Bilineaire Vormen. Hoofdstuk 9

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Bilineaire Vormen. Hoofdstuk 9"

Transcriptie

1 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte te bekijken. In het algemeen is er geen begrip lengte gedefinieerd in een lichaam. Maar in C, en dus in deellichamen daarvan, zoals Q en R, is dat wel het geval. Het afstandsbegrip in een vectorruimte wordt bepaald door het inproduct; dat is een speciaal geval van een bilineaire vorm. Definitie 9. Een bilineaire vorm op V, voor een L-vectorruimte V, is een bilineaire vorm op de verzameling V V ; dus een afbeelding die aan een paar (v,v ) van vectoren uit V een element van het lichaam L toevoegt, op een manier die lineair is in het eerste en in het tweede argument. We noemen B symmetrisch als B(v,w) = B(w,v) voor elke v,w V. en anti-symmetrisch als B(v,w) = B(w,v) voor elke v,w V. Stelling 9. Zij V een eindig-dimensionale L-vectorruimte met basis E = {e,..., e n }. Er is een bijectie tussen de verzameling bilineaire vormen op V en de verzameling n n matrices over L, gegeven door aan B de matrix M ij = B(e i,e j ) toe te kennen. Bewijs. Als A M n n (L) een n n matrix is dan geeft de afbeelding B A, gedefinieerd door B A (v,w) = v T Aw L, een bilineaire vorm op L n. Omgekeerd, als B een bilineaire vorm is op een vectorruimte V met basis E = {e,...,e n }, dan geldt: B(a,b) = B( α i e i, β j e j ) = i= j= = α i B(e i, β j e j ) i= i= j= j= α i β j B(e i,e j ) = a T M ij b, als we a,b als kolomvectoren met coördinaten α i, resp. β i ten opzichte van de basis E schrijven, en M = M ij de matrix met op positie i,j het element B(e i,e j ) is. Het is duidelijk dat verschillende bilineaire B verschillende matrices geven, en dat bij elke matrix M een bilineaire vorm te vinden is. Definitie 9.3 Matrix M = M B = M E B = (B(e i,e j )) ij heet de Grammatrix van B. Veel eigenschappen van een bilineaire vorm B zijn van de matrix M B af te lezen. 9

2 6 HOOFDSTUK 9. BILINEAIRE VORMEN Stelling 9.4 B is symmetrisch M B is symmetrisch. Bewijs. M B is symmetrisch dan en slechts dan als (M B ) ij = (M B ) ji voor alle i,j. Per definitie is (M B ) ij = B(e i,e j ), dus symmetrie van M B volgt direct uit symmetrie van B. Maar B(a,b) = B( n i= α ie i, n j= β je j ) = i,j α iβ j B(e i,e j ) en dat is voor alle a,b gelijk aan B(b,a) = B( n j= β je j, n i= α ie i ) = i,j α iβ j B(e j,e i ) als M B symmetrisch is. In het bovenstaande hebben we niets geëist over de gekozen basis. Dus symmetrie is onafhankelijk van de keuze van basis! Gevolg 9. De volgende beweringen zijn equivalent: (i) B is symmetrisch; (ii) er is een basis E van V ten opzichte waarvan MB E symmetrisch is; (iii) ten opzichte van elke basis F van V is MB F symmetrisch. Zoals we ons in het vorige hoofdstuk afvroegen of we een matrix die een lineaire afbeelding ten opzichte van een gekozen basis representeerde altijd op diagonaalvorm konden brengen door basisverandering, zo kunnen we hier dezelfde vraag stellen voor de matrix die een bilineaire vorm representeert. Met B F zullen we de bilineaire vorm ten opzichte van de basis F aangeven. Ging een matrix M die een lineaire afbeelding representeerde onder basistransformatie over in een geconjugeerde matrix T MT, de matrix M B van een bilineare vorm gaat over in T T M B T. Stelling 9.6 Laten E en F bases voor V zijn, en zij T = F Mid E, de transformatiematrix die E in F overvoert. Dan geldt: M E B = T T M F B T. Bewijs. Laten v en v twee vectoren uit V, uitgedrukt als kolomvectoren ten opzichte van de basis E, zijn. Dan zijn Tv en Tv dezelfde vectoren uitgedrukt op de basis F, dus moet en het resultaat volgt. v T M E B v = (Tv ) T M F B Tv = v T T T M F B Tv, Voorbeeld 9.7 Zij V = R 3 en laat, voor vectoren ten opzichte van de standaardbasis E: B((α,α,α 3 ),(β,β,β 3 )) = α β α β α β + α β + 4α 3 β 3. Zij, bijvoorbeeld, F := {f,f,f 3 } = {e,e + e, e 3}. Laten we eens kijken hoe B er ten opzichte van F uitziet. B(a f + a f + a 3 f 3,b f + b f + b 3 f 3 ) = B(a e + a (e + e ) + a 3 e 3,b e + b (e + e ) + b 3 e 3) = B((a + a )e + a e + a 3e 3,(b + b )e + b e + b 3e 3 ) = (a + a )(b + b ) (a + a )b a (b + b ) + a b + 4( a 3 b 3) = a b + a b + a 3 b 3.

3 6 Ten opzichte van deze basis is de bilineaire afbeelding gewoon het inproduct! In dit voorbeeld is MB E =, 4 en MB F =, terwijl E Mid F : inderdaad, =. 4 Definitie 9.8 We noemen twee vierkante matrices M,N M n n (L) equivalent als er een inverteerbare T bestaat zodat M = T T NT. We schrijven M N. Twee bilineaire vormen B en C noemen we equivalent (en we schrijven wel B C) als (voor zekere basiskeuze) geldt: M C M B. Het is duidelijk dat het dan voor elke basiskeuze geldt, en dat B en C equivalent zijn als er bases E, F bestaan zodat B E = C F. Een voor de hand liggende vraag is nu of symmetrische matrix equivalent is met een diagonaalmatrix. In dit geval is het antwoord bijna altijd bevestigend. Eerst maar eens een uitzondering. Voorbeeld 9.9 Zij M = ( ) M (F ). Dan is M niet equivalent met een diagonaalmatrix. Kijk maar: laat T een willekeurige inverteerbare matrix zijn dan ( )( )( ) ( ) T T a c a b ca ad + bc MT = = b d c d ad + bc bd en ad + bc = ad bc = det(t) in F. Dat dit niet werkt in dit geval heeft te maken met het feit dat in F de gelijkheid = geldt. In een lichaam met gaat het wel goed. Stelling 9. Zij M een symmetrische matrix over een lichaam L van karakteristiek. Dan is M equivalent met een diagonaalmatrix D. Bewijs. We geven een bewijs in de vorm van een algoritme, dat je precies vertelt hoe je D kunt construeren. We veronderstellen dat M M n n (L). Stap : Als M een diagonaalmatrix is (bijvoorbeeld de nulmatrix, of een matrix), dan ben je klaar. Stap : Veronderstel dat n. Allereerst moet je een v vinden met v T Mv :

4 6 HOOFDSTUK 9. BILINEAIRE VORMEN Als er een diagonaalelement M ii is, kies dan v = e i (want e T i Me i = M ii ). Zijn alle elementen op de diagonaal zoek dan i,j zodat M ij. Neem v = e i + e j, want (e i + e j ) T M(e i + e j ) = e T i Me i + e T i Me j + e T j Me i + e T j Me j = M ii + M ij + M ji + M jj = M ij + M ji = M ij. Stap 3: Laat w = Mv, en bepaal de kern van de afbeelding f : V L gedefinieerd door f(u) = u T w. Merk op dat dit een lineaire afbeelding is. Bovendien is f surjectief: laat a = f(v ) L, dan is a door de keuze van v. Voor b L is f((b/a)v ) = (b/a)f(v ) = b. Omdat n = dim(ker f)+dim(im f) heeft de deelruimte Ker(f) van V dimensie n. Laat {v,...,v n } een basis voor Ker f zijn. Stap 4: Maak nu T n = (v,v,...,v n ), met de vectoren v i als kolommen. Stel T n is niet inverteerbaar. Dat is equivalent met: {v,v,...,v n } is een afhankelijk stelsel. Omdat {v,...,v n } een onafhankelijk stelsel is, kan dat laatste alleen als v v,...,v n = Ker(f), oftewel f(v ) = ; dat is in tegenspraak met de keuze in Stap. Dus T n is inverteerbaar. Bovendien is T T n MT n van de vorm ( a M ) waar M een symmetrische (n ) (n ) matrix is, omdat (T T n MT n) ij = v T i Mv j en v T i Mv = v T i w = f(v i) = voor i > want v i Ker(f). Ga nu naar Stap en herhaal de procedure voor M. Het is duidelijk dat dit proces na eindig veel stappen een diagonaalmatrix D oplevert. Voorbeeld 9. Laten we Algoritme 9. toepassen op de kwadratische vorm met M = MB E =, 4 over R, uit voorbeeld 9.7. Voor v in Stap kunnen we e nemen, en dan is Mv = (,,) T. In Stap 3 zoeken we de kern van de afbeelding die aan u = (u,u,u 3 ) het getal u u toevoegt; dan wordt de kern opgespannen door v = (,,) T en v 3 = (,,) T, zodat T =, en we zijn in één klap klaar: T T MT = =. 4 4 Kwadratische Vormen Definitie 9. Een kwadratische vorm Q in n variabelen over een lichaam L is een homogeen polynoom van graad met coëfficiënten in L.

5 63 Opmerking 9.3 Dat een polynoom P = P(x,x,...,x n ) in n variabelen homogeen van graad k is betekent dat wanneer we P schrijven als som van termen P = p k,k,...,k n x k xk xkn n, met natuurlijke exponenten k j, een coëfficiënt p k,k,...,k n alleen maar ongelijk mag zijn als k +k + +k n = k. Een kwadratische vorm bestaat dus uit termen van de vorm q i,j x i x j (waar i en j gelijk kunnen zijn): 3x + x x is wél een kwadratische vorm, maar 3x + x + x niet. Door substitutie kunnen we een polynoom over een lichaam L in n variabelen opvatten als een afbeelding van L n (of een willekeurige n-dimensionale L- vectorruimte V ) naar L; met andere woorden, via Q(v) = Q((v,v,...,v n )) = Q(v,v,...,v n ), kan een kwadratische vorm als afbeelding Q : L n L worden opgevat. De volgende stelling drukt uit dat dit hetzelfde is als Q(v) = v T M Q v met M Q de matrix bepaald door Q. Stelling 9.4 Als L een lichaam is van karakteristiek ongelijk aan dan is er een één-éénduidig verband tussen kwadratische vormen in n variabelen op L en symmetrische n n matrices over L. Bewijs. Laat Q(x,x,...,x n ) = i j n q i,j x i x j. Definieer dan de matrix M Q M n n (L) door (M Q ) ii = q i,i en (M Q ) ij = q i,j / voor i j; hier is i,j n. Gevolg 9. Over een lichaam van karakteristiek ongelijk kunnen we met een kwadratische vorm Q in n variabelen een unieke symmetrische bilineaire vorm B op L n, voorzien van de standaardbasis, associëren. Dan geldt: Q(x) = B(x,x). Bewijs. Deze associatie volgt uit de stelling, omdat een symmetrische matrix M Q uit M n n (L) correspondeert met een symmetrische bilineaire vorm op L n met een gegeven basis, via B(v,w) = v T M Q w. Dan is Q(x) = B(x,x), en M B = M Q. Gevolg 9.6 Onder bovenstaande correspondentie geldt: B(v,w) = (Q(v + w) Q(v) Q(w)). Bewijs. Dit volgt direct door het herschrijven van Q(v + w) = B(v + w, v + w): B(v +w,v +w) = B(v,v)+B(v,w)+B(w,v)+B(w,w) = Q(v)+B(v,w)+Q(w). Voorbeeld 9.7 Laat Q de kwadratische vorm in 3 variabelen over Q zijn gegeven door Q(x,x,x 3 ) = x + x x + x x 3 + x 3. Dit is een homogeen polynoom, waarmee we de symmetrische matrix associëren. Met Q correspondeert dan de symmetrische bilineaire vorm B(v,w) = v w + v w + v w + v w 3 + v 3 w + v 3 w 3.

6 64 HOOFDSTUK 9. BILINEAIRE VORMEN Reëel-symmetrische bilineaire vormen In deze sectie laten we zien dat we symmetrische bilineaire vormen (en daarmee kwadratische vormen) op een reële vectorruimte onder equivalentie kunnen karakteriseren door drie invarianten. Definitie 9.8 Voor een reële diagonaalmatrix D definiëren we de 3 natuurlijke getallen n,n +,n als volgt: n (D) is het aantal nullen op de diagonaal van D, n + (D) is het aantal positieve elementen op de diagonaal van D, en n (D) is het aantal negatieve getallen op de diagonaal van D. Voor een symmetrische bilineaire vorm B op een eindig-dimensionale reële vectorruimte V definiëren we dan n (B) = n (D), n + (B) = n + (D), n (B) = n (D), voor een diagonaalmatrix D met D M B. Merk op dat bij elke symmetrische B volgens Stelling 9. zo n D bestaat. In het algemeen zijn er natuurlijk meerdere diagonaalmatrices die voldoen (je kunt immers bijvoorbeeld de basisvectoren verwisselen, of met een factor opblazen), maar de volgende stelling drukt uit dat dit toch een goede definitie is, namelijk, onafhankelijk van de keuze van D. Stelling 9.9 Laat B een bilineaire vorm op een reële n-dimensionale vectorruimte V zijn. Als D M B D, met diagonaalmatrices D en D, dan geldt: n (D) = n (D ), n + (D) = n + (D ), n (D) = n (D ). Bewijs. Merk eerst op dat een equivalentierelatie is, zodat de twee diagonaalmatrices D en D voldoen aan D D, oftewel er is een inverteerbare T zodat T T D T = D. Nu is n (D) = n rang(d) de dimensie van de kern van D, en net zo n (D ) = n rang(d ) de dimensie van de kern van D. Maar omdat T inverteerbaar is, geldt rang(d) = rang(d ) = r en dus n (D) = n (D ). Laat B nu de basis van V zijn ten opzichte waarvan B matrix D = MB B heeft, dan is D = T T D T = D de matrix MB C waar C = T B. We ordenen deze bases zo dat de eerste p = n + (D), resp. p = n + (D ) elementen b,...,b p en c,...,c p positieve waarden B(b i,b i ) en B(c j,c j ) opleveren, en de volgende m = n (D), resp. m = n (D ) negatieve waarden. Veronderstel nu eens dat p = n + (D) < n + (D ) = p ; omdat n = n + n + + n voor een diagonaalmatrix, geldt dan m = n (D) > n (D ) = m. Bekijk nu de verzameling vectoren S = {b,b,...,b p,c p +,... c p +m }. Dat zijn er p + m < p + m = r. De lineaire afbeelding f : V R p+m gegeven door f(v) = (B(v,b ),...,B(v,b p ),B(v,c p +),... B(v,c p +m )) heeft een beeld van dimensie p + m < r = n n (D), dus kern van dimensie n (p + m ) > n (n n (D)) = n (D) = n r, en daarom is er een w in de kern van f die niet bevat is in de ruimte opgespannen door {b r+,...,b n }. Schrijf w op basis B en gebruik dat w Kerf, dan is voor i p: = f(w) i = B( w k b k,b i ) = w i B(b i,b i ), zodat B(w,w) = B( w k b k, k= k= w k b k ) = k= wk B(b k,b k ) = k= p+m k=p+ w k B(b k,b k ) <,

7 6 omdat minstens één w k. Schrijf vervolgens w op basis C, dan is voor p + j p + m : = f(w) j = B( w k c k,c j ) = w j B(c j,c j ), zodat B(w,w) = B( w k c k, k= k= w k c k) = k= p w k B(ck,c k ) = w k B(ck,c k ) >, k= omdat weer minstens één w k. Maar dat is een tegenspraak! Omdat het geval n + (D) > n + (D ) op precies dezelfde manier tot een tegenspraak leidt, moet n + (D) = n + (D ), en dus ook n (D) = n (D ). Gevolg 9. Twee symmetrische bilineaire vormen op een reële vectorruimte V zijn equivalent dan en slechts dan als hun invarianten n,n +,n hetzelfde zijn. Gevolg 9. Zij B een symmetrische bilineaire vorm op een reële vectorruimte V. Dan bestaat er een basis voor V zodanig dat voor elk tweetal vectoren v, w V met coördinaten v i,w i ten opzichte van deze basis geldt: k= B(v,w) = v w + + v p w p v p+ w p+ v r w r, waar p = n + (B), en r = p + m met m = n (B). Bewijs. De bewering is equivalent met de bewering dat de Gram matrix van B een diagonaalmatrix is (ten opzichte van zekere basis) met op de diagonaal p getallen, dan m getallen en tenslotte n r getallen. Stelling 9.9 zegt dat een basis B bestaat zodat M B diagonaalmatrix D is met positieve D ii voor i p en negatieve D ii voor p+ i r. Vervangen we de basisvectoren b i door b i / D ii dan volgt de bewering. Voorbeeld 9. We bekijken het voorbeeld uit 9.7, en laten B op R 3 gegeven zijn door M = ten opzichte van de standaardbasis e,e,e 3. Het algoritme uit het bewijs van 9. heeft het volgende effect. Omdat M nemen we v = e ; dan heeft w = Mv coördinaten,/, en de kern van de afbeelding f(u) = u + /u wordt voortgebracht door van ( /,,) T en (,,) T. Dat betekent dat we moeten kijken naar T3 T MT 3 =, = 4 en het algoritme met de deelmatrix herhalen. We vinden ( )( )( ) ( T T M T = 4 = Als diagonaalvorm van B vinden we dus (na normalisatie van de lengten): B(v,w) = v w v w + v 3 w 3. ).,

8 66 HOOFDSTUK 9. BILINEAIRE VORMEN Gevolg 9.3 Bij elke kwadratische vorm Q in n variabelen x i over R bestaat een lineaire transformatie T : R n R n zodanig dat voor de variabelen y i, gegeven door y = Tx geldt: Q(y) = n i= q iyi. Bovendien is het aantal q i dat positief, negatief, of nul is onafhankelijk van de keuze van T, en kan q i {,,} door geschikte keuze van T bereikt worden. Bewijs. Dit volgt onmiddellijk uit de resultaten van deze en de vorige paragraaf. Voorbeeld 9.4 Natuurlijk werkt het algoritme uit het bewijs van Stelling 9. altijd, zoals in het voorgaande voorbeeld. We geven een alternatieve methode om met de hand de diagonaalvorm voor een kwadratische vorm te bepalen. Daarvoor bezien we hetzelfde geval als in het vorige voorbeeld, waar Q correspondeert met dus Q(x,x,x 3 ) = x + x x + x x 3 + x 3. We proberen eerst alle termen met x erin als sommen (of verschillen) van kwadraten te schrijven;, x + x x = (x + x ) ( x ), hebben toege- en daarna hetzelfde voor x (bedenk dat net we een term met x voegd!): ( x ) + x x 3 = ( x x 3), zodat we vinden: Q(x,x,x 3 ) = (x + x ) ( x x 3) + 9 x 3. Na overgang op nieuwe variabelen wordt dit: Q(y,y,y 3 ) = y y + y 3.

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Geadjungeerde en normaliteit

Geadjungeerde en normaliteit Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

De 15-stelling. Dennis Buijsman 23 augustus Begeleiding: S. R. Dahmen

De 15-stelling. Dennis Buijsman 23 augustus Begeleiding: S. R. Dahmen De 15-stelling Dennis Buijsman 23 augustus 2015 Begeleiding: S. R. Dahmen Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam

Nadere informatie

3 De duale vectorruimte

3 De duale vectorruimte 3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector Les 3 Matrix product We hebben gezien hoe we matrices kunnen gebruiken om lineaire afbeeldingen te beschrijven. Om het beeld van een vector onder een afbeelding te bepalen hebben we al een soort product

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A. TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0

Nadere informatie

Eigenwaarden en eigenvectoren in R n

Eigenwaarden en eigenvectoren in R n Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

b + b c + c d + d a + a

b + b c + c d + d a + a Voorwoord De wiskundige vorming die in de wiskundig sterke richtingen van het Vlaamse secundair onderwijs wordt aangeboden, vormt een zeer degelijke basis voor hogere studies in wetenschappelijke, technologische

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 2 Lineaire afbeeldingen 21 Inleiding Een afbeelding f van een verzameling V naar een verzameling W is een regel die aan ieder element v van V een element f(v) van W toevoegt maw een generalisatie

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/28 Elektrotechniek, Wiskunde en Informatica EWI x.k C 1/ D Ax.k/ C Bu.k/; y.k/ D Cx.k/ C Du.k/ We

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

Lineaire Algebra. Samenvatting. De Roover Robin

Lineaire Algebra. Samenvatting. De Roover Robin Lineaire Algebra Samenvatting De Roover Robin 21-211 Deze samenvatting is een overzicht van alle definities, stellingen, lemma's en proposities met hun bijhorende bewijzen. Deze samenvatting is gebaseerd

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

Voorbeeld theorie examen

Voorbeeld theorie examen Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode Examenvragen Meetkunde en lineaire algebra Tweede examenperiode 2008-2009 Een rechte conoïde met als richtrechte de X-as, en als richtoppervlak de sfeer met middelpunt in (0, 16, 0) en straal 9. (1) Stel

Nadere informatie

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Geef een goede onderbouwing van je antwoorden. Succes! 1. (a) (10 pt) Ontbindt het polynoom X 3 3X+3 in irreducibele factoren in Q[X] en in

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Wiskunde 1 voor kunstmatige intelligentie (WB033B) Bernd Souvignier

Wiskunde 1 voor kunstmatige intelligentie (WB033B) Bernd Souvignier Wiskunde voor kunstmatige intelligentie (WB33B Bernd Souvignier voorjaar 24 Deel I Lineaire Algebra Wiskunde voor kunstmatige intelligentie, 24 Les Stelsels lineaire vergelijkingen Om te beginnen is hier

Nadere informatie

Driehoeksongelijkheid en Ravi (groep 1)

Driehoeksongelijkheid en Ravi (groep 1) Driehoeksongelijkheid en Ravi (groep 1) Trainingsdag 3, april 009 Driehoeksongelijkheid Driehoeksongelijkheid Voor drie punten in het vlak A, B en C geldt altijd dat AC + CB AB. Gelijkheid geldt precies

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Ruimtemeetkunde deel 1

Ruimtemeetkunde deel 1 Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

2. Transformaties en matrices

2. Transformaties en matrices Transformaties en matrices Lineaire afbeelding Onder een lineaire afbeelding van R n naar R m verstaan we een functie A die aan iedere vector uit R n een vector uit R m toevoegt en van het volgende type

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

2 De Jordannormaalvorm voor lineaire transformaties

2 De Jordannormaalvorm voor lineaire transformaties 2 De Jordannormaalvorm voor lineaire transformaties We zagen dat iedere lineaire transformatie L : V V van een vectorruimte (V, K) over een algebraïsch afgesloten lichaam K op bovendriehoeksvorm kan worden

Nadere informatie

Leeswijzer bij het college Functies en Reeksen

Leeswijzer bij het college Functies en Reeksen Leeswijzer bij het college Functies en Reeksen Erik van den Ban Najaar 2012 Introductie eze leeswijzer bij het dictaat Functies en Reeksen (versie augustus 2011) heeft als doel een gewijzigde opbouw van

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

1 De permanent van een matrix

1 De permanent van een matrix De permanent van een matrix Schrijf S n voor de symmetrische groep, met als elementen alle permutaties σ van de getallen {,..., n}. De permanent van een n n matrix A = (a ij ) is een getal dat formeel

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie