orde expansie We hadden de volgende uitdrukking voor dx gevonden: ( ) 3 dx = ± 1 + p 1 + y p = πmr 3 µ 0 m 1 m C Na substitutie van de waarden uit het voorbeeld, blijkt de term p(1 + y ) 3 veel groter te zijn dan 1: y = y A p(1 + y ) y = y B p(1 + y ) (3) 8

9 Deze waarden zijn dermate groot dat de 1 term te verwaarlozen is: (4) Daarom kan de volgende benadering worden gemaakt: dx = ± 1 + p ± p ( 1 + y ( ) y ± ( 6 p Waarin tijdens de tweede stap gebruik is gemaakt van een Taylor-expansie rond het punt y R = 4 met versimpelde coëfficienten. 3 De nauwkeurigheid van deze benadering hangt af van de gekozen parameters en kan in het algemeen worden bepaald met onderstaande formule. De fout in de benaderingsfunctie f(x) approx op een bepaald punt (x, f(x)) is: ) 3 y ) α = f(x) f(x) approx f(x) Een numerieke oplossing voor de parameterwaarden van dit probleem is: 0.01 < α < 0.05 op het relevante interval. De nauwkeurigheid variëert dus tussen de 1% en de 5%. Het oplossen van de differentiaalvergelijking We hadden met een zekere nauwkeurigheid gevonden dat: ( 6 dx = ± p = ± 6 ( p y ) y ) (5) Deel de linkerkant door de rechterkant en integreer over x: 3 Op het punt y = 4 is het kwadraat van de afstand tussen de magneten twee keer zo groot als het kwadraat van de straal van de stroomlus. Dit is redelijk, gezien de parameterwaarden uit het voorbeeld. Uiteraard kan een ander punt gekozen worden. Dit verandert niets aan de vorm van de uiteindelijke functie. 9

10 dx ( ± 6 ) ( )dx = 1dx 5 p 1 + 5y 1 ± = x 6 p 1 + 5y 1R ± du = x (6) 6 5p 1 + u Waarin de variabele u is gedefinieerd als: 5y u = 1 du = 5 1 Aangezien 1 1+u du = tan 1 u, vinden we dat: ± p tan 1 u + c = x ( ) ± y 6 5p tan 1 + c = x 1 R Waarin c de integratieconstante is. Lossen we dit op voor y, dan vinden we ten slotte de brachistochrone kromme: y = = ( 1R tan ± 6 ) 5p (x c) 5 5 1R ( ) 1R 3πMR tan ± (x c) 5 5µ 0 m 1 m C Dimensioneel klopt deze vergelijking, want de wortelterm binnen de tangensfunctie heeft dimensie L 1 (immers [C] = [h] = [T ] = T). Hierdoor is de volledige term binnen de tangens-functie dimensieloos. De wortelterm voor de tangens-functie heeft dimensie L welke overeenkomt met de dimensie van y. Na het invullen van de parameterwaarden uit het numerieke voorbeeld (negatieve oplossing, integratieconstante c = 3.1), blijken beide uitkomsten goed overeen te komen. Met name op het relevante interval, blijkt bovenstaande functie de oplossing goed te beschrijven. Zie figuur 6. 10

11 4 Conclusie De uitkomst van de analytische benadering bevestigt het vermoeden dat de magnetische brachistochrone kromme een tangensoïdische vorm heeft. Deze uitkomst is verschillend van het traditionele (gravitationele) brachistochroonprobleem, waarbij een cycloïdische kromme in de kortste reistijd resulteert. Een verschil in uitkomst was op voorhand te verwachten, aangezien de potentiële energie van de magneet omgekeerd evenredig is met de derde macht van y, in plaats van evenredig met y, zoals de zwaarte-energie E z = mgy Figuur 6: De numerieke (doorgetrokken) en analytische (gestreepte) oplossingen van het probleem komen goed overeen. De overeenkomst is het grootst op het relevante interval 0.0 < y <

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde Masterclass VWO-leerlingen juni 2008 Snelle glijbanen Emiel van Elderen en Joost de Groot NWD 2009 1 Technische Universiteit Delft Probleemstelling Gegeven: een punt A(0,a) en een punt B(b, 0) met a 0.

