5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:
|
|
- Hendrik van de Veen
- 1 jaren geleden
- Aantal bezoeken:
Transcriptie
1 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van elkaar; De volgorde van de staven hoeft niet altijd van belang te zijn. 2. Stapeldiagram (Samengesteld staafdiagram): De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van elkaar; De volgorde van de staven hoeft niet altijd van belang te zijn. 1
2 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 3. Lijndiagram Langs de horizontale as staat meestal de tijd; De opeenvolgende punten zijn verbonden door lijnstukken; Tussenliggende punten hebben geen betekenis; Je kunt indien nodig op de verticale as een scheurlijn gebruiken. 4. Cirkeldiagram Een cirkeldiagram brengt de relatieve verdeling in beeld; Bij een aandeel van p% hoort een sector met een hoek van 0,01p
3 5.0 Voorkennis Gegevens kunnen ook weergegeven worden met een beelddiagram. Beelddiagrammen kunnen er verschillend uit zien: 3
4 5.0 Voorkennis Voorbeeld: Defecten per week Frequentie Een frequentietabel geeft aan hoe vaak een bepaalde gebeurtenis zich voordoet. De totale frequentie is = 62. In de tabel zijn alle mogelijke gebeurtenissen weergegeven. Er is nu sprake van een frequentieverdeling. 4
5 5.0 Voorkennis De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur frequentie Het waarnemingsgetal 18 heeft de frequentie 15. Dit betekent dat het 15 keer is voorgekomen dat er in deze straat 18 auto s in een uur zijn geteld. Je kunt het gemiddelde aantal auto s per uur nu als volgt berekenen: 1. Bereken de totale frequentie (het totaal aantal waarnemingen). Totale frequentie = = Vermenigvuldig elk waarnemingsgetal met de bijbehorende frequentie en tel dit op = Deel de uitkomst van stap 2 door de uitkomst van stap 1 Het gemiddelde aantal auto s per uur is 799/45 17,8 5
6 Voorbeeld: Gegeven is de volgende rij getallen: Voorkennis In deze rij zit één getal, dat erg afwijkt van de rest (het getal 125). Wanneer je nu het gemiddelde uit zou rekenen, zou dit erg vertekenen, door dit ene erg afwijkende getal. Mediaan = Het middelste getal van alle waarnemingsgetallen nadat deze naar grootte zijn gerangschikt. Bij een even aantal waarnemingsgetallen is de mediaan het gemiddelde van de middelste twee getallen. De getallen op volgorde zetten geeft; Het middelste waarnemingsgetal is hier het 5 de getal. De mediaan is 6. Modus = het waarnemingsgetal met de grootste frequentie. Zijn er twee of meer getallen met dezelfde grootste frequentie dan is er geen modus. De getallen 3 en 6 komen allebei twee keer voor. Deze rij heeft dus geen modus. 6
7 5.0 Voorkennis Voorbeeld: De onderstaande tabel geeft aan hoe vaak de kinderen uit groep 4 van een lagere school het afgelopen jaar naar het zwembad zijn gegaan. aantal frequentie Bereken het gemiddelde, de modus en de mediaan (de centrummaten) Berekenen gemiddelde: Totale frequentie = = 66 4 x x x x x x x 6 = 204 Gemiddelde = 204/66 3,09 7
8 5.0 Voorkennis Voorbeeld: De onderstaande tabel geeft aan hoe vaak de kinderen uit groep 4 van een lagere school het afgelopen jaar naar het zwembad zijn gegaan. aantal frequentie Modus = 3 (Dit getal komt het meeste voor) Mediaan: Getallen 1 t/m 5: 0 Getallen 5 t/m 12: 1 Getallen 12 t/m 24: 2 Getallen 24 t/m 39: 3 Getallen 39 t/m 52: 4 Getallen 52 t/m 60: 5 Getallen 61 t/m 66: 6 Er is een even aantal getallen. Het 33 ste getal is 3. het 34 ste getal is 3. De mediaan is nu: (3 + 3)/2 = 3. 8
9 5.1 Frequentieverdelingen [1] Kwantitatieve gegevens: gegevens, die een hoeveelheid uitdrukken; Gewicht, salaris, aantal kinderen, leeftijd. Kwalitatieve gegevens: gegevens, die een kenmerk (en dus geen hoeveelheid) uitdrukken. Bloedgroep, geslacht, merk auto, soort woning. Voorbeeld: Defecten per week Frequentie Een frequentietabel geeft aan hoe vaak een bepaalde gebeurtenis zich voordoet. De totale frequentie is = 62. In de tabel zijn alle mogelijke gebeurtenissen weergegeven. Er is nu sprake van een frequentieverdeling. 9
10 5.1 Frequentieverdelingen [1] Defecten per week Frequentie De gegevens uit de frequentietabel staan in het histogram rechts. Een histogram is een staafdiagram bij een frequentietabel met kwantitatieve gegevens op de horizontale as. De staven liggen tegen elkaar aan. 10
11 5.1 Frequentieverdelingen [1] Cijfer Frequentie De gegevens uit de frequentietabel staan in de frequentiepolygoon rechts. Er is nu gebruik gemaakt van absolute frequenties. Dit is een relatieve-frequentiepolygoon. Er is nu gebruik gemaakt van relatieve frequenties. Relatieve frequentie = frequentie tot. frequentie 100% 11
12 5.1 Frequentieverdelingen [2] Lengte (m) 1,50 - < 1,55 1,55 - < 1,60 1,60 - < 1,65 1,65 - < 1,70 1,70 -< 1,75 1,75 - < 1,80 1,80 - < 1,85 1,85 - < 1,90 Freq ,90 -< 1,95 Wanneer je een verzameling gegevens hebt, waarin vaak de frequentie 1 voorkomt, ga je de gegevens indelen in klassen. In dit voorbeeld is er een klassenindeling gemaakt met een klassenbreedte van 0,05 meter. Van de klassen 1,55 -< 1,60 zijn 1,55 en 1,60 de klassengrenzen. De gegevens zijn weergegeven in een frequentiepolygoon. De punten staan nu steeds in het midden van de klasse. 12
13 5.1 Frequentieverdelingen [3] Klasse Frequentie Cumulatieve frequentie Relatieve cumulatieve frequentie 1,50 -< 1, ,44% 1,55 -< 1, (10 + 4) 15,56% 1,60 -< 1, ( ) 28,89% 1,65 -< 1, ,67% 1,70 -< 1, ,44% 1,75 -< 1, ,67% 1,80 -< 1, % 1,85 -< 1, ,89% 1,90 -< 1, % De cumulatieve frequentie van een klasse krijg je door de frequentie van deze klasse en alle voorgaande klassen op te tellen; De relatieve cumulatieve frequentie van een klasse krijg je door de cumulatieve frequentie van deze klasse te delen door het aantal waarnemingen 100%. 13
14 5.1 Frequentieverdelingen [3] Als je de cumulatieve frequenties in een polygoon tekent, krijg je een cumulatief frequentiepolygoon. Op de horizontale as staan de klassen; Boven de rechtergrens van elke klasse wordt de cumulatieve frequentie gezet; Boven de linkergrens van de eerste klasse wordt de cumulatieve frequentie 0 gezet; Verbindt de punten door lijnstukjes. Als je de relatieve cumulatieve frequenties in een polygoon tekent, krijg je een relatief cumulatief frequentiepolygoon. 14
15 5.2 Centrummaten en variabelen [1] Kwantitatieve gegevens: gegevens, die een hoeveelheid uitdrukken; Gewicht, salaris, aantal kinderen, leeftijd. Een kwantitatieve variabele wordt uitgedrukt in een getal. Het verschil tussen twee van deze opeenvolgende getallen heeft een eenduidige betekenis. Kwalitatieve gegevens: gegevens, die een kenmerk (en dus geen hoeveelheid) uitdrukken. Bloedgroep, geslacht, merk auto, soort woning. Een kwalitatieve variabele wordt vaak niet uitgedrukt in een getal. Is dit toch het geval, dan heeft het verschil tussen twee van deze opeenvolgende getallen heeft geen eenduidige betekenis. 15
16 5.2 Centrummaten en variabelen [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte Geordend zijn. Bij een even aantal waarnemingsgetallen is dit het gemiddelde van de middelste twee getallen. 4 5 De mediaan is: De modus is het waarnemingsgetal dat het meeste voorkomt. Komen meerdere waarnemingsgetallen het meeste voor dan is er geen modus. De modus is: ,
17 5.2 Centrummaten en variabelen [2] Branduren 800 -< < < < < Frequentie Voorbeeld: Bereken het gemiddelde aantal branduren Stap 1: Noteer de klassenmiddens: 850, 950, 1050, 1150, 1250 Stap 2: Bereken de totale frequentie: = 75 Stap 3: Bereken het gemiddelde: ,
18 5.2 Centrummaten en variabelen [2] Branduren 800 -< < < < < Frequentie Voorbeeld: Bereken de modale klasse en de mediaan. De modale klasse is de klasse die het meeste voorkomt. Dit is de klasse < Er zijn 75 getallen. De mediaan is het gemiddelde van het 37 e en 38 e getal = 21 EN = 47. De mediaan ligt in de klasse < De mediaan is het gemiddelde van het 16 e en 17 e getal van deze klasse. Mediaan = 16, ,
19 5.2 Centrummaten en variabelen [2] Continue variabele: Alle waarden zijn mogelijk Bv.: Lengte van mannen, Gewicht van vrouwen, alles wat normaal verdeeld is; Discrete variabele X: Alleen een aantal losse waarden zijn mogelijk; Bv.: Aantal auto s op een weg per minuut, de schoenmaat van volwassenen, het aantal branduren van een lamp. 19
20 5.3 Spreidingsmaten [1] In het plaatje is een relatieve cumulatieve frequentiepolygoon getekend van het aantal uren dat door een groep mensen tv gekeken wordt. De mediaan is het middelste waarnemingsgetal. Dit is te vinden bij 50% van de waarnemingsgetallen. Dit is hier rond de 10,5. 20
21 5.3 Spreidingsmaten [1] Het eerste kwartiel (Q 1 ) is het waarnemingsgetal dat op één kwart ligt. Dit is te vinden bij 25% van de waarnemingsgetallen. Dit is hier rond de 6. Het derde kwartiel (Q 3 ) is het waarnemingsgetal dat op drie kwart ligt. Dit is te vinden bij 75% van de waarnemingsgetallen. Dit is hier rond de 16. Mediaan, eerste kwartiel en derde kwartiel kun je schematisch weergeven in een boxplot. 21
22 5.3 Spreidingsmaten [1] In het boxplot zie je het eerste kwartiel (Q 1 ), de mediaan (MED), het derde kwartiel (Q 3 ) en het eerste en laatste waarnemingsgetal. 22
23 Voorbeeld: 5.3 Spreidingsmaten [2] Afstand frequentie Maak een boxplot bij deze verdeling: Stap 1: Voer de lijst L1 = {0, 1, 2, 3, 4, 5, 6} en lijst L2 = {2, 3, 4, 4, 7, 5, 1} in. Stap 2: Gebruik 1-Var Stats L1, L2 Stap 3: Lees nu de benodigde gegevens af: MinX (Minimale waarde) = 0; Q 1 (Eerste kwartiel) = 2 Med (Mediaan) = 3,5; Q 3 (Derde kwartiel) = 4 MaxX (Maximale waarde) = 6 23
24 Voorbeeld: 5.3 Spreidingsmaten [2] Afstand frequentie MinX (Minimale waarde) = 0; Q 1 (Eerste kwartiel) = 2 Med (Mediaan) = 3,5; Q 3 (Derde kwartiel) = 4 MaxX (Maximale waarde) = 6 24
25 Voorbeeld: 5.3 Spreidingsmaten [3] Spreidingsbreedte = verschil tussen grootste en kleinste waarnemingsgetal (6 0 = 6) Kwartielafstand = verschil tussen derde en eerste kwartiel (4 2 = 2) De spreidingsbreedte en de kwartielafstand geven informatie over de spreiding van de getallen. Hoe groter deze spreidingsmaten zijn, hoe meer de getallen verspreid zijn. Meestal wordt echter de standaardafwijking als spreidingsmaat gebruikt. 25
26 5.3 Spreidingsmaten [4] Voorbeeld: Afstand frequentie Bereken de standaardafwijking: Stap 1: Voer de lijst L1 = {0, 1, 2, 3, 4, 5, 6} en lijst L2 = {2, 3, 4, 4, 7, 5, 1} in. Stap 2: Gebruik 1-Var Stats L1, L2 Stap 3: De standaardafwijking is nu te vinden bij: σ x en is 1,63. 26
27 5.4 Onderzoeken en presenteren [1] Bij een statistisch onderzoek probeert men antwoord te vinden op een vraag te vinden door het verzamelen, verwerken en interpreteren van gegevens. Regelmatig wordt in Nederland onderzocht wat de politieke voorkeur van de Nederlanders is. 27
28 5.4 Onderzoeken en presenteren [1] Bij een goed statistisch onderzoek horen de volgende fasen: 1) Het onderzoeksontwerp; 2) Het verzamelen van gegevens; 3) Het verwerken en analyseren van de verzamelde gegevens; 4) Het trekken van conclusies. Het onderzoeksontwerp omvat een: Onderzoeksonderwerp; Onderzoeksvraag; Probleemstelling; Hoofdvraag. (Deelvragen helpen om antwoord op hoofdvraag te geven) Ook dient er aandacht te zijn voor de relevantie van het onderzoek en de haalbaarheid. Bepaal welke variabelen een rol spelen en hoe de gegevens verzameld gaan worden. De populatie is de totale groep waarop het onderzoek zich richt. 28
29 5.4 Onderzoeken en presenteren [2] Als bepaalde zaken onderzocht worden zoals: Het stemgedrag van de Nederlandse bevolking; Het beste soort wasmiddel; De kwaliteitscontrole van een product. dan wordt meestal gebruik gemaakt van een steekproef. Bij een steekproef wordt een selectie gemaakt uit de volledige groep (bijvoorbeeld personen (respondenten) uit de Nederlandse bevolking wordt naar hun politieke voorkeur gevraagd). Op basis van deze selectie kunnen dan bepaalde conclusies getrokken worden. Een steekproef moet representatief zijn, om een juiste afspiegeling van de volledige groep (populatie) te zijn. 1) De steekproef moet voldoende groot zijn; (Er moeten voldoende mensen ondervraagd worden) 2) De steekproef moet aselect zijn. (Iedereen moet evenveel kans hebben om in de steekproef voor te komen) 29
30 5.4 Onderzoeken en presenteren [3] Variabelen die onderzocht worden, kunnen op verschillende manieren gemeten worden: 1. Nominaal meetniveau: Alleen het onderscheid tussen verschillende categorieën is van belang. Bv. Geslacht, woonplaats, beroep en postcode. 2. Ordinaal meetniveau: Niet alleen het onderscheid maar ook de volgorde tussen verschillende categorieën van belang. Bv. aantal sterren van restaurant, rang in het leger. 3. Intervalniveau: Onderscheid en volgorde tussen verschillende categorieën zijn van belang en er zijn gelijke verschillen tussen de categorieën. Bv. Jaartallen. 30
31 5.4 Onderzoeken en presenteren [3] Variabelen die onderzocht worden, kunnen op verschillende manieren gemeten worden: 4. Rationiveau: Onderscheid en volgorde tussen verschillende categorieën zijn van belang. Er zijn gelijke verschillen tussen de categorieën en er is een natuurlijk nulpunt. Bij leeftijd is de geboorte een natuurlijk nulpunt. Bij inkomen is geen inkomen een natuurlijk nulpunt. Bij jaartallen is het jaar nul geen gegeven nulpunt, want het is op een gegeven moment gekozen. (Jaartallen zijn een meting op intervalniveau) 31
32 5.4 Onderzoeken en presenteren [4] In het plaatje hierboven is m.b.v. een dotplot aangegeven hoe vaak een bepaald aantal lucifers in een doosje zit. 32
33 5.4 Onderzoeken en presenteren [4] Dit plaatje is een spreidingsdiagram. Van een groep personen is onderzocht hoe lang ze zijn en wat de lengte van hun armen is. De punten zijn de elementen (personen) van de onderzochte populatie. Elk element is op twee kenmerken (lichaamslengte en lengte armen) onderzocht. 33
34 5.4 Onderzoeken en presenteren [4] Voorbeeld: 2,6% van alle Nederlanders, die mogen stemmen, is lid van een politieke partij. Dit is de populatieproportie (p). Dit is het gedeelte van de populatie dat een bepaald kenmerk heeft. p aantal elementen met een bepaald kenmerk in de populatie totaal aantal elementen in de populatie Bij een steekproef van lengte blijkt dat 35 mensen lid zijn van een politieke partij. De steekproefproportie ( ) is gelijk aan: ˆp 35 0, aantal elementen met een bepaald kenmerk in de steekproef pˆ totaal aantal elementen in de steekproef 34
35 5.4 Onderzoeken en presenteren [5] Veel voorkomende fouten bij statistisch onderzoek: 1) Een conclusie is gebaseerd op een niet representatieve steekproef; 2) Een conclusie is suggestief, nietszeggend of zet je op het verkeerde been; 3) Voor een conclusie is slechts een gedeelte van de onderzoeksresultaten gebruikt; 4) Er wordt een gevolgtrekking gedaan die te kort door de bocht is. Er is een causaal (oorzakelijk) verband tussen twee variabelen als: 1) Er een statistisch verband is tussen de variabelen; 2) De variabele die als veroorzakende variabele wordt beschouwd (onafhankelijke variabele), moet in de tijd voorafgaan aan de andere variabele (afhankelijke variabele); 3) Er moeten geen andere variabelen in het spel zijn die het verband veroorzaken. 35
3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.
3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal
8.1 Centrum- en spreidingsmaten [1]
8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte
Samenvattingen 5HAVO Wiskunde A.
Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband
9.1 Centrummaten en verdelingen[1]
9.1 Centrummaten en verdelingen[1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7 9
4.1 Eigenschappen van de normale verdeling [1]
4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.
DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A
DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A Docentenhandleiding 1. Voorwoord Doel van de praktische opdracht bij het hoofdstuk over statistiek 1 : Het doel van de praktische opdracht (PO)
DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO
DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO Leerlingmateriaal 1. Doel van de praktische opdracht Het doel van deze praktische opdracht is om de theorie uit je boek te verbinden met de data
HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....
HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan
Onderzoeksmethodiek LE: 2
Onderzoeksmethodiek LE: 2 3 Parameters en grootheden 3.1 Parameters Wat is een parameter? Een karakteristieke grootheid van een populatie Gem. gewicht van een 34-jarige man 3.2 Steekproefgrootheden Wat
9.1 Gemiddelde, modus en mediaan [1]
9.1 Gemiddelde, modus en mediaan [1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7
Overzicht statistiek 5N4p
Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...
Statistiek: Herhaling en aanvulling
Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,
STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen
STATISTIEK Een korte samenvatting over: Termen Tabellen Diagrammen Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het
Checklist Wiskunde A HAVO 4 2014-2015 HML
Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.
S1 STATISTIEK. Tabellen & diagrammen Centrummaten & Spreiding
S1 STATISTIEK Tabellen & diagrammen Centrummaten & Spreiding TABELLEN & DIAGRAMMEN WELKE AUTO VIND JIJ HET MOOISTE? Kies 1,2,3,4 of 5 NUMMER 1 NUMMER 2 NUMMER 3 NUMMER 4 NUMMER 5 VERWERKING Tabel Cirkeldiagram
4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100.
4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100. 26 26% = = 0,26 100 In het rechterplaatje zijn 80 van de 400
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.3 Representaties In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1 Data presenteren 1.1 Introductie In
META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t
META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke
4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6
Voorbeeld 1: 1 miljoen = 1.000.000 4.1 Cijfermateriaal In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 2: 1 miljard = 1.000.000.000 In dit getal komen negen nullen voor.
Samenvatting Tentamenstof. Statistiek 1 - Vakgedeelte
Samenvatting Tentamenstof Statistiek 1 - Vakgedeelte Naam: Thomas Sluyter Nummer: 1018808 Jaar / Klas: 1e jaar Docent Wiskunde, deeltijd Datum: 14 oktober, 2007 Voorwoord Het eerstejaars vak Statistiek
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1.4 Oefenen Opgave 9 Bekijk de genoemde dataset
Netwerk, 4 Havo D, uitwerkingen Hoofdstuk 1, Statistische verwerking 1
Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking Hoofdstuk Statistische verwerking Kern Populatie en steekproef a In Derbroek vonden + 6 ondervraagden de overlast ernstig tot zeer ernstig.
4 HAVO wiskunde A HOOFDSTUK voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken
4 HAVO wiskunde A HOOFDSTUK 6 0. voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken 0. voorkennis Centrum- en spreidingsmaten Centrummaten:
2.1.4 Oefenen. d. Je ziet hier twee weegschalen. Wat is het verschil tussen beide als het gaat om het aflezen van een gewicht?
2.1.4 Oefenen Opgave 9 Bekijk de genoemde dataset GEGEVENS154LEERLINGEN. a. Hoe lang is het grootste meisje? En de grootste jongen? b. Welke lengtes komen het meeste voor? c. Is het berekenen van gemiddelden
2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B
1. (a) Bereken het gemiddelde salaris van de werknemers in de tabel hiernaast. (b) Bereken ook het mediale salaris. (c) Hoe groot is het modale salaris hier? salaris in euro s aantal werknemers 15000 1
Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1
Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch
Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen.
Statistiek Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het meeste (driemaal) voor, dus de modus is 5. (Kijk maar:
WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0
WISKUNDE A HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de
Vendorrating: statistische presentatiemiddelen
pag.: 1 van 6 Vendorrating: statistische presentatiemiddelen Hieronder bespreken we in het kort een aantal verschillende presentatievormen waarmee we vendorratingresultaten op een duidelijke manier kunnen
TIP 10: ANALYSE VAN DE CIJFERS
TOETSTIP 10 oktober 2011 Bepaling wat en waarom je wilt meten Toetsopzet Materiaal Betrouw- baarheid Beoordeling Interpretatie resultaten TIP 10: ANALYSE VAN DE CIJFERS Wie les geeft, botst automatisch
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken Inhoud 2.0 Data voor onderzoek 2.1 Data presenteren 2.2 Centrum en spreiding 2.3 Verdelingen typeren 2.4 Relaties 2.5 Overzicht In
9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.
9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment
WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0
WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de
Boek 1 hoofdstuk 4 Havo 4 Statistiek.
Samenvatting statistiek havo4 boek 1 H4 Centrummaten: Modus (modaal) = wat het vaakst voorkomt, zowel kwalitatief als kwantitatief Mediaan = het middelste getal, in een rij getallen die op volgorde staat
OEFENPROEFWERK HAVO A DEEL 2
OEFENPROEFWERK HAVO A DEEL 2 HOOFDSTUK 6 STATISTIEK EN BESLISSINGEN OPGAVE 1 Hieronder zijn vier boxplots getekend. a Welke boxplot hoort bij een links-scheve verdeling? Licht toe. b Hoe ligt bij boxplot
SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen
SPSS Introductiecursus Sanne Hoeks Mattie Lenzen Statistiek, waarom? Doel van het onderzoek om nieuwe feiten van de werkelijkheid vast te stellen door middel van systematisch onderzoek en empirische verzamelen
bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW]
bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst statistiek/gegevensverwerking los materiaal, niet uit boek [PW] procenten percentage: bv: van de 0 kinderen hadden er 7: hoeveel procent
gewicht in kg jongen/meisje aantal keer sporten per week bloedgroep zakgeld per maand in euro's
a G&R havo A deel Statistiek C. von Schwartzenberg / Kwantitatieve gegevens: (getallen waarmee je kunt rekenen) Kwalitatieve gegevens: gewicht in kg jongen/meisje aantal keer sporten per week bloedgroep
A. Week 1: Introductie in de statistiek.
A. Week 1: Introductie in de statistiek. Populatie en steekproef. In dit vak leren we de basis van de statistiek. In de statistiek probeert men erachter te komen hoe we de populatie het beste kunnen observeren.
1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c
Hoofdstuk 8, Statistische maten 1 Hoofdstuk 8 Statistische maten Kern 1 Centrum- en spreidingsmaten 1 a Partij is een kwalitatieve variaele, kindertal een kwantitatieve, discrete variaele.,c d kindertal
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken In opdracht van: Commissie Toekomst Wiskunde Onderwijs ctwo Utrecht 2009, SLO Utrecht 2014 Dit lesmateriaal is ontwikkeld in het kader
voorbeeldexamenopgaven statistiek wiskunde A havo
voorbeeldexamenopgaven statistiek wiskunde A havo FORMULEBLAD Vuistregels voor de grootte van het verschil van twee groepen 2 2 kruistabel a c b d, met phi = ad bc ( a+ b)( a+ c)( b+ d)( c+ d) als phi
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 4 Twee groepen vergelijken 4.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 4.4 Oefenen Voorbeeld Bekijk de dataset
College 4 Inspecteren van Data: Verdelingen
College Inspecteren van Data: Verdelingen Inleiding M&T 01 013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek.
Inleiding Applicatie Software - Statgraphics
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een
Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje
HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen. Checklist (PDF)
HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen. Checklist (PDF) 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel:
Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent
Hoofdstuk 2 : Grafische beschrijving van data Marnix Van Daele Marnix.VanDaele@UGent.be Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Grafische beschrijving van data p. 1/35 Soorten meetwaarden
Inhoud. Inleiding 15. Deel I Beschrijvende statistiek 17
Inhoud Inleiding 15 Deel I Beschrijvende statistiek 17 1 Tabellen, grafieken en kengetallen 19 1.1 Case Game 16 20 1.2 Populatie en steekproef 22 1.3 Meetniveaus 23 1.4 De frequentieverdeling 25 1.5 Grafieken
Niveauproef wiskunde voor AAV
Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet
Hoe verwerk je gegevens met de Grafische Rekenmachine?
Hoe verwerk je gegevens met de Grafische Rekenmachine? Heb je een tabel met alleen gegevens? Kies STAT EDIT Vul L 1 met je gegevens (als de lijst niet leeg is, ga je met de pijltjes helemaal naar boven,
datavisualisatie Stappen 14-12-12 verzamelen en opschonen analyseren van data interpeteren hoorcollege 4 visualisatie representeren
Stappen datavisualisatie hoorcollege 4 visualisatie HVA CMD V2 12 december 2012 verzamelen en opschonen analyseren van data interpeteren representeren in context plaatsen 1 "Ultimately, the key to a successful
Aardgasbaten. (b) Teken bij 1996 een cirkeldiagram (c) Teken bij de tabel een vlakdiagram
1. In figuur 1 zie je gegevens over de aardgasbaten in Nederland gedurende de periode 1985-1994. Je ziet zowel een staafdiagram als een frequentiepolygoon. Aardgasbaten figuur 1 (a) In welk jaar is de
Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn
Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel
2.2 Verbanden tussen datarepresentaties
2.2 Verbanden tussen datarepresentaties 2.2.1 Introductie In paragraaf 1 heb je een hele reeks aan datarepresentaties leren kennen. In deze paragraaf leer je welke verbanden er tussen deze representaties
22-9-2010. Pieperproef. Praktische opdracht voor wiskunde Klas 2 Havo. 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8
Pieperproef Praktische opdracht voor wiskunde Klas 2 Havo 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8 Inhoudsopgave Benodigdheden blz. 3 Pieperonderzoek, De proef blz. 4 Uitwerking & Normering
Kwantitatieve methoden. Samenvatting met verwijzing naar Excel functies
Kwantitatieve methoden Samenvatting met verwijzing naar Excel functies I. Inleiding Statistiek is een gebied in de wiskunde dat zich bezighoudt met het samenvatten, beschrijven en analyseren van (grote
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
Aardappelomzet in milj kg.
PERIODE STATISTIEK, COMBINATORIEK, Lineaire en Exponentiele functies. Voor al deze opdrachten geldt dat het werken met EXCEL van harte wordt aanbevolen. OPDRACHT 1 Aardappelen Uit onderzoek van de LandbouwUniversiteit
uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo
uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo - 5-6-205 lees verder Kijkcijfers maximumscore 4 Het toepassen van de formule
1 E NKELE STATISTISCHE BEGRIPPEN
1 E NKELE STATISTISCHE BEGRIPPEN 1 1.1 Een statistisch onderzoek Als we goed willen uitleggen wat statistiek precies inhoudt, is het nodig eerst enkele begrippen te verduidelijken. We doen dit aan de hand
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 2 Verbanden tussen data representaties 2.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 2 Verbanden tussen data representaties
2. Data en datasets verwerken. Boekje 2 havo wiskunde A, domein E: Statistiek
2. Data en datasets verwerken Boekje 2 havo wiskunde A, domein E: Statistiek 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld in het
In de praktijk gaat men eerder werken met numerieke codes. Aan de hand van een codeboek wordt per variabele een nummer aan een waarde toegekend.
Basisconcepten De statistiek heeft de studie van gegevens, die kenmerken van een bevolking beschrijven, tot object. Als je zelf onderzoek wil verrichten of de resultaten van het werk van een ander wil
G&R vwo A/C deel 2 8 De normale verdeling C. von Schwartzenberg 1/14. 3a 1 2
G&R vwo A/C deel 8 De normale verdeling C. von Schwartzenberg 1/14 1a Gemiddelde startgeld x = 1 100000 + 4 4000 + 3000 = 13100 dollar. 10 1b Het gemiddelde wordt sterk bepaald door de uitschieter van
College Week 4 Inspecteren van Data: Verdelingen
College Week 4 Inspecteren van Data: Verdelingen Inleiding in de Methoden & Technieken 2013 2014 Hemmo Smit Dus volgende week Geen college en werkgroepen Maar Oefententamen on-line (BB) Data invoeren voor
Onderzoek. B-cluster BBB-OND2B.2
Onderzoek B-cluster BBB-OND2B.2 Succes met leren Leuk dat je onze bundels hebt gedownload. Met deze bundels hopen we dat het leren een stuk makkelijker wordt. We proberen de beste samenvattingen voor jou
Leerstof voortentamen wiskunde A. 1. Het voortentamen wiskunde A
Leerstof voortentamen wiskunde A In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde A op havo niveau te beginnen met het voortentamen van december 2017. Deze specificatie
14.1 Kansberekeningen [1]
14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien
Statistiek met Excel. Schoolexamen en Uitbreidingsopdrachten. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14
Statistiek met Excel Schoolexamen en Uitbreidingsopdrachten 2 Inhoudsopgave Achtergrondinformatie... 4 Schoolexamen Wiskunde VWO: Statistiek met grote datasets... 5 Uibreidingsopdrachten vwo 5... 6 Schoolexamen
Programma : 1. Presentatie 2. H 5.1 Statistiek zelf gegevens verzamelen en ermee werken 3. Vragen over H4, formules
Programma : 1. Presentatie 2. H 5.1 Statistiek zelf gegevens verzamelen en ermee werken 3. Vragen over H4, formules 1 2 programma hw nagekeken en verbeterd? voorbereiden pw filmpjes wie zoekt ze op? vrijdag
begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie
begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:
Statistiek. Beschrijvend statistiek
Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van
(Voorlopige omschrijving.) Bedrag dat resteert nadat de exploitatiekosten betaald zijn.
pen analyseren verkoopcijfers UITWERKING begrip nettowinst brutowinstpercentage brutowinst brutowinst (Voorlopige.) Bedrag dat resteert nadat de exploitatiekosten betaald zijn. Percentage waarmee de inkoopprijs
Inleiding tot de meettheorie
Inleiding tot de meettheorie Meten is het toekennen van cijfers aan voorwerpen. Koeien Koeien in een kudde, studenten in een auditorium, mensen met een bepaalde stoornis, leerlingen met meer dan 15 in
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
Beschrijvend statistiek
1 Beschrijvend statistiek 1. In een school werd het intelligentiequotiënt gemeten van de leerlingen van het zesde jaar (zie tabel). De getallen werden afgerond tot op de eenheid. De berekeningen mogen
aten voor het centrum, de spreiding en de vorm van een frequentieverdeling
M aten voor het centrum, de spreiding en de vorm van een frequentieverdeling 11 In dit hoofdstuk bespreken we enkele kengetallen van een frequentieverdeling, zoals het gemiddelde, de mediaan en de standaardafwijking.
Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007
Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met
STATISTIEK OEFENOPGAVEN
STATISTIEK OEFENOPGAVEN 1. Bereken van elke serie getallen steeds de modus, het gemiddelde, de mediaan en de spreidingsbreedte. A. 3, 3, 4, 4, 4, 5, 5, 7, 8, 10. B. 2, 3, 3, 4, 4, 5, 8, 9, 11. C. 9, 3,
Statistiek voor de financiële beroepen
Statistiek voor de financiële beroepen Statistiek voor de financiële beroepen Sven Janssen Opmaak: Sander Pinkse Boekproductie, Amsterdam ISBN 978 90 3723 458 9 2016 Uitgeverij Edu Actief b.v. Gehele
2. Data en datasets verwerken
2. Data en datasets verwerken Boekje 2 havo wiskunde A, domein E: Statistiek Uitwerkingen 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld
Open en Gepersonaliseerd Statistiekonderwijs (OGS) Deliverable 1.1 Requirements
Open en Gepersonaliseerd Statistiekonderwijs (OGS) Deliverable 1.1 Requirements Sietske Tacoma, Susanne Tak, Henk Hietbrink en Wouter van Joolingen Inleiding Het doel van dit project is om een aantal vrij
Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor
Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor 4 juni 2012 Het voorkomen van ziekte kan op drie manieren worden weergegeven: - Prevalentie - Cumulatieve incidentie - Incidentiedichtheid In de
lengte aantal sportende broers/zussen
Oefening 1 Alvorens opgenomen te worden in een speciaal begeleidingsprogramma s voor jonge talentvolle lopers, worden jonge atleten eerst onderworpen aan een aantal vragenlijsten en onderzoeken. Uit het
Statistiek basisbegrippen
MARKETING / 07B HBO Marketing / Marketing management Raymond Reinhardt 3R Business Development raymond.reinhardt@3r-bdc.com 3R 1 M Statistiek: wetenschap die gericht is op waarnemen, bestuderen en analyseren
tabellen, grafieken en diagrammen
tabellen, grafieken en diagrammen vmbo Tabellen, grafieken en diagrammen CSWeetje VMBO 9 In het dagelijkse leven heb je te maken met informatie en gegevens. Op verschillende manieren kun je deze tegen
Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies
Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies 6.. Uit een normaal verdeeld universum X met gemiddelde waarde µ = en standaardafwijking σ = worden 0 onafhankelijke steekproefwaarden
Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent
Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende
Populatie: De gehele groep elementen waarover informatie wordt gewenst.
Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:
Beschrijvende statistiek
Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je op welke manier centrum- en spreidingsmaten je helpen bij de interpretatie van statistische gegevens. Je leert ook dat grafische voorstellingen
Onderzoeksmethoden: Statistiek 1
0 123458898391081904749010998490849 074907079`794793784908`094389983.. Onderzoeksmethoden: Statistiek 1 Joepie, ons computerprogramma levert output Wat doen we hiermee? Marjan van den Akker 1 2 Output
3. Data verwerven. Boekje 3 havo wiskunde A, domein E: Statistiek. Uitwerkingen
3. Data verwerven Boekje 3 havo wiskunde A, domein E: Statistiek Uitwerkingen 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld in het
Mini-theorie vooraf. Beelddiagram In een beelddiagram zijn de hoeveelheden aangegeven met figuurtjes
Allereerst een goede raad - gebruik de HELP-functie van waar je kunt - sla regelmatig op - gebruik de functie "Ongedaan maken" (Ctrl+Z) als eerste redmiddel Mini-theorie vooraf Soorten grafieken Grafieken
Exploratieve statistiek voor het secundair onderwijs Portfolio voor de leerling
Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Centrum voor statistiek D/2005/2451/45 2005, Universiteit Hasselt (België) Niets uit deze uitgave mag worden verveelvoudigd
Hoofdstuk 8 - De normale verdeling
ladzijde 216 1a Staafdiagram 3 want te verwachten is dat er elke maand ongeveer evenveel mensen jarig zijn. Dat is meteen ook de reden waarom de andere drie niet voldoen. Feruari estaat uit vier weken
Paragraaf 10.1 : Populatie en Steekproef
Hoofdstuk 10 Statistische Variabelen (H5 Wis A) Pagina 1 van 8 Paragraaf 10.1 : Populatie en Steekproef Les 1 : Herhaling Definitie Betrouwbaarheidsinterval (BI) Betrouwbaarheidsinterval (BI) = { de waarden
Centrummaten en klassen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.
Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74220 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein
1BA PSYCH Statistiek 1 Oefeningenreeks 3 1
Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2
Les 1 Kwaliteitsbeheersing. Les 2 Kwaliteitsgegevens. Les 3 Introductie Statistiek. Les 4 Normale verdeling. Kwaliteit
Kwaliteit Les 1 Kwaliteitsbeheersing Introductie & Begrippen Monstername Les 2 Kwaliteitsgegevens Gegevens Verzamelen Gegevens Weergeven Les 3 Introductie Statistiek Statistische begrippen Statistische