Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke

Maat: px
Weergave met pagina beginnen:

Download "Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke"

Transcriptie

1 Niet de hoogte, wel de oppervlakte Prof. dr. Herman Callaert Aandachtspunten bij - statistische technieken voor een continue veranderlijke - de interpretatie van een histogram - de normale dichtheidsfunctie naar aanleiding van een artikel over de normale verdeling in Uitwiskeling Jaargang 18 Nummer 1 December 2001.

2 Histogrammen beschrijven met een dichtheidsfunctie De context van het onderzoek Uitwiskeling p.17 Kengetallen Voor deze 5000 opmetingen van de lichaamslengte is - het gemiddelde: x cm - de standaardafwijking: s 6.50 cm

3 Een histogram en een grafiek [ normalpdf = de normale dichtheidsfunctie] Uitwiskeling p. 19

4 Functiewaarde als benadering voor de relatieve frequentie Uitwiskeling p. 19 ========================================================= Dit doe je zelf als volgt (TI 84 Plus): druk en dan 1:normalpdf(, vul in zoals aangegeven, loop naar Paste en druk 2 keer. Antwoord: ongeveer (0.034)x(5 000)= 170 vrouwen zijn 155 cm lang.

5 Toepassing: lengte van volwassen mannen Uitwiskeling p.21 Men vraagt om met een normale dichtheidsfunctie te werken. ===================================================== Dit doe je als volgt: druk en dan 1:normalpdf(, vul in zoals aangegeven, loop naar Paste en druk 2 keer. Antwoord: ongeveer (0.0201)x(10 000)= 201 mannen zijn 168 cm lang.

6 Toepassing: lengte van meikevers Uitwiskeling p.21 niet in Uitwiskeling maar wel een volledig analoge opdracht Toepassing: lengte van meikevers Er wordt gegeven dat de lengte (in mm) van meikevers normaal verdeeld is met een gemiddelde van 24 en een standaardafwijking van We beschikken niet over verdere gegevens en hebben dus geen frequentietabel. Schat m.b.v. een normale dichtheidsfunctie hoeveel van deze meikevers (afgerond) 24 mm lang is. ====================================================== Dit doe je als volgt: druk en dan 1:normalpdf(, vul in zoals aangegeven, loop naar Paste en druk 2 keer. Antwoord:

7 Wat gaat er fout? niet in Uitwiskeling maar wel een volledig analoge opdracht Toepassing: lengte van meikevers Er wordt gegeven dat de lengte (in mm) van meikevers normaal verdeeld is met een gemiddelde van 24 en een standaardafwijking van We beschikken niet over verdere gegevens en hebben dus geen frequentietabel. Schat m.b.v. een normale dichtheidsfunctie hoeveel van deze meikevers (afgerond) 24 mm lang is. ====================================================== Dit doe je als volgt: druk en dan 1:normalpdf(, vul in zoals aangegeven, loop naar Paste en druk 2 keer. Antwoord: ongeveer (1.5958)x(10 000) = meikevers zijn 24 mm lang.

8 De functiewaarde van een dichtheidsfunctie verwijst NOOIT naar een relatieve frequentie een kans De functiewaarde van een dichtheidsfunctie kan groter zijn dan 1. Dat kan nooit voor een relatieve frequentie of een kans.

9 Bij grootheden die je als continu behandelt, gebruik je een histogram (grafiek bij een steekproef) een dichtheidsfunctie (model voor een populatie) In beide gevallen bestudeer je NIET de hoogte WEL de oppervlakte

10 Basisafspraak voor het tekenen van een histogram De OPPERVLAKTE van een rechthoek is recht evenredig met het aantal observaties in de klasse waarop die rechthoek staat Nota Zelfs wanneer een klasse breedte 1 heeft, zodat het maatgetal van de hoogte gelijk is aan het maatgetal van de oppervlakte, dan nog werk je steeds met de oppervlakte en niet met de hoogte. Meer informatie over het histogram vind je in het Infoboekje op

11 Basiseigenschap van een dichtheidsfunctie Voor elke dichtheidsfunctie is de totale OPPERVLAKTE onder de curve gelijk aan 1

12 Basiseigenschap van een dichtheidsfunctie Voor elke dichtheidsfunctie is de totale OPPERVLAKTE onder de curve gelijk aan 1 Histogram en dichtheidsfunctie grafisch met elkaar vergelijken: > teken een histogram waarbij de totale oppervlakte gelijk is aan 1

13 Basiseigenschap van een dichtheidsfunctie Voor elke dichtheidsfunctie is de totale OPPERVLAKTE onder de curve gelijk aan 1 Histogram en dichtheidsfunctie grafisch met elkaar vergelijken: > teken een histogram waarbij de totale oppervlakte gelijk is aan 1 Histogram op de dichtheidsschaal : constructie - voor de i-de klasse is f i de frequentie, b i de breedte en h i de hoogte - de grootte van de steekproef is n - hoogte rechthoek: fi / n hi zodat oppervlakte i-de rechthoek: b / b i hi fi n i totale oppervlakte: f / n 1 i

14 Basiseigenschap van een dichtheidsfunctie Voor elke dichtheidsfunctie is de totale OPPERVLAKTE onder de curve gelijk aan 1 Histogram en dichtheidsfunctie grafisch met elkaar vergelijken: > teken een histogram waarbij de totale oppervlakte gelijk is aan 1 Histogram op de dichtheidsschaal : constructie - voor de i-de klasse is f i de frequentie, b i de breedte en h i de hoogte - de grootte van de steekproef is n - hoogte rechthoek: fi / n hi zodat oppervlakte i-de rechthoek: b / b i hi fi n i totale oppervlakte: f / n 1 Histogram op de dichtheidsschaal : eigenschap - totale oppervlakte = 1 - oppervlakte rechthoek = fractie van de observaties in die klasse i

15 Voorbeeld: lengte van 5000 vrouwen Oppervlakte gearceerd staafje: - histogram op de dichtheidsschaal: b x h = 1 x = de klasse [ ; [ bevat 5.82 percent van de observaties in deze studie zijn ( x 5000) = 291 vrouwen 165 cm lang. - normale dichtheidsfunctie oppervlakte = de kans om in [ ; [ terecht te komen is 5.53 percent.

16 Voorbeeld: lengte van meikevers * * artificiële data klasse hoogte frequentie rel. freq. lengte (in mm) hi ( fi / n)/ bi [ ; [ [ ; [ [ ; [ [ ; [ [ ; [ [ ; [ [ ; [ [ ; [ Kengetallen Voor deze opmetingen is - het gemiddelde: x 24 mm - de standaardafwijking: s 0.25 mm

17 samen met Histogram op de dichtheidsschaal Normale dichtheidsfunctie met 24 en 0.25

18 Histogram Normale dichtheid oppervlakte = oppervlakte = 0.34 bij % van de meikevers in bij 34 % van de populatie van deze steekproef valt de lengte alle meikevers valt de lengte in het gebied [23.75 ; 24[ in het gebied [23.75 ; 24[

19 De lichaamslengte van volwassen vrouwen Enkele statistische bedenkingen in de context van deze studie: een voorstelling van concrete data (histogram) een model voor een populatie (dichtheidsfunctie)

20 De lichaamslengte van volwassen vrouwen Histogrammen beschrijven met een dichtheidsfunctie Uitwiskeling p.17 Relatieve frequenties vinden m.b.v. de normale dichtheidsfunctie Uitwiskeling p.21 is dat wel een goed idee? (zelfs als je niet met de hoogte maar wel met de oppervlakte werkt)

21 De lichaamslengte van volwassen vrouwen De 5000 opmetingen zijn een STEEKPROEF. Je beschikt over concrete gegevens, zoals: er zijn hier exact 291 vrouwen die 165 cm lang zijn ( [ ; [ ) Waarom zou je deze concrete informatie vervangen door een benadering? De normale dichtheid zegt dat je met kans in [ ; [ terechtkomt zodat je = 277 vrouwen verwacht die 165 cm lang zijn. Waarom zou je bij benadering 277 gebruiken als je weet dat het er 291 zijn? Een model gebruik je niet om een concrete steekproef te benaderen.

22 Een grote en goed getrokken steekproef valt niet exact samen met de populatie (een nieuwe steekproef levert data die een beetje anders zullen zijn) geeft een benaderend beeld van de populatie (kengetallen en globale vorm) Steekproefeigenschappen geven je een idee voor een zinvol model voor de populatie. Daarna gebruik je het model om uitspraken te doen over de populatie, niet om die steekproef te benaderen.

23 Voorbeeld: De lichaamslengte van volwassen vrouwen Data: de lichaamslengte van een steekproef van 5000 vrouwen. Bedoeling van de studie: beter passende confectiekleding voor de populatie van Nederlandse vrouwen. Data van de steekproef globale vorm histogram gemiddelde x cm standaardafwijking s 6.50 cm Model voor de populatie normale dichtheid gemiddelde cm standaardafwijking 6.50 cm Confectiekleding wordt niet ontworpen tot op een halve millimeter nauwkeurig en dus kan je evengoed (en eenvoudiger) voor het populatiegemiddelde 162 cm voorstellen. De normale dichtheidsfunctie met gemiddelde 162 cm en met standaardafwijking 6.50 cm is een model voor de populatie van lengtes van Nederlandse vrouwen (in de periode rond 1947).

24 De normale dichtheidsfunctie wat betekent rood, blauw, paars en geel? Meer uitleg over de normale verdeling kan je vinden in de tekst: Normaal verdeelde kansmodellen op

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Standaardisatie en z-scores

Standaardisatie en z-scores Prof. dr. Herman Callaert Inhoudstafel 1 Standaardisatie bij concreet cijfermateriaal... 1 1.1 Een eerste voorbeeld: de punten van Pol... 1 1.1.1 De ruwe score... 1 1.1.2 Vergelijken met het klasgemiddelde...

Nadere informatie

Statistiek: Herhaling en aanvulling

Statistiek: Herhaling en aanvulling Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Infoboekje. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Infoboekje. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Exploratieve statistiek Infoboekje Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg www.uhasselt.be/lesmateriaal-statistiek . Van deze

Nadere informatie

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel)

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) In 1947 werd in opdracht van N.V. Magazijn De Bijenkorf een statistisch onderzoek verricht naar de lichaamsafmetingen van de Nederlandse

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Populatiemodellen en normaal verdeelde populaties 3. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Een

Nadere informatie

De normale verdeling

De normale verdeling De normale verdeling Les 2 De klokvorm en de normale verdeling (Deze les sluit aan bij paragraaf 8 en 9 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je op welke manier centrum- en spreidingsmaten je helpen bij de interpretatie van statistische gegevens. Je leert ook dat grafische voorstellingen

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Infoboekje. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Infoboekje. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Exploratieve statistiek Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Inleiding Dit infoboekje bevat achtergrondinformatie bij de

Nadere informatie

een typische component van statistiek

een typische component van statistiek Variabiliteit: een typische component van statistiek Prof. dr. Herman Callaert Statistiek = de wetenschap van het leren uit cijfermateriaal in aanwezigheid van variabiliteit en toeval en waarbij de context

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 5. Normaal verdeelde kansmodellen. Werktekst voor de leerling. Prof. dr.

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 5. Normaal verdeelde kansmodellen. Werktekst voor de leerling. Prof. dr. VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Een voorbeeld...2 2. De normale familie...5

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Studies naar samenhang. 1. Basisbegrippen. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Studies naar samenhang. 1. Basisbegrippen. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Studies naar samenhang 1. Basisbegrippen Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Statistische studies

Nadere informatie

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 2 : Grafische beschrijving van data Marnix Van Daele Marnix.VanDaele@UGent.be Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Grafische beschrijving van data p. 1/35 Soorten meetwaarden

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Populatiemodellen en normaal verdeelde populaties 1. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. De

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 1. De wereld van de kansmodellen. Werktekst voor de leerling. Prof. dr.

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 1. De wereld van de kansmodellen. Werktekst voor de leerling. Prof. dr. VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 1. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. De realiteit en het model...2 2. Kansmodellen...2

Nadere informatie

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE A HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

Overzicht statistiek 5N4p

Overzicht statistiek 5N4p Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...

Nadere informatie

21. Lichaamslengte, deel 2: in een grafiek

21. Lichaamslengte, deel 2: in een grafiek 21. Lichaamslengte, deel 2: in een grafiek Leeftijdsgroep Ongeveer 12-16 jaar Kerndoel Deze les levert een bijdrage aan kerndoel 4: De leerlingen leren meten en leren omgaan met meetinstrumenten, gangbare

Nadere informatie

INLEIDING FUNCTIES 1. COÖRDINATEN

INLEIDING FUNCTIES 1. COÖRDINATEN INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

Beschrijvend statistiek

Beschrijvend statistiek 1 Beschrijvend statistiek 1. In een school werd het intelligentiequotiënt gemeten van de leerlingen van het zesde jaar (zie tabel). De getallen werden afgerond tot op de eenheid. De berekeningen mogen

Nadere informatie

De normale verdeling (gebaseerd op De normale verdeling uit UW 18/1) Een histogram en een grafiek

De normale verdeling (gebaseerd op De normale verdeling uit UW 18/1) Een histogram en een grafiek De normale verdeling, 1 De normale verdeling (gebaseerd op De normale verdeling uit UW 18/1) Een histogram en een grafiek In 1947 werd in opdracht van N.V. Magazijn De Bijenkorf een statistisch onderzoek

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Grafieken: achtergrondinformatie. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Grafieken: achtergrondinformatie. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Veranderlijken...1 1.1. Veranderlijken die je als categorisch

Nadere informatie

De normale verdeling. Hilde Eggermont (redactie Uitwiskeling)

De normale verdeling. Hilde Eggermont (redactie Uitwiskeling) De normale verdeling Hilde Eggermont (redactie Uitwiskeling) Dag van de Wiskunde 15 november 2003 Inhoud 1. Inleiding 2. De start: histogrammen beschrijven met een dichtheidsfunctie 3. Relatieve frequenties

Nadere informatie

Netwerk, 4 Havo D, uitwerkingen Hoofdstuk 1, Statistische verwerking 1

Netwerk, 4 Havo D, uitwerkingen Hoofdstuk 1, Statistische verwerking 1 Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking Hoofdstuk Statistische verwerking Kern Populatie en steekproef a In Derbroek vonden + 6 ondervraagden de overlast ernstig tot zeer ernstig.

Nadere informatie

Inleiding tot de meettheorie

Inleiding tot de meettheorie Inleiding tot de meettheorie Meten is het toekennen van cijfers aan voorwerpen. Koeien Koeien in een kudde, studenten in een auditorium, mensen met een bepaalde stoornis, leerlingen met meer dan 15 in

Nadere informatie

Werkbladen 3 Terugzoeken

Werkbladen 3 Terugzoeken Werkbladen Terugzoeken We keren nu de vraag om. Bij een gegeven percentage (oppervlakte zoeken we de bijbehorende grenswaarde(n. Als voorbeeld zoeken we hoe groot een Nederlandse vrouw anno 97 moest zijn

Nadere informatie

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012)

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012) Antwoorden bij - De normale verdeling vwo A/C (aug 0) Opg. a Aflezen bij de 5,3 o C grafiek:,3% en bij de,9 o C grafiek: 33,3% b Het tweede percentage is 33,3 /,3 = 5, maal zo groot. c Bij de 5,3 o C grafiek

Nadere informatie

Exploratieve statistiek voor het secundair onderwijs Portfolio voor de leerling

Exploratieve statistiek voor het secundair onderwijs Portfolio voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Centrum voor statistiek D/2005/2451/45 2005, Universiteit Hasselt (België) Niets uit deze uitgave mag worden verveelvoudigd

Nadere informatie

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. 3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal

Nadere informatie

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek.

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek. Een spiraal In deze opgave bekijken we rechthoekige stroken van breedte en oneven lengte:, 3, 5,..., 99. Door deze stroken op een bepaalde manier aan elkaar te leggen, maken we een spiraal. In figuur is

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 2 woensdag 24 juni uur

Examen VWO. wiskunde B1. tijdvak 2 woensdag 24 juni uur Examen VWO 2009 tijdvak 2 woensdag 24 juni 3.30-6.30 uur wiskunde B Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

8.1 Centrum- en spreidingsmaten [1]

8.1 Centrum- en spreidingsmaten [1] 8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

Korte uitleg van twee veelvoorkomende statistische toetsen Veel wetenschappelijke hypothesen kunnen statistisch worden getoetst. Aan de hand van een

Korte uitleg van twee veelvoorkomende statistische toetsen Veel wetenschappelijke hypothesen kunnen statistisch worden getoetst. Aan de hand van een Korte uitleg van twee veelvoorkomende statistische toetsen Veel wetenschappelijke hypothesen kunnen statistisch worden getoetst. Aan de hand van een statistische toets beslis je of een hypothese waar is.

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.3 Representaties In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1 Data presenteren 1.1 Introductie In

Nadere informatie

Standaardisatie en z-scores

Standaardisatie en z-scores Prof. dr. Herman Callaert Inhoudtafel 1 Standaardiatie bij concreet cijfermateriaal... 1 1.1 Een eerte voorbeeld: de punten van Pol... 1 1.1.1 De ruwe core... 1 1.1.2 Vergelijken met het klagemiddelde...

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

De normale verdeling. Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode)

De normale verdeling. Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode) De normale verdeling Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf In deze les ga je veel met

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

d. Maak een spreidingsdiagram van de gegevens. Plaats de x-waarden op de x-as en de z-waarden op de y-as.

d. Maak een spreidingsdiagram van de gegevens. Plaats de x-waarden op de x-as en de z-waarden op de y-as. Opdracht 6a ----------- Dichtheidskromme, normaal-kwantiel-plot Een nauwkeurige waarde van de lichtsnelheid is van belang voor ontwerpers van computers, omdat de elektrische signalen zich uitsluitend met

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

Grafische voorstellingen

Grafische voorstellingen Grafische voorstellingen Onderzoek omtrent de lonen. Wat is uw huidige loon. Streep het gepaste hokje aan. q 40 000-45 000 q 45 000-50 000 q 50 000-55 000 q 55 000-60 000 q 60 000-80 000 q 80 000-100 000

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail Wiskunde De Normale en Binomiale Verdeling Geschreven door P.F.Lammertsma voor mijn lieve Avigail Opmerkingen vooraf Wiskunde Pagina 2 uit 20 Opmerkingen vooraf Pak je rekenmachine, de TI-83, erbij en

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1.4 Oefenen Opgave 9 Bekijk de genoemde dataset

Nadere informatie

TIP 10: ANALYSE VAN DE CIJFERS

TIP 10: ANALYSE VAN DE CIJFERS TOETSTIP 10 oktober 2011 Bepaling wat en waarom je wilt meten Toetsopzet Materiaal Betrouw- baarheid Beoordeling Interpretatie resultaten TIP 10: ANALYSE VAN DE CIJFERS Wie les geeft, botst automatisch

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2006-II

Eindexamen wiskunde B1-2 vwo 2006-II Drinkbak In figuur staat een tekening van een drinkbak voor dieren. De bak bestaat uit drie delen: een rechthoekige, metalen plaat die gebogen is tot een symmetrische goot, een voorkant en een achterkant

Nadere informatie

Examen VWO. wiskunde A1. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde A1. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2008 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde A1 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

Normale verdeling. Domein Statistiek en kansrekening havo A

Normale verdeling. Domein Statistiek en kansrekening havo A Domein Statistiek en kansrekening havo A 4 Normale verdeling Inhoud 4.0 Een bijzondere verdeling 4.1 Gemiddelde en standaardafwijking 4.2 Normale verdeling 4.3 Rekenen met normale verdelingen 4.4 Steekproef

Nadere informatie

Opdracht 1 bladzijde 8

Opdracht 1 bladzijde 8 Opdrachten Opdracht bladzijde 8 Uit een stuk karton met lengte 45 cm en breedte 8 cm knip je in de vier hoeken vierkantjes af met zijde cm. Zo verkrijg je een open doos. 8 cm 45 cm Hoe groot is het volume

Nadere informatie

handleiding pagina s 198 tot 206 1 Handleiding

handleiding pagina s 198 tot 206 1 Handleiding week 7 les 3 toets en foutenanalyse handleiding pagina s 198 tot 206 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 23: meetcircuit lengte pagina 83: folder inhoud en gewicht pagina 140: temperatuurcurve

Nadere informatie

Eindexamen wiskunde B1 havo 2007-I

Eindexamen wiskunde B1 havo 2007-I Eindexamen wiskunde B havo 007-I Beoordelingsmodel De wet van Moore maximumscore 3 Van 96 tot 975 is 4 jaar Het aantal transistors volgens de formule is dus 4 7 4 = 5, dus 5 transistors in 975 maximumscore

Nadere informatie

EXAMEN : Basisbegrippen statistiek. Examen 16 januari 2015

EXAMEN : Basisbegrippen statistiek. Examen 16 januari 2015 EXAMEN : Basisbegrippen statistiek Examen 16 januari 2015 Oplossingen 1 Vraag 1 a) Leg in max. 3 lijnen uit wat een dichtheidsfunctie is en illustreer met 3 duidelijk verschillende voorbeelden. Een (kans)

Nadere informatie

Examen VWO. wiskunde B1,2

Examen VWO. wiskunde B1,2 wiskunde B,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 2 juni 3.30 6.30 uur 20 06 Voor dit examen zijn maximaal 84 punten te behalen; het examen bestaat uit 8 vragen. Voor

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

Correctievoorschrift HAVO

Correctievoorschrift HAVO Correctievoorschrift HAVO 007 tijdvak wiskunde B Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

Examen VWO. wiskunde B1 (nieuwe stijl)

Examen VWO. wiskunde B1 (nieuwe stijl) wiskunde B1 (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei 13.30 16.30 uur 20 04 Voor dit examen zijn maximaal 86 punten te behalen; het examen bestaat uit

Nadere informatie

Foutenberekeningen Allround-laboranten

Foutenberekeningen Allround-laboranten Allround-laboranten Inhoudsopgave INHOUDSOPGAVE... 2 LEERDOELEN :... 3 1. INLEIDING.... 4 2. DE ABSOLUTE FOUT... 5 3. DE KOW-METHODE... 6 4. DE RELATIEVE FOUT... 6 5. GROOTHEDEN VERMENIGVULDIGEN EN DELEN....

Nadere informatie

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995 Schriftelijk examen statistiek, data-analyse en informatica Maandag 29 mei 1995 Tweede jaar kandidaat arts + Tweede jaar kandidaat in de biomedische wetenschappen Naam: Voornaam: Vraa Kengetal g Blad 1

Nadere informatie

Oefeningen statistiek

Oefeningen statistiek Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 03 Tijdvak Inzenden scores Vul de scores van de alfabetisch eerste vijf kandidaten per school in op de optisch

Nadere informatie

Annelies Droessaert en Etienne Goemaere

Annelies Droessaert en Etienne Goemaere De meerwaarde van TI-Nspire in de 2 de graad Annelies Droessaert en Etienne Goemaere 1. INLEIDING De meeste scholen kiezen er momenteel voor om een grafisch rekentoestel in te voeren vanaf de 2 de graad.

Nadere informatie

Beschrijvende statistieken

Beschrijvende statistieken Elske Salemink (Klinische Psychologie) heeft onderzocht of het lezen van verhaaltjes invloed heeft op angst. Studenten werden at random ingedeeld in twee groepen. De ene groep las positieve verhaaltjes

Nadere informatie

A. Week 1: Introductie in de statistiek.

A. Week 1: Introductie in de statistiek. A. Week 1: Introductie in de statistiek. Populatie en steekproef. In dit vak leren we de basis van de statistiek. In de statistiek probeert men erachter te komen hoe we de populatie het beste kunnen observeren.

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Inhoudstafel Een statistisch onderzoek naar de kleuren van

Nadere informatie

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B 1. (a) Bereken het gemiddelde salaris van de werknemers in de tabel hiernaast. (b) Bereken ook het mediale salaris. (c) Hoe groot is het modale salaris hier? salaris in euro s aantal werknemers 15000 1

Nadere informatie

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet. ? GEOGEBRA 4 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Roger Van Nieuwenhuyze GeoGebra 4 Pagina 1 1. Schermen

Nadere informatie

Examen HAVO. Wiskunde A1,2

Examen HAVO. Wiskunde A1,2 Wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Donderdag 25 mei 13.30 16.30 uur 20 00 Dit examen bestaat uit 19 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies

Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies 6.. Uit een normaal verdeeld universum X met gemiddelde waarde µ = en standaardafwijking σ = worden 0 onafhankelijke steekproefwaarden

Nadere informatie

Hoeveel kinderen zitten er in elke groep van de Kameleonschool? Kleur het goede aantal hokjes. b 28 =

Hoeveel kinderen zitten er in elke groep van de Kameleonschool? Kleur het goede aantal hokjes. b 28 = les 23 en 24 blok 4 41 Teken de afstanden. 1 cm is in het echt 10 km. Van Amsterdam naar Alkmaar: 40 km. Controleer met je liniaal. aa Van Amsterdam naar Den Helder: 80 km. 8 cm b Van Almelo naar Utrecht:

Nadere informatie

Examen HAVO en VHBO. Wiskunde A

Examen HAVO en VHBO. Wiskunde A Wiskunde A Examen HAVO en VHBO Hoger Algemeen Voortgezet Onderwijs Vooropleiding Hoger Beroeps Onderwijs HAVO Tijdvak 1 VHBO Tijdvak 2 Donderdag 25 mei 13.30 16.30 uur 20 00 Dit examen bestaat uit 19 vragen.

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

Metingen bij mensen. 3.1 Wat is het doel van het onderzoek?

Metingen bij mensen. 3.1 Wat is het doel van het onderzoek? Metingen bij mensen 3 In hoofdstuk 2 zijn de belangrijkste aspecten van het tellen van mensen geïntroduceerd. Dit hoofdstuk is een inleiding van onderzoek waarbij metingen bij mensen (of objecten) worden

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 3

Uitwerkingen oefeningen hoofdstuk 3 Uitwerkingen oefeningen hoofdstuk 3 3.4.1 Basis Tijd meten 1 Juli heeft 31 dagen. Wanneer 25 juli op zaterdag valt, valt 31 juli dus op een vrijdag. Augustus heeft ook 31 dagen. 1 augustus valt dus op

Nadere informatie

M V. Inleiding opdrachten. Opgave 1. Meetinstrumenten en grootheden. Vul het schema in. stopwatch. liniaal. thermometer. spanning.

M V. Inleiding opdrachten. Opgave 1. Meetinstrumenten en grootheden. Vul het schema in. stopwatch. liniaal. thermometer. spanning. Inleiding opdrachten Opgave 1. Meetinstrumenten en grootheden Vul het schema in. Meetinstrument Grootheid stopwatch liniaal thermometer spanning hoek van inval oppervlak Opgave. Formules Leg de betekenis

Nadere informatie

Eindexamen wiskunde B1 vwo 2004-I

Eindexamen wiskunde B1 vwo 2004-I Machten van een derdegraadsfunctie Gegeven is de functie 3 2 1 3 4 4 f ( x) x x op het domein [0, 3]. 4p 1 Toon algebraïsch aan dat het maximum van f gelijk is aan 1. V is het gebied ingesloten door de

Nadere informatie

Riemannsommen en integralen

Riemannsommen en integralen Riemannsommen en integralen MET DE TI-NSPIRE Vervangt een deel van 0. uit VWO B deel gghm EEBII 0-0 Inhoud Oppervlakte onder de grafiek... Ondersom... 4 Bovensom... 4 Middensom... 4 Riemannsom... 5 Riemannsom

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M ) noemen.

Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M ) noemen. Hoofdstuk 6 Kansverdelingen 6.1 Discrete stochasten 6.1.1 De Bernoulli verdeling Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M

Nadere informatie

Onderzoeksmethodiek LE: 2

Onderzoeksmethodiek LE: 2 Onderzoeksmethodiek LE: 2 3 Parameters en grootheden 3.1 Parameters Wat is een parameter? Een karakteristieke grootheid van een populatie Gem. gewicht van een 34-jarige man 3.2 Steekproefgrootheden Wat

Nadere informatie

Foutenberekeningen. Inhoudsopgave

Foutenberekeningen. Inhoudsopgave Inhoudsopgave Leerdoelen :... 3 1. Inleiding.... 4 2. De absolute fout... 5 3. De KOW-methode... 7 4. Grootheden optellen of aftrekken.... 8 5. De relatieve fout...10 6. grootheden vermenigvuldigen en

Nadere informatie

Op exploratie in de statistiek

Op exploratie in de statistiek Op exploratie in de statistiek nieuw en boeiend Prof. dr. Herman Callaert Centrum voor Statistiek Universiteit Hasselt Dag van de wiskunde, 18 nov 2006, Eekhoutcentrum, Kortrijk. Statistiek is de wetenschap

Nadere informatie

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden. 1 Formules gebruiken Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules gebruiken Inleiding Verkennen Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Nadere informatie

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte.

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte. Grafieken, functies en verzamelingen Eerst enkele begrippen Grafiek In een assenstelsel teken je een grafiek. Assenstelsel Een assenstelsel bestaat uit twee assen die elkaar snijden: een horizontale en

Nadere informatie

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang:

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang: wiskunde B Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 20 05 Tijdvak Het correctievoorschrift bestaat uit: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel

Nadere informatie

Eindexamen wiskunde B1 vwo 2006-II

Eindexamen wiskunde B1 vwo 2006-II Drinkbak In figuur staat een tekening van een drinkbak voor dieren. De bak bestaat uit drie delen: een rechthoekige, metalen plaat die gebogen is tot een smmetrische goot, een voorkant en een achterkant

Nadere informatie

Correctievoorschrift VMBO-GL en TL 2004

Correctievoorschrift VMBO-GL en TL 2004 Correctievoorschrift VMBO-GL en TL 2004 tijdvak 2 WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO-D 4 BEOORDELINGSMODEL Vraag Antwoord Scores EURO maximumscore 3 per land ( ) 3,88 2 3,88 het antwoord is ( ) 46,56

Nadere informatie

ICT-LEERLIJN (met GeoGebra) Luc Gheysens WISKUNDIGE COMPETENTIES

ICT-LEERLIJN (met GeoGebra) Luc Gheysens  WISKUNDIGE COMPETENTIES ICT-LEERLIJN (met GeoGebra) Luc Gheysens www.gnomon.bloggen.be WISKUNDIGE COMPETENTIES 1 Wiskundig denken 2 Wiskundige problemen aanpakken en oplossen 3 Wiskundig modelleren 4 Wiskundig argumenteren 5

Nadere informatie