Nadere informatie

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem

Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem PLANETENSTELSELS - WERKCOLLEGE 3 EN 4 Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem In de vorige werkcolleges heb je je pythonkennis opgefrist. Je hebt een aantal fysische constanten ingelezen,

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30 Tentamen WISN11 Wiskundige Technieken 1 Ma 7 nov 16 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

1 Efficient oversteken van een stromende rivier

1 Efficient oversteken van een stromende rivier keywords: varia/rivier/rivier.tex Efficient oversteken van een stromende rivier Een veerpont moet vele malen per dag een stromende rivier oversteken van de ene aanlegplaats naar die aan de overkant. De

Nadere informatie

BIOFYSICA: Toets I.4. Dynamica: Oplossing

BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,

Nadere informatie

4. Maak een tekening:

4. Maak een tekening: . De versnelling van elk deel van de trein is hetzelfde, dus wordt de kracht op de koppeling tussen de 3e en 4e wagon bepaald door de fractie van de massa die er achter hangt, en wordt dus gegeven door

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

a) Bereken het middelpunt van van cirkel C, door omzetting van de gegeven formule.

a) Bereken het middelpunt van van cirkel C, door omzetting van de gegeven formule. RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO NG/NT KLAS 12 T212-HNGNT-H7911 Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Antwoorden moeten altijd zijn voorzien van een berekening,

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie

Appendix: Zwaartepunten

Appendix: Zwaartepunten Appendi: Zwaartepunten Enkele opmerkingen vooraf: Maak altijd eerst een schets van het betreffende gebied (en dat hoeft heus niet zo precies te zijn als de grafieken die ik hier door de computer kan laten

Nadere informatie

. Vermeld je naam op elke pagina.

. Vermeld je naam op elke pagina. Tentamen: Elektriciteit en Magnetisme Docent: J. F. J. van den Brand R. J. Wijngaarden Datum: 30 Mei 2006 Zaal: Q112/M143 Tijd: 15:15-18.00 uur. Vermeld je naam op elke pagina.. Vermeld je collegenummer..

Nadere informatie

Correctievoorschrift VWO. Wiskunde B Profi (oude stijl) Voorbereidend Wetenschappelijk Onderwijs. Tijdvak 1

Correctievoorschrift VWO. Wiskunde B Profi (oude stijl) Voorbereidend Wetenschappelijk Onderwijs. Tijdvak 1 Wiskunde B Profi (oude stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 0 ijdvak 0006 CV7 Begin Regels voor de beoordeling Het werk van de kandidaten wordt beoordeeld met inachtneming

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2001-I

Eindexamen wiskunde B1-2 vwo 2001-I Eindexamen wiskunde B- vwo 00-I 4 Antwoordmodel Boottocht Het gezochte punt is het snijpunt van en de middelloodlijn van het lijnstuk van het punt P aximumscore 6 = =, met het midden van dus = 90 Het punt

Nadere informatie

NATUURKUNDE. Figuur 1

NATUURKUNDE. Figuur 1 NATUURKUNDE KLAS 5 PROEFWERK HOOFDSTUK 12-13: KRACHT EN BEWEGING OOFDSTUK 12-13: K 6/7/2009 Deze toets bestaat uit 5 opgaven (51 + 4 punten) en een uitwerkbijlage. Gebruik eigen grafische rekenmachine

Nadere informatie

Essential University Physics Richard Wolfson 2 nd Edition

Essential University Physics Richard Wolfson 2 nd Edition 4-9-013 Chapter Hoofdstuk 6 Lecture 6 Essential University Physics Richard Wolfson nd Edition Arbeid, Energie, en Vermogen 01 Pearson Education, Inc. Slide 6-1 6.1 Arbeid door een Constante Kracht Voor

Nadere informatie

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen 1 VRIJE TRILLINGEN 1.0 INLEIDING Veel fysische systemen, van groot tot klein, mechanisch en elektrisch, kunnen trillingen uitvoeren. Daarom is in de natuurkunde het bestuderen van trillingen van groot

Nadere informatie

8 College 08/12: Magnetische velden, Wet van Ampere

8 College 08/12: Magnetische velden, Wet van Ampere 8 College 08/12: Magnetische velden, Wet van Ampere Enkele opmerkingen: Permanente magneten zijn overal om ons heen. Magnetisme is geassociëerd met bewegende electrische ladingen. Magnetisme: gebaseerd

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college en scalarelden in R Vandaag collegejaar college build slides : : : : 4-5 7 augustus 4 33 Coördinatenstelsels in R VA andaag Voorkennis Zelf bestuderen uit.,. en.3: ptellen en scalair ermeniguldigen

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2006-I

Eindexamen wiskunde B1-2 vwo 2006-I Sauna Om 5. uur wordt het verwarmingselement van een sauna aangezet. Vanaf dat moment,9t wordt de sauna opgewarmd. Dan geldt: St ( ) 8 e. Hierin is S de temperatuur in de sauna in graden Celsius en t de

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen?

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen? Vraag Een vloeistoftank met onbeperkte capaciteit, bevat aanvankelijk V liter zuiver water. Tijdens de eerste faze stroomt water, dat zout bevat met een concentratie van k kilogram per liter, de tank binnen

Nadere informatie

De bisectie methode uitgelegd met een makkelijk voorbeeld

De bisectie methode uitgelegd met een makkelijk voorbeeld De Bisectie methode De bisectie methode uitgelegd met een makkelijk voorbeeld De bisectie methode is een recursieve methode om punten van een functie te gaan afschatten. Hierbij gaat men de functiewaarde

Nadere informatie

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012 - Biologie Schriftelijk examen 2e Ba Biologie 2011-2012 Naam en studierichting: Aantal afgegeven bladen, deze opgaven niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de

Nadere informatie

Eindexamen vwo wiskunde B pilot 2014-I

Eindexamen vwo wiskunde B pilot 2014-I Eindeamen vwo wiskunde B pilot 04-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VW 04 tijdvak dinsdag 0 mei 3.30-6.30 uur wiskunde B (pilot) chter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen bestaat uit 8 vragen. Voor dit eamen

Nadere informatie

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten. WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de

Nadere informatie

7. Hamiltoniaanse systemen

7. Hamiltoniaanse systemen 7. Hamiltoniaanse systemen In de moleculaire dynamica, maar ook in andere gebieden zoals de hemelmechanica of klassieke mechanica, worden oplossingen gezocht van het Hamiltoniaanse systeem van differentiaalvergelijkingen

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Toets Algemene natuurkunde 1

Toets Algemene natuurkunde 1 Beste Student, Toets Algemene natuurkunde 1 Deze toets telt mee voor 10% van je totaalscore, twee punten op twintig dus. Lees eerst aandachtig de vragen zodat je een duidelijk beeld hebt van wat de gegevens

Nadere informatie

Analytische meetkunde. Les 1 Introductie analytische meetkunde

Analytische meetkunde. Les 1 Introductie analytische meetkunde Analytische meetkunde Les 1 Introductie analytische meetkunde (Deze les sluit aan bij hoofdstuk 1 van Analytische meetkunde van de Wageningse Methode) Waar ligt de schat? Loop in een rechte lijn van de

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Einsteinvergelijkingen: 7 oktober 009 Traagheid van gasdruk SRT: hoe hoger de gasdruk, des te moeilijker is het om het gas te versnellen

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. 7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde

Nadere informatie

Hoofdstuk 6: Elektromagnetisme

Hoofdstuk 6: Elektromagnetisme Hoofdstuk 6: lektromagnetisme Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 6: lektromagnetisme Natuurkunde 1. Mechanica 2. Golven en straling 3. lektriciteit en magnetisme 4. Warmteleer Rechtlijnige

Nadere informatie

Integratie voor meerdere variabelen

Integratie voor meerdere variabelen Wiskunde 2 voor kunstmatige intelligentie, 27/28 Les 4 Integratie voor meerdere variabelen In deze les bekijken we het omgekeerde van de afgeleide, de integratie, en gaan na hoe we een integraal voor functies

Nadere informatie

Examen Wiskundige Basistechniek 15 oktober 2011

Examen Wiskundige Basistechniek 15 oktober 2011 Examen Wiskundige Basistechniek 15 oktober 2011 vraag 1: Gegeven is het complex getal ω = exp(i π 5 ). vraag 1.1: Als we in het complexe vlak het punt P met cartesiaanse coördinaten (x, y) vereenzelvigen

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Uitwerkingen Tentamen Natuurkunde-1

Uitwerkingen Tentamen Natuurkunde-1 Uitwerkingen Tentamen Natuurkunde-1 5 november 2015 Patrick Baesjou Vraag 1 [17]: a. Voor de veerconstante moeten we de hoekfrequentie ω weten. Die wordt gegeven door: ω = 2π f ( = 62.8 s 1 ) Vervolgens

Nadere informatie

Modelvragen ijkingstoets. 1 Redeneren

Modelvragen ijkingstoets. 1 Redeneren Modelvragen ijkingtoets - KU Leuven, Groep W&T - versie 26 juni 2012 1 Modelvragen ijkingstoets Onderstaande vragen staan model voor de ijkingstoets georganiseerd door de groep wetenschap en technologie

Nadere informatie

Langere vraag over de theorie

Langere vraag over de theorie Langere vraag over de theorie (a) Magnetisch dipooloent Zoals het elektrisch dipooloent is het agnetisch dipooloent een vectoriële grootheid. Het agnetisch dipooloent wordt gedefinieerd voor een gesloten

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

Analyse: vraagstuk van Kepler

Analyse: vraagstuk van Kepler Analyse: vraagstuk van Kepler Deel : Afleiden tweede wet (wet der perken) Redelijk simpel. Uit de bewegingsvergelijking volgt dat =. Dit impliceert dat = =. Als je weet dat de tangentiële component van

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

relativiteitstheorie

relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 3: 19 november 2015 Copyright (C) Vrije Universiteit 2015 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Buiging van een belaste balk

Buiging van een belaste balk Buiging van een belaste balk (Modelbouw III) G. van Delft Studienummer: 0480 E-mail: gerardvandelft@email.com Tel.: 06-49608704 4 juli 005 Doorbuigen van een balk Wanneer een men een balk op het uiteinde

Nadere informatie

Wiskundige vaardigheden

Wiskundige vaardigheden Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige

Nadere informatie

Uitwerkingen goniometrische functies Hst. 11 deel B3

Uitwerkingen goniometrische functies Hst. 11 deel B3 Uitwerkingen goniometrische functies Hst. deel B. f() = sin(-) = -sin() g() = cos(-) = cos () h() = sin( + ) = cos() j() = cos( + ) = -sin() k() = sin ( + ) = -sin () l() = cos ( + ) = -cos (). Zie ook

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrostatica. 25 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrostatica. 25 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Elektrostatica 25 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

2010-II bij vraag 1. Vooraf: De stelling van de constante (omtreks)hoek.

2010-II bij vraag 1. Vooraf: De stelling van de constante (omtreks)hoek. 200-II bij vraag Vooraf: De stelling van de constante (omtreks)hoek. Een applet (animatie) hierover is te vinden op bijvoorbeeld: http://home.planet.nl/~hietb062/java3.htm#constantehoek De punten P op

Nadere informatie

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30 TENTAMEN DYNAMICA (14030) 9 januari 010, 9:00-1:30 Verzoek: begin de beantwoording van een nieuwe vraag op een nieuwe pagina. En schrijf duidelijk: alleen leesbaar en verzorgd werk kan worden nagekeken.

Nadere informatie

Over de functies arcsin, arccos en arctan

Over de functies arcsin, arccos en arctan Over de functies arcsin, arccos en arctan Booglengte figuur figuur De grafiek van een functie f tussen twee punten P (met a) en Q (met b) kan worden opgedeeld in stukjes die kunnen worden opgevat als lijnstukken,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 2012 van 14u00-17u00

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 2012 van 14u00-17u00 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 202 van 4u00-7u00 Dit tentamen bestaat uit 5 opgaven met elk 3 onderdelen. Voor elk

Nadere informatie

Programmeren en Wetenschappelijk Rekenen in Python. Wi1205AE I.A.M. Goddijn, Faculteit EWI 6 mei 2014

Programmeren en Wetenschappelijk Rekenen in Python. Wi1205AE I.A.M. Goddijn, Faculteit EWI 6 mei 2014 Programmeren en Wetenschappelijk Rekenen in Python Wi1205AE, 6 mei 2014 Bijeenkomst 5 Onderwerpen Het maken van een model Numerieke integratie Grafische weergave 6 mei 2014 1 Voorbeeld: sprong van een

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica Tentamen Fysica in de Fysiologie (8N7) deel A1, blad 1/4 maandag 1 oktober 27, 9.-1.3 uur Het tentamen

Nadere informatie

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang:

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang: wiskunde B, Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels Vakspecifieke regels 4 Beoordelingsmodel Regels

Nadere informatie

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen Klassieke Mechanica a (Tentamen mei ) Uitwerkingen Opgave. (Beweging in een conservatief krachtenveld) a. Een kracht is conservatief als r F =. Dit blijkt na invullen: (r F) x = @F z =@y @F y =@z = =,

Nadere informatie

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS 22 juli 1999 70 --- 13 de internationale olympiade Opgave 1. Absorptie van straling door een gas Een cilindervormig vat, met de as vertikaal,

Nadere informatie

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h Eindexamen vwo wiskunde B 0 - II Een regenton maximumscore 5 h V= ( rx ( )) d x 0 00 ( rx ( )) ( 5 5x 5x ) = + Een primitieve van 5+ 5x 5x is 5x+ 7 x 5x Dus = ( 5 + 7 5 ) V h h h 00 V = h+ h h = h+ h h

Nadere informatie

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Mechanica 1 voor N en Wsk (3NA40 en 3AA40) Donderdag 21 januari 2010 van 09.00u tot 12.00u Dit tentamen bestaat uit vier opgaven.

Nadere informatie

Eindexamen wiskunde B pilot havo II

Eindexamen wiskunde B pilot havo II Mosselen Driehoeksmosselen (zie de foto) kunnen een bijdrage leveren aan de vermindering van de hoeveelheid algen in het water. Zij filteren het water. De hoeveelheid gefilterd water in ml/uur noemen we

Nadere informatie

Inhoudsopgave. 0.1 Netwerkmodel voor passieve geleiding langs een zenuwcel.. 2

Inhoudsopgave. 0.1 Netwerkmodel voor passieve geleiding langs een zenuwcel.. 2 Inhoudsopgave 01 Netwerkmodel voor passieve geleiding langs een zenuwcel 2 1 01 Netwerkmodel voor passieve geleiding langs een zenuwcel I Figuur 1: Schematische voorstelling van een deel van een axon Elk

Nadere informatie

Algebra leren met deti-89

Algebra leren met deti-89 Algebra leren met deti-89 Werkgroep T 3 -symposium Leuven 24-25 augustus 2001 Doel Reflecteren op het leren van algebra in een computeralgebra-omgeving, en in het bijzonder op het omgaan met variabelen

Nadere informatie

1 Middelpunten. Verkennen. Uitleg

1 Middelpunten. Verkennen. Uitleg 1 Middelpunten Verkennen Middelpunten Inleiding Verkennen Probeer vanuit drie gegeven punten (niet op één lijn) die op een cirkel moeten liggen het middelpunt van die cirkel te construeren. Je kunt hem

Nadere informatie

Stelsels lineaire differentiaalvergelijkingen (homogeen)

Stelsels lineaire differentiaalvergelijkingen (homogeen) Stelsels lineaire differentiaalvergelijkingen (homogeen) Voorbeeld Voorbeeld ( 7., Opgave 22) Op t = 0 bevatten de vaten respectievelijk 25 en 5 oz (ounces) zout. 3 september 206 Onderzoeken we hoeveel

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Eindexamen havo wiskunde B pilot 0-II Beoordelingsmodel Windenergie maximumscore Als de 60 000 gigawattuur windenergie 0% van het totaal is, dan is de voorspelde totale energiebehoefte maximaal Het totaal

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B, (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 0 ijdvak Inzenden scores Uiterlijk op 0 mei de scores van de alfabetisch eerste tien kandidaten per school

Nadere informatie

Bewerkingen met krachten

Bewerkingen met krachten 21 Bewerkingen met krachten Opgeloste Vraagstukken 2.1. Bepaal het moment van de kracht van 2N uir Fig. 2-3 rond het punt O. Laat de loodrechte OD neer vanuit O op de rechte waarlangs de kracht van 2N

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Botsingen. N.G. Schultheiss

Botsingen. N.G. Schultheiss 1 Botsingen N.G. Schultheiss 1 Inleiding In de natuur oefenen voorwerpen krachten op elkaar uit. Dit kan bijvoorbeeld doordat twee voorwerpen met elkaar botsen. We kunnen hier denken aan grote samengestelde

Nadere informatie

Straal van een curve

Straal van een curve Straal van een curve Arnold Zitterbart Schwarzwald-Gymnasium Triberg Duitsland (Vertaling: L. Sialino) Niveau Vwo-scholieren Hulpmiddelen Grafiek toepassing, Run-Matrix toepassing Doel Bepaal de straal

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 1 Voorwoord Satellieten zijn er in vele soorten en maten. Zo heb je bijvoorbeeld

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie