FORMULES MECHANICA. Inhoud

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "FORMULES MECHANICA. Inhoud"

Transcriptie

1 FORMULES MECHANICA Inoud FORMULES MECHANICA... BEWEGING... S,,, a... AFGELEGDE WEG... SNELHEID... VERSNELLING... RELATIES TUSSEN AFGELEGDE WEG, SNELHEID EN VERSNELLING... Valbeweinen... 3 VRIJE VAL... 3 VERTICALE WORP... 3 Ronddraaiende bewein... 4 OMTREKSNELHEID... 4 HOEKSNELHEID... 4 HOEKSNELHEID... 5 HOEKVERSNELLING... 5 NORMAAL VERSNELLING (ronddraaiende bewein)... 6 TANGENTIAAL VERSNELLING... 7 WETTEN VAN NEWTON... 8 De eere we an Newon: de raaeidwe... 8 De weede we an Newon: krac erander de bewein... 8 De derde we an Newon: acie - reacie... 9 ARBEID... 9 Poeniële enerie... Kineice enerie... VERMOGEN... MOMENT EN KOPPEL... BEPALEN VAN DE WRIJVINGSCOEFFICIENT... Glijdende wrijin... Rollende wrijin... 3 Bandwrijin... 3

2 BEWEGING S,,, a AFGELEGDE WEG afelede we = in ijd = in neleid = in / ( ) SNELHEID neleid = in / ijd = in ernellin = a in /² a d eenedenerelijkin VERSNELLING neleid = in / ijd = in ernellin = a in /² of d eenedenerelijkin of S eiddelde neleid = V in / neleid = in / a i poiief ernellin a i neaief errain a = neleid i conan a d d a e ( ) de ernellin i de oeeeleid neleidercil per ijdeeneid a = conane, b: aarde ernellin = 9,8/² eenedenerelijkin / RELATIES TUSSEN AFGELEGDE WEG, SNELHEID EN VERSNELLING = neleid in = beinneleid in / a S = afelede we in S = afelede we in S S a = ernellin in /² = ijd in a ²

3 3 Valbeweinen VRIJE VAL neleid = neleid = eiddelde neleid = ijd = ernellin = a = = 9,8 /² afelede we of ooe = () () (3) (4) Bij een rije al i de beinneleid = nul (5) (3) (6) Me de forule (4) en (6) kan ecreen worden: ² VERTICALE WORP Me de forule (9) en () kan ecreen worden Een worp naar beneden +, > Een worp naar boen -, > a = zoda : a : zoda

4 4 ² Ronddraaiende bewein OMTREKSNELHEID HOEKSNELHEID Wa? Sneleid an een pun op een cirkel in funcie an e aanal owenelinen per ijdeeneid Sybool oor orekneleid Hoe berekenen Afelede we oor owenelin = orek an de cirkel = πd De ijd oor owenelin = /n D n Eeneid oor orekneleid = / Wa? Sneleid an een pun op een cirkel in funcie an de doorlopende oek per ijdeeneid Sybool oor oekneleid ω Hoe berekenen Doorelopende oek oor owenelin i 36 of π rad De ijd oor owenelin = /n n Eeneid oor oekneleid = rad/ Verband uen orek- en oekneleid D n R n n n of R R Verband uen afelede we op de cirkelorek en de door elopende oek afeledeboolene R R

5 5 HOEKSNELHEID De ricin an de oekneleid kan en inden door de reel an de kurkenrekker ecoriële oorellin oekneleid = ω x R De neleidecor = orekneleid eenedenerelijkin rad HOEKVERSNELLING De oekernellin α= Δω / Δ al Δ liie = ecoriële oorellin oekernellin eenedenerelijkin rad / rad

6 NORMAAL VERSNELLING (ronddraaiende bewein) Va = Vb ΔV= Vb-Va Ricin an Va en Vb zijn nie elijk Geol: Onaan an noraal ernellin, bij een ronddraaiende bewein e een orekneleid Va zal na een ijd Δ de ricin an Va eranderen door ΔV. 6

7 7 TANGENTIAAL VERSNELLING CD BC AC AB Ui de drieoeken BCD en AEF: ² ) ( li R a d d d d oekernellin R R a R CD a

8 WETTEN VAN NEWTON 8 De eere we an Newon: de raaeidwe Een oorwerp waarop een reulerende krac werk, i in ru of bewee zic reclijni e conane neleid oor. De neleid zal du oneranderd blijen: zowel rooe al ricin an de neleid blijen conan. He oorwerp aa il (neleid =) of bewee zic e conane neleid in een bepaalde ricin. krac F in N aa in k ernellin a in /² F = a Eenedenerelijkin k N Bij nie ericale beweinen i e nodi o de krac e onbinden in een ericale en orizonale ecor. De krac F word onbonden in FH = a en F = De weede we an Newon: krac erander de bewein De eranderin an de bewein i rec eenredi e de reulerende krac en ol de rece lijn waarin de krac werk. Di i de eleenaire forulerin an een beweinerelijkin. De krac op een oorwerp i elijk aan de eranderin an de ipul ("bewein") an e oorwerp. De ipul i e produc an de aa in kilora en de neleid in /: H H = ipul in N = aa in k = neleid in /² eenedenerelijkin: k k k N N

9 9 De derde we an Newon: acie - reacie Al een oorwerp A een krac op een oorwerp B uioefen, aa deze krac epaard e een een roe, aar eeneelde erice krac an B op A: Deze we el da kracen nooi alleen oorkoen, aar eed in paren. NB. Hoewel en eeneeld eric en een roo zijn, effen zij elkaar op, aar zijn de oorzaak an panninen in e oorwerpen waarop de kracen inwerken. ARBEID Werk de krac nie in de ricin an de erplaain, dan eld de forule oor de coponen an de krac in de ricin an de erplaain. Al de krac nie conan i en de erplaain of we een kroe, eld de forule oor een (infinieiaal) klein ukje an de we. De bijdrae dw aan de oale arbeid i e calair produc an krac en. Waardoor een coinu-facor in de definiie ebrac word. Di leid eroe da arbeid (in e Enel work, andaar e ybool W) edefiniëerd i al de ineraal an deze bijdrae oer de eele we C:. Arbeid i een calaire rooeid, kan poiief of neaief zijn, en word uiedruk in joule. Arbeid aa alijd aen e een eranderin an enerie en eef ook dezelfde eeneid, aar er zijn ook enerieozeinen waar een arbeid bij erric word. Alijd al ie een een bepaalde krac in word bewoen, word er door die krac neaiee arbeid erric; word ie e een krac ee bewoen, dan i de door die krac errice arbeid poiief. Ruwwe kan e olende principe ebruik worden: al de krac de bewein beorder i de arbeid an die krac poiief, al de becouwde krac de bewein eenwerk i de arbeid neaief. W = F S arbeid W in N of J krac F in N afeledewe S in eenedenerelijkin N = J Wrijin = nul

10 Poeniële enerie bron: Aleene ecanica / Vanlebrouck & L. Sueen / De Tecniek / blz 44 Indien een objec e een aa op een ooe boen de rond willen brenen, zal ieroor arbeid nodi zijn = F Gedurende de erplaain an e objec erric de zwaarekrac een neaiee arbeid, deze arbeid word openoen in e objec. He objec becik nu oer een poeniële enerie Ep E p Eeneden: Ep in N of J in k = 9,8 /² = Eenedenerelijkin E p k N J Kineice enerie bron: Aleene ecanica / Vanlebrouck & L. Sueen / De Tecniek / blz 44 Alle objecen die in bewein zijn, becikken, ui oorzaak an de raaeid, oer kineice enerie. De kineice enerie i in funcie an de aa en de neleid an e beweend objec. Al een krac F op een objec e aa werk, da ui ru errek e een ernellin a, dan i: F = a = a a = / Na econden i de afelede we S = Ve e = ( + )/ Bij errek ui iland i: = e = / Dan i de afelede we S = / = a / S = a ² / E F S a ² S a ² a² ² Ek a a / E E k k k ² ² ² / ² ² Eeneden = aa in k V = neleid in / Ek = kineice enerie in N of J

11 VERMOGEN De nodie enerie nodie arbeid da uieoefend word in een bepaalde ijd = eroen. W P eroen P in W (=Wa) arbeid W in J of N ijd in eenedenerelijkin N J W Afeleiden forule N N F MOMENT EN KOPPEL Een oen i e produc an een aneniale krac en opzice an een pun. Een koppel an kracen i een elel an wee elijke kracen, die eenwijdi aan (dezelfde ricin) elkaar aar eeneelde zin ebben. He ercil uen oen en koppel oen koppel Aanal kracen elijke- en eenwijdi Forule Mo = F S oen Mo in N aneniale krac F in N de loodrece afand uen de kracecor en e draaipun S in T = F S koppel T in N aneniale krac F in N de loodrece afand uen de wee kracecoren S in Vecorieel Draai conenie oor de beredenerin en opellen an forule.

12 BEPALEN VAN DE WRIJVINGSCOEFFICIENT Waar objecen conac e elkaar aken, i eed een krac aanwezi die de relaiee bewein an de wee objecen eenwerk, nl. wrijin Wrijin i afankelijk an de aard an e conacopperlak an e objec en opzice an e andere bb; o a a o a loeibaar (en oekeerd) o a aori (en oekeerd) zolan de relaiee neleid an beide objecen nul i, i de wrijinkrac een roo al de krac die aanrijp op e objec. Eenaal een krac uieoefend op een objec da roer i dan de wrijinkrac dan i de wrijinkrac oerwonnen en ko e objec in bewein. F > Fwr bewein F < Fwr een bewein De dynaice weerandkrac Wd < axiu aice weerand W De wrijinkrac kan nie boen, een axiu wrijinkrac roeien. Glijdende wrijin Een oorwerp op een ellend lak kan in eenwic blijen door de wrijinkrac N = noraalcoponen an de zwaarekrac N = co T = krac da aanrijp op e oorwerp T = in W = wrijinkrac W = T = - in f in co an wrijincoefficien fco - in f = aice weerand

13 3 Rollende wrijin Een cilinder e een eien ewic = Fzw en een raal = r op een orizonaal lak He aanrakinlak e e orizonaal lak i afankelijk an de ardeid an zowel de cilinder al an e lak al an de uieoefende drukkrac en eien ewic an de cilinder. He ondereuninlak leer een norale reaciekrac Fn die de cilinder in eenwic oud zoda Fn + Fzw = (ecorieel) Door e oepaen an een orizonale krac = F (aanrijpend in o ) zoda de cilinder op e punaa o in bewein e koen. Dan i de reulane = R = Fzw + F (ecorieel) Daar de cilinder no jui in eenwic i, zijn: R+R = De reulane R kan onbonden worden in Fw en Fn Fw = wrijinkrac Fn = norale reaciekrac Ui de kraceneenwic ol: Fw = -F (ecorieel) Fn = -Fzw (ecorieel) Hierui kan en afleiden: De eroudin f /r = coëfficiën an rollende wrijin Ui e oeneenwic ol: f Fn (r-i) Fw = (ecorieel) r = raal an de rol i = indrukkin Bandwrijin Een buizae rie olui een ae cijf oer een oek He conac uen de rie en de ae cijf zor oor e onaan an een wrijinkrac eeneeld eric aan de bewein an de rie. F F e^ ( f ) = conacoek in radialen f = wrijincoëfficiën (onbenoed eal)

Verbetersleutel examen 6LWI

Verbetersleutel examen 6LWI Verbeerleuel exaen 6LWI Correcieleuel bij Vraag-V01: De grafiek bechrijf de beweging an een rein die eer rijd in een zone oor beperke nelheid, en daarna ernel op he ogenblik da hij buien de zone i. De

Nadere informatie

WERKCOLLEGE 1. 1.A Vrije val. 1.B Centrale botsing. Basketbal (toets oktober 2000)

WERKCOLLEGE 1. 1.A Vrije val. 1.B Centrale botsing. Basketbal (toets oktober 2000) Uiwekinen Wekcollee WERKCOLLEGE.A Vije al De ije al is een ewein an assapunen in de uu an he aadoppelak. Inloeden an de luch (wijin, wind) woden ewaaloosd. a) Sel de eweinseelijkin op oo een deelje in

Nadere informatie

C. von Schwartzenberg 1/18. 1b Dat zijn de punten (0, 0) en (1; 0,5). Zie de plot hiernaast.

C. von Schwartzenberg 1/18. 1b Dat zijn de punten (0, 0) en (1; 0,5). Zie de plot hiernaast. a G&R havo B deel 9 Allerlei uncies C von Schwarzenber /8 Zie de plo hiernaas b Da zijn de punen (0, 0) en (; 0,5) c Van de raieken van en li een enkel pun onder de -as d De raieken van en hebben de -as

Nadere informatie

THEMA 2: versnelling. Gemiddelde versnelling bij een eendimensionale beweging. t, x. v v v t t t. a is gelijk aan de richtingscoëfficiënt van. a in.

THEMA 2: versnelling. Gemiddelde versnelling bij een eendimensionale beweging. t, x. v v v t t t. a is gelijk aan de richtingscoëfficiënt van. a in. QUARK_6-The-0-vernellin Blz. 1 THEMA : vernellin Geiddelde vernellin bij een eendienionle bewein Een wenje rijd vnui ilnd een hellin f. De hellinhoek i. De rooe vn de nelheid v vn he wenje nee oe l funcie

Nadere informatie

5 Brandstofverbruik in het verkeer

5 Brandstofverbruik in het verkeer Newon wo deel 1 Uiwerkingen Hoofduk 5 Brandoferbruik in e erkeer 5 Brandoferbruik in e erkeer 5.1 Inleiding Voorkenni 1 Brandoferbruik a He brandoferbruik i bij.,0 L/0 km of de auo rijd 1 op 11. He i du

Nadere informatie

2.4 Oppervlaktemethode

2.4 Oppervlaktemethode 2.4 Opperlakemehode Teken he --diagram an de eenparige beweging me een snelheid an 10 m/s die begin na 2 seconden en eindig na 4 seconden. De afgelegde weg is: =. (m/s) In he --diagram is de hooge an de

Nadere informatie

Bepaling toezichtvorm gemeente Stein

Bepaling toezichtvorm gemeente Stein Bepaling toezichtvorm 2008-2011 gemeente Stein F i n a n c i e e l v e r d i e p i n g s o n d e r z o e k P r o v i n c i e L i m b u r g, juni 2 0 0 8 V e r d i e p i n g s o n d e r z o e k S t e i

Nadere informatie

H a n d l e i d i n g d o e l m a t i g h e i d s t o e t s M W W +

H a n d l e i d i n g d o e l m a t i g h e i d s t o e t s M W W + H a n d l e i d i n g d o e l m a t i g h e i d s t o e t s M W W + D o e l m a t i g h e i d s t o e t s v o o r g e b i e d e n w a a r v o o r g e e n b o d e m b e h e e r p l a n i s v a s t g e s

Nadere informatie

Bepaling toezichtvorm gemeente Simpelveld

Bepaling toezichtvorm gemeente Simpelveld Bepaling toezichtvorm 2008-2011 gemeente Simpelveld F i n a n c i e e l v e r d i e p i n g s o n d e r z o e k P r o v i n c i e L i m b u r g, j u n i 2 0 0 8 V e r d i e p i n g s o n d e r z o e k

Nadere informatie

Al g e m e e n : O p a l o n z e a a n b i ed i n g en, a a n v a a r d i n g en, m ed ed el i n g en en o v er een k o m s t en v o o r o n d er s t a a n d e v er r i c h t i n g en z i j n u i t s l

Nadere informatie

Slinger. Wisnet-hbo april 2009 Analytische bepaling van uitwijking, snelheid en versnelling van een voorwerp met massa m dat aan een touw hangt.

Slinger. Wisnet-hbo april 2009 Analytische bepaling van uitwijking, snelheid en versnelling van een voorwerp met massa m dat aan een touw hangt. Siner Wisne-hbo apri 009 Anayische bepain van uiwijkin, sneheid en versnein van een voorwerp me massa m da aan een ouw han. 1 Beschrijvin van de siuaie Een voorwerp me massa m han aan een koord da een

Nadere informatie

H O E D U U R I S L I M B U R G?

H O E D U U R I S L I M B U R G? H O E D U U R I S L I M B U R G? N AD E R E I N F O R M A T I E S T A T E N C O M M I S S I E S OV E R O N D E R AN D E R E A F V A L S T O F F E N H E F F I N G E N I N L I M B U R G 1 6 a u g u s t u

Nadere informatie

Dus de groeifactor per 20 jaar is 1,5 = 2,25 een toename van 125% in 20 jaar. Dus Gerben heeft geen gelijk.

Dus de groeifactor per 20 jaar is 1,5 = 2,25 een toename van 125% in 20 jaar. Dus Gerben heeft geen gelijk. G&R havo B deel Groei C. von Schwarzenber / a In 980 is N i = 0 + 0 = 800 miljoen. b Vermenivuldien me,. (iedere 0 jaar van 00% naar 0% iedere 0 jaar keer,) c In 980 is N o = = N o = = d 0% oename per

Nadere informatie

Bewegen in grafieken. Hoofdstuk 1 Bewegen in grafieken. 1.1 Snelheid meten

Bewegen in grafieken. Hoofdstuk 1 Bewegen in grafieken. 1.1 Snelheid meten 1 Bewegen in grafieken 1.1 Snelheid meen 1 pulje a Een eenheid an afand (m, cm, km, ) en een eenheid an ijd (, min, h, ). uur per meer, lier/econde, km/lichjaar en uur per nach. De eenheid an nelheid i

Nadere informatie

QUARK_6-Thema-01-kracht_en_snelheidsverandering Blz. 1

QUARK_6-Thema-01-kracht_en_snelheidsverandering Blz. 1 QUARK_6-Thea-01-kracht_en_nelheideranderin Blz. 1 THEMA 1: kracht en nelheideranderin Berippen Of een oorwerp in rut of in bewein i, kun je lecht definiëren ten opzichte an een ander oorwerp. Dat oorwerp

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de funcie f : R R : 7 cos(2 ). Bepaal de afgeleide van de funcie f in he pun 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D) f 0

Nadere informatie

Bepaling toezichtvorm gemeente Venray

Bepaling toezichtvorm gemeente Venray Bepaling toezichtvorm 2007-2010 gemeente Venray F i n a n c i e e l v e r d i e p i n g s o n d e r z o e k P r o v i n c i e L i m b u r g, april 2 0 0 7 V e r d i e p i n g s o n d e r z o e k V e n

Nadere informatie

Bepaling toezichtvorm gemeente Meerlo-Wanssum

Bepaling toezichtvorm gemeente Meerlo-Wanssum Bepaling toezichtvorm 2007-2010 gemeente Meerlo-Wanssum F i n a n c i e e l v e r d i e p i n g s o n d e r z o e k Provincie L i m b u r g, april 2 0 0 7 V e r d i e p i n g s o n d e r z o e k M e e

Nadere informatie

acentrifugaal g ge ω λ

acentrifugaal g ge ω λ acenrifugaal ω g ge λ hp://eagle.cc.ukans.edu/~keihweb/64_.hml Oefening 8: z α ω λ mge g en sleepersnelling geen g e en worden erder samen weergegeen door g,, z : relaief assenselsel me naar he zuiden,

Nadere informatie

C. von Schwartzenberg 1/20

C. von Schwartzenberg 1/20 a G&R vwo B deel Eponenen en loarimen C. von Schwarzenber /0 Ze zijn elkaars spieelbeeld en opziche van de y -as. b Beide raieken hebben de -as (de lijn y = 0) als horizonale asympoo. c B = B = 0,. a b

Nadere informatie

1 Inleidende begrippen

1 Inleidende begrippen 1 Inleidende begrippen 1.1 Wanneer is een pun in beweging? Leg di ui aan de hand van een figuur. Rus en beweging (blz. 19) Figuur 1.1 Een pun in beweging 1.2 Wanneer is een pun in rus? Leg di ui aan de

Nadere informatie

L i mb u r g s e L a n d m a r k s

L i mb u r g s e L a n d m a r k s L i mb u r g s e L a n d m a r k s P r o g r a m m a I n v e s t e r e n i n S t ed e n e n D o r p e n, l i j n 2 ; D e L i m b u r g s e I d e n t i t e i t v e r s i e 1. 0 D o c u m e n t h i s t o

Nadere informatie

C. von Schwartzenberg 1/20. Zie de plot hiernaast. 1b Alle grafiek gaan door O (0,0) en (1;0,5). 1c 1d

C. von Schwartzenberg 1/20. Zie de plot hiernaast. 1b Alle grafiek gaan door O (0,0) en (1;0,5). 1c 1d a G&R vwo A deel 0 Allerlei uncie C. von Schwarzenber /0 Zie de plo hiernaas. b Alle raiek aan door O (0,0) en (;0,). c d De raieken van y = 0, en y = 0, komen nie onder de -as. De raieken van y = 0, en

Nadere informatie

Al het goede van melk Aankoop Manager

Al het goede van melk Aankoop Manager Al he oede van melk Aankoop Manaer Funcie Je ben veranwoordelijk voor he onwikkelen en voeren van een aankoopbeleid waarbij zo unsi moelijk word aanekoch rekenin houdend me prijs, kwaliei, evenwichi assorimen

Nadere informatie

De nieuwe efficiëntie in de betonfabriek

De nieuwe efficiëntie in de betonfabriek De nieue efficiënie in e beonfabriek iconor... bk e revoluie in e bouerel. Nie r nie iner. He eare sys kan sava als e bouijze voor e 21se u: e isolaiebou ehoe. iconor laas e isolaie craal in alle syse

Nadere informatie

E 1. Voor de coördinaten van P geldt: x (t) = cos t + t sin t y (t) = sin t t sin t

E 1. Voor de coördinaten van P geldt: x (t) = cos t + t sin t y (t) = sin t t sin t Buieling Gegeven een halve cirkel me sraal. Lijnsuk raak de halve cirkel in pun R. De lenge van is consan π meer, erwijl he raakpun R langs de cirkel loop, me een snelheid van m/s. Gebruik de ekening.

Nadere informatie

B e l e i d s k a d e r K e r k e n, K l o o s t e r s e n a n d e r e r e l i g i e u z e g e b o u w e n

B e l e i d s k a d e r K e r k e n, K l o o s t e r s e n a n d e r e r e l i g i e u z e g e b o u w e n B e l e i d s k a d e r K e r k e n, K l o o s t e r s e n a n d e r e r e l i g i e u z e g e b o u w e n I n é é n d a g k a n r e l i g i e u s e r f g o e d v a n m e e r d e r e g e n e r a t i e

Nadere informatie

Gebruik van condensatoren

Gebruik van condensatoren Gebruik van condensaoren He spanningsverloop ijdens he laden Als we de schakelaar s sluien laden we de condensaor op. De condensaorspanning zal oenemen volgens een exponeniële funcie en de spanning over

Nadere informatie

Hoofdstuk 3 Exponentiële functies

Hoofdstuk 3 Exponentiële functies Havo B deel Uiwerkingen Moderne wiskunde Hoofdsuk Eponeniële funies ladzijde 6 V-a Door zih in weeën e delen vermenigvuldig he aanal aeriën per ijdseenheid zih seeds me een faor is de eginhoeveelheid,

Nadere informatie

Examen VWO. Wiskunde B1 (nieuwe stijl)

Examen VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 83 punen e behalen; he examen besaa ui 20 vragen. Voor

Nadere informatie

T I P S I N V U L L I N G E N H O O G T E T E G E N P R E S T A T I E S B O M +

T I P S I N V U L L I N G E N H O O G T E T E G E N P R E S T A T I E S B O M + T I P S I N V U L L I N G E N H O O G T E T E G E N P R E S T A T I E S B O M + A a n l e i d i n g I n d e St a t e nc o m m i s si e v o or R ui m t e e n G r o e n ( n u g e n o em d d e St at e n c

Nadere informatie

t (= aantal jaren na 1950)

t (= aantal jaren na 1950) Wiskude : Voorbeeldeme me uiwerkie) NB He eme bes ui 5 opve Je die elk woord volledi oe e liche behlve bij de meerkeuzevre; voor deze vre kruis je op he opvebld per vr hokje ) 3 De cijfers usse hkjes eve

Nadere informatie

Overzicht. Inleiding. Classificatie. NP compleetheid. Algoritme van Johnson. Oplossing via TSP. Netwerkalgoritme. Job shop scheduling 1

Overzicht. Inleiding. Classificatie. NP compleetheid. Algoritme van Johnson. Oplossing via TSP. Netwerkalgoritme. Job shop scheduling 1 Overzich Inleiding Classificaie NP compleeheid Algorime van Johnson Oplossing via TSP Newerkalgorime Job shop scheduling 1 Inleiding Gegeven zijn Machines: M 1,,..., M m Taken: T 1, T 2,... T n Per aak

Nadere informatie

Hoofdstuk 4. Opdracht 4.16. Algemene oplossing: Algemene oplossing: n 1 1 2 n 1 7/2. Algemene oplossing: + = + ( ) Algemene oplossing: Opdracht 4.

Hoofdstuk 4. Opdracht 4.16. Algemene oplossing: Algemene oplossing: n 1 1 2 n 1 7/2. Algemene oplossing: + = + ( ) Algemene oplossing: Opdracht 4. Hoofdsuk Opdrch.6 k x + xk = = r = Algemee oplossig: k r xk = + xk = + / k xk = + k 9 7 x = x + 7 x + x = 7 x x = + + + 7 = r = Algemee oplossig: r 7/ x = + x = + / x = 7 c α α ( α α ) x = x x x x = x

Nadere informatie

Samenvatting Natuurkunde 1 HAVO Beweging

Samenvatting Natuurkunde 1 HAVO Beweging Beweging Samenvaing Nauurkunde HAVO Eenparig rechlijnige beweging a Eenparig versnelde rechlijnige beweging a a = consan a = 0 m/s Oppervlake = v = 0 m/s Oppervlake = v v v v = consan v() = a Oppervlake

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden 6 Blok - Vaardigheden Blok - Vaardigheden Exra oefening - Basis B-a Bij abel A zijn de facoren achereenvolgens 8 : = 6 ; 08 : 8 = 6 en 68 : 08 = 6. Bij abel A is sprake van exponeniële groei. Bij abel

Nadere informatie

t-toets met één steekproef Onderzoeksmethoden: Statistiek 3 t obs = s N Marjan van den Akker Tweezijdige t-toets met één steekproef

t-toets met één steekproef Onderzoeksmethoden: Statistiek 3 t obs = s N Marjan van den Akker Tweezijdige t-toets met één steekproef -oe me één eekproef vergelijking van één eekproefgemiddelde me een norm (een van e voren bepaald gemiddelde probleem: σ ui populaie i nie bekend en he eekproefaanal i klein (

Nadere informatie

Kromlijnige bewegingen. Verticale valbeweging. m s. Herhaling Vallen. Vrije val. Oefenopgave 1

Kromlijnige bewegingen. Verticale valbeweging. m s. Herhaling Vallen. Vrije val. Oefenopgave 1 Krolijnige bewegingen Herhaling Vallen Onder vallen verta ik iedere beweging door de lucht zonder aandrijving (door pierkracht of otorkracht). Bijvoorbeeld de beweging van een voorwerp dat i weggegooid.

Nadere informatie

Q u i c k -s c a n W M O i n L i m b u r g De e e r s t e e r v a r i n g e n v a n g e m e e n t e n e n c l i ë n t e n

Q u i c k -s c a n W M O i n L i m b u r g De e e r s t e e r v a r i n g e n v a n g e m e e n t e n e n c l i ë n t e n Q u i c k -s c a n W M O i n L i m b u r g De e e r s t e e r v a r i n g e n v a n g e m e e n t e n e n c l i ë n t e n M w. d r s. E. L. J. E n g e l s ( P r o v i n c i e L i m b u r g ) M w. d r s.

Nadere informatie

1 Je zelfbeeld is nooit afgerond

1 Je zelfbeeld is nooit afgerond 1 Je zelfbeeld i nooi afgerond 1.1 Je heb heel veel geleerd in je leven 12 1.2 De poiieve en negaieve kan van je vanzelfprekendheden 13 1.3 Je kun je zelfbeeld zelf bijellen 14 1.4 Veranderingen in je

Nadere informatie

Fibbe Advocaten. Wilhelminastraat 66. 2011 VP Haarlem

Fibbe Advocaten. Wilhelminastraat 66. 2011 VP Haarlem Fibbe Advocaen Wilhelminasraa 66 2011 VP Haarlem Wij, Fibbe Advocaen e Haarlem, doen ons bes om u zoveel mogelijk van diens e zijn. Daarom willen wij u vragen mee e werken aan een klanevredenheidsonderzoek.

Nadere informatie

Schoolkrant. December 2016

Schoolkrant. December 2016 Schoolkrant December 2016 De Groep kleutergroepen 4 De Groep kleutergroepen 4 De Groep kleutergroepen 4 De Groep kleutergroepen 4 De Groep kleutergroepen 4 De Groep kleutergroepen 4 De Groep kleutergroepen

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B,2 (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 86 punen e behalen; he examen besaa ui 9 vragen. Voor

Nadere informatie

Voorbeelden van lineaire eerste-orde differentiaalvergelijkingen

Voorbeelden van lineaire eerste-orde differentiaalvergelijkingen Voorbeelden van lineaire eerse-orde differeniaalvergelijkingen Hieronder vind je 8 voorbeelden waarbij een differeniaalvergelijking e behulp van he overzich wor opgelos. Opdrach Besudeer de voorbeelden

Nadere informatie

2.1 Bepaling van een eenparige rechtlijnige beweging...39

2.1 Bepaling van een eenparige rechtlijnige beweging...39 Inhoudsopgave Voorwoord... 3 KINEMATICA...17 1 Inleidende begrippen...19 1.1 Rust en beweging van een punt...19 1.1.1 Toestand van beweging...19 1.1.2 Toestand van rust...20 1.1.3 Positie van een punt...20

Nadere informatie

Integratiepracticum III

Integratiepracticum III Inegraiepracicum III Casus I Projecevaluaie Irrigaie landbouwgronden in Ruriania Bas Beerenhou (556622) & Cliff Voeelink (554506) Deadline casus I: 2 januari 2007 TR2 Inleiding Er zijn een hoop derdewereldlanden.

Nadere informatie

Oefeningen Elektriciteit I Deel Ia

Oefeningen Elektriciteit I Deel Ia Oefeningen Elekriciei I Deel Ia Di documen beva opgaven die aansluien bij de cursuseks Elekriciei I deel Ia ui he jaarprogramma van de e kandidauur Indusrieel Ingenieur KaHo Sin-Lieven.. De elekrische

Nadere informatie

R e s u l t a a t g e r i c h t h e i d e n c o m p e t e n t i e m a n a g e m e n t b i j d r i e o v e r h e i d s o r g a n i s a t i e s

R e s u l t a a t g e r i c h t h e i d e n c o m p e t e n t i e m a n a g e m e n t b i j d r i e o v e r h e i d s o r g a n i s a t i e s R e s u l t a a t g e r i c h t h e i d e n c o m p e t e n t i e m a n a g e m e n t b i j d r i e o v e r h e i d s o r g a n i s a t i e s O p le i d i n g: M a s t e r P u b l i c M a n a g e m e n

Nadere informatie

4e Het absolute maximum is 3 (voor x = 1). 4c De grafiek is afnemend dalend op 2, 3. 4f Er is een minimum voor x = 3. Dit minimum is 0.

4e Het absolute maximum is 3 (voor x = 1). 4c De grafiek is afnemend dalend op 2, 3. 4f Er is een minimum voor x = 3. Dit minimum is 0. G&R vwo A/C eel C. von Schwarzenberg 1/16 1a 1b 1c Da was begin 00. Er waren oen 140000 banen. Toename van 10000 naar 140000, us een oename van 0000 banen. Vóór juli 1998 is e oename oenemen (e oename

Nadere informatie

Hoofdstuk 2 - Formules voor groei

Hoofdstuk 2 - Formules voor groei Moderne wiskunde 9e ediie Havo A deel Uiwerkingen Hoofdsuk - Formules voor groei bladzijde 00 V-a = 08, ; 870 08, ; 70 0, 8; 60 00 00 870 70 08,, gemiddeld 0,8 b De beginhoeveelheid is 00 en de groeifacor

Nadere informatie

Uitwerking Tentamen Optimalisering (TW2020) Vrijdag 8 januari 2016

Uitwerking Tentamen Optimalisering (TW2020) Vrijdag 8 januari 2016 Uieking Tenamen Opimalieing (TW2020) Vijdag 8 januai 2016 He enamen beaa ui 6 opgaen epeid oe 3 pagina. In oaal ijn e uen de -10 en 80 punen e edienen. Je cijfe od ekegen doo he oaal aanal behaalde punen

Nadere informatie

Scholentoernooi 20í 3

Scholentoernooi 20í 3 Shenerni 20í 3 Grep 3,4, en n de bsisshen in en rnd he 7 pri2013 p: brj: p: wensd 24 pri203 Veberen ii n Kein Dheren Sprprk "' Shder", Zuphensewe, he Aeene reee 1'. De eerse wedsrijden beinnen rnd 13:00

Nadere informatie

Overzicht Examenstof Wiskunde A

Overzicht Examenstof Wiskunde A Oefenoes ij hoofdsuk en Overzih Examensof Wiskunde A a X min 0, X max 0, Y min 0 en Y max 000. 0 lier per minuu. Als de ank leeg is, dan is W 0, dus 00 0 0 dus 0. Na 0 minuen is de ank leeg. a Neem de

Nadere informatie

Loonstaat personeel aan huis

Loonstaat personeel aan huis Belasingdiens 2012 Loonsaa personeel aan huis Waarom di formulier? U vul een loonsaa personeel aan huis in voor elke werknemer die onder de vereenvoudigde regeling val. Op de loonsaa houd u de gegevens

Nadere informatie

Klassieke en Kwantummechanica (EE1P11)

Klassieke en Kwantummechanica (EE1P11) Maandag 3 oktober 2016, 9.00 11.00 uur; DW-TZ 2 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Opleiding Elektrotechniek Aanwijzingen: Er zijn 2 opgaven in dit tentamen.

Nadere informatie

Studiekosten of andere scholingsuitgaven

Studiekosten of andere scholingsuitgaven 12345 20 Aanvullende oeliching Bij voorlopige aanslag inkomsenbelasing 20 Volg u in 20 een opleiding of een sudie voor uw (oekomsige) beroep? Dan mag u de uigaven hiervoor, zoals lesgeld en de uigaven

Nadere informatie

Studiekosten of andere scholingsuitgaven

Studiekosten of andere scholingsuitgaven 12345 Aanvullende oeliching bij aangife inkomsenbelasing IB 266-1T02FD (2464) Sudiekosen of andere scholingsuigaven Volgde u in een opleiding of een sudie voor uw (oekomsige) beroep? Dan mag u de uigaven

Nadere informatie

Drukkerij Van de Sande Ambachtshof 1, 2632 BB Nootdorp

Drukkerij Van de Sande Ambachtshof 1, 2632 BB Nootdorp Dij V S Amcf, 2632 BB N Dij V S - SD - S Pi - Bc.l Hii - Iiw - H Cll - D Ec - Fmiliijf - Mw 200 Amcf - T mi - Omij - Gmlij cii Dllli Aciii - P P: w,, wii - P: iil,, i, l - Af P: ij, ill, w, c, zi Oz l

Nadere informatie

TEKENLIJST SPIJKERSCHRIFT

TEKENLIJST SPIJKERSCHRIFT TEKENLIJST SPIJKERSCHRIFT Dit is een vereenvoudigde lijst met spijkerschrifttekens uit Mesopotamië. Deze lijst maakt het mogelijk de tijdens de workshop Graven om te Weten bestudeerde tablet te vertalen.

Nadere informatie

hr,w! il("v' ^Ju Sl^ lnul ffix d,ue *LV & stu.nsl " upt[xn i'v a-ls g;rpr\,j t1[ Ê.8 A B c D E F G 1 k 3 Sommen maken met Excel

hr,w! il(v' ^Ju Sl^ lnul ffix d,ue *LV & stu.nsl  upt[xn i'v a-ls g;rpr\,j t1[ Ê.8 A B c D E F G 1 k 3 Sommen maken met Excel B s ^ =g \ s Ë_! -a_ ry È_ lr -' A - fl = rd s. li - Als je moe soppen voorda je me de ele aak kaar en, sa e esandan op onder de naam: Sommen-r. n deze aak kun je e gemakvan een rekenlad zelf ondekken.

Nadere informatie

ELEKTRICITEIT WISSELSTROOMTHEORIE. Technisch Instituut Sint-Jozef, Wijerstraat 28, B-3740 Bilzen. Cursus : Ian Claesen. Versie: 19-10-2008

ELEKTRICITEIT WISSELSTROOMTHEORIE. Technisch Instituut Sint-Jozef, Wijerstraat 28, B-3740 Bilzen. Cursus : Ian Claesen. Versie: 19-10-2008 EEKTTET WSSESTOOMTHEOE Technisch nsiuu Sin-Jozef, Wijersraa 28, B-3740 Bilzen ursus : an laesen Versie: 19-10-2008 1 Sooren spanningen en sromen... 3 1.1 Gelijksroom... 3 1.2 Wisselsroom... 4 2 Sinusvormige

Nadere informatie

Hoofdstuk 1 Lineaire en exponentiële verbanden

Hoofdstuk 1 Lineaire en exponentiële verbanden Hoofsuk Lineaire en exponeniële veranen lazije A: Geen lineair veran, als x me oeneem, neem y nie sees me ezelfe waare oe. B: Lineair veran, als x me oeneem, neem y sees me, oe. C: Geen lineair veran,

Nadere informatie

= = = 6. methode-b: het oppervlak onder de snelheid-tijd-grafiek is een maat voor de afgelegde weg.

= = = 6. methode-b: het oppervlak onder de snelheid-tijd-grafiek is een maat voor de afgelegde weg. Verbeterleutel Ea 6MWE_LWE Correctieleutel bij Vraag-V01: Steengoede grafiek 7 We bepalen de geiddelde nelheid uit de grafiek: v + 1 0 1 v vg = = = 6 Hieruit volgt voor de afgelegde aftand:. v. g = = vg

Nadere informatie

Eindexamen wiskunde B 1 vwo 2003-I

Eindexamen wiskunde B 1 vwo 2003-I Eindexamen wiskunde B vwo 2003-I Lenge Ui saisisch onderzoek is gebleken da de volwassen Nederlandse mannen in 999 gemiddeld 80,0 cm lang waren, en da er een sandaardafwijking van 2,8 cm was in de lengeverdeling.

Nadere informatie

CONCEPT WATERWERKBLAD BEREKENINGSMETHODE IN VERBAND MET WATERSLAG

CONCEPT WATERWERKBLAD BEREKENINGSMETHODE IN VERBAND MET WATERSLAG Herziening van juni 004 CONCEPT WATERWERKBLAD BEREKENINGSMETHODE IN VERBAND MET WATERSLAG WB. F DATUM: OKT 04 Aueurrehen voorbehouden Di werkbad heef berekking op de berekeningmehode in verband me waerag.

Nadere informatie

Studiekosten of andere scholingsuitgaven

Studiekosten of andere scholingsuitgaven Bij voorlopige aanslag inkomsenbelasing 2013 IB 275-1T31FD Volg u in 2013 een opleiding of een sudie voor uw (oekomsige) beroep? Of had u kosen voor een EVC-procedure (Erkenning Verworven Compeenies)?

Nadere informatie

2000 loopt van t = 5 tot t = 6. De toename in 2000 is N L(6) N L(5) 69 (lepelaars).

2000 loopt van t = 5 tot t = 6. De toename in 2000 is N L(6) N L(5) 69 (lepelaars). G&R havo A deel 0 Groei C. von Schwarzenber /6 a b Na drie weken 750 + 50 = 00 (m ); na vijf weken 750 + 5 50 = 500 (m ). Na één week 6 = (m ); = = na vier weken 6 6 56 (m ). w c 750 + w 50 = 6 (inersec)

Nadere informatie

Studiekosten of andere scholings uitgaven

Studiekosten of andere scholings uitgaven 20 Aanvullende oeliching bij aangife inkomsenbelasing 20 Sudiekosen of andere scholings uigaven Volgde u in 20 een opleiding of een sudie voor uw (oekomsige) beroep? Of had u kosen voor een EVCprocedure

Nadere informatie

x 2x x 4x x 1x x 8x x x 12 = 0 G&R vwo B deel 1 1 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/25

x 2x x 4x x 1x x 8x x x 12 = 0 G&R vwo B deel 1 1 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/25 C. von Schwartzenberg 1/ 1 I, II, IV en V zijn tweedegraadsvergelijkingen. (de hoogste macht van is steeds ; te zien na wegwerken haakjes?) (III is een eerstegraadsvergelijking en VI is een derdegraadsvergelijking)

Nadere informatie

Vaardigheden. bladzijde 174. De toename per jaar is = 102, = dus de toename per 100 jaar is De toename per jaar is.

Vaardigheden. bladzijde 174. De toename per jaar is = 102, = dus de toename per 100 jaar is De toename per jaar is. Vaarigheen lazije 74 00 440 De oename per jaar is = 0, 00 99 ij in jaren 990 000 00 00 00 aanal 440 7,, 00 De oename per jaar is 609900 00 000 700 89 ij in jaren 700 800 900 997 000 aanal 00 00 48 000

Nadere informatie

VLAAMSE FEDERATIE HONDENSPORTLIEFHEBBERS. Wedstrijd ingericht door : Datum : Keurders : Ringmeester : Secretariaat : REEKS of SERIE NR :

VLAAMSE FEDERATIE HONDENSPORTLIEFHEBBERS. Wedstrijd ingericht door : Datum : Keurders : Ringmeester : Secretariaat : REEKS of SERIE NR : HONDENSPORTLIEFHEBBERS GEHOORZAAMHEID Wedrijd ingerich door : Keurder : Ringmeeer : Secreariaa : REEKS of SERIE NR : Nr Naam van de geleider Nr. Werkboekje Naam van de hond Ra Gelach.. 3. 4. 5. 6. 7. Vlaame

Nadere informatie

. Tijd 75 min, dyslecten 90min. MAX: 44 punten 1. (3,3,3,3,2,2p) Chemische stof

. Tijd 75 min, dyslecten 90min. MAX: 44 punten 1. (3,3,3,3,2,2p) Chemische stof RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T112-HCMEM-H579 Voor elk onderdeel is aangegeven hoeveel punen kunnen worden behaald. Anwoorden moeen alijd zijn voorzien van een berekening, oeliching

Nadere informatie

Optimale strategieën voor gunstige binomiale spellen (Engelse titel: Optimal control of favourable binomial games)

Optimale strategieën voor gunstige binomiale spellen (Engelse titel: Optimal control of favourable binomial games) Technische Univesiei Delf Faculei Elekoechniek, Wiskunde en Infomaica Delf Insiue of Applied Mahemaics Opimale saegieën voo gunsige binomiale spellen (Engelse iel: Opimal conol of favouable binomial games)

Nadere informatie

m = = ρ ρ V V V V R4 m in kg en V in m 3 hoort bij ( coherent) ρ in kg/m 3 m in g en V in ml hoort bij ( coherent) ρ in g/ml

m = = ρ ρ V V V V R4 m in kg en V in m 3 hoort bij ( coherent) ρ in kg/m 3 m in g en V in ml hoort bij ( coherent) ρ in g/ml Reflectievraen versie 21 Per edachte..1 R1 R2 1 d is elijk aan 1 c en daaro heb je de nijin te zeen dat 1 k/d elijk is aan 1 k/c. Het is dus eienlijk eer slordiheidsfout dan een denkfout. Model: 1 k/d

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 4 Goniometrie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 4 Goniometrie De Wageningse Mehode & VWO wiskunde B Uigebreidere anwoorden Hoofdsuk Goniomerie Paragraaf Cirkelbewegingen a. De hooge van he wiel is de y-coördinaa van he hoogse pun van de grafiek, dus 80 cm b. De periode

Nadere informatie

BETER FOTOGRAFEREN MLU Mirror Lock-Up

BETER FOTOGRAFEREN MLU Mirror Lock-Up BETER FOTOGRAFEREN MLU Mirror Lock-Up DE SPIEGEL VAN TE VOREN OPKLAPPEN... JA OF NEE? De test s die g edaan zijn werden g edaan vanaf statief en het o n- derwerp wa s een vel papier met tek st, zo dat

Nadere informatie

xxx SNEL, SNELLER, SNELST SNELLOOPDEUR A2020 hoogte onderzijde lagerplaat - 50mm hoogte onderzijde lagerplaat A2020 DICHT BIJ U ALTIJD

xxx SNEL, SNELLER, SNELST SNELLOOPDEUR A2020 hoogte onderzijde lagerplaat - 50mm hoogte onderzijde lagerplaat A2020 DICHT BIJ U ALTIJD hooge onderzijde lagerplaa an hooge en breede x A2020 A2020 hooge onderzijde lagerplaa an hooge en breede x A2020 Bedrijfsdeurenfabriek.nl is specialis op he gebied van overheaddeuren, laad- en lossysemen,

Nadere informatie

Hoofdstuk 8 Polarisatie

Hoofdstuk 8 Polarisatie Hoofdsuk 8 Polarisaie lecromagneische Sraling is Gepolariseerd Iedere ransversale rilling is gepolariseerd To nu alleen rillingen beschouwd waarvan (en B) in één vlak ril: Lineair gepolariseerd lich. (In

Nadere informatie

Opgave 1 (30 punten) + + = B h Z

Opgave 1 (30 punten) + + = B h Z Tenamen CT222 Dynamica van Sysemen 25 juni 212 14.-17. Le op: - Vermeld op ieder blad je naam en sudienummer - Maak elk van de drie opgaven op een apar vel Opgave 1 (3 punen) 2 Een bekken (links) me berging

Nadere informatie

11 Bewegingsleer (kinematica)

11 Bewegingsleer (kinematica) 11 Bewegingleer (kinematica) Onderwerpen - Plaatdiagram - Gemiddelde nelheid en nelheid uit plaat-tijd-diagram - Snelheid op een bepaald tijdtip uit plaat-tijd-diagram - Gemiddelde nelheid uit nelheid-tijd-diagram

Nadere informatie

R e g i o M i d d e n -L i m b u r g O o s t. G r e n z e l o o s w o n e n i n M i d d e n -L i m b u r g R e g i o n a l e W o o n v i s i e

R e g i o M i d d e n -L i m b u r g O o s t. G r e n z e l o o s w o n e n i n M i d d e n -L i m b u r g R e g i o n a l e W o o n v i s i e R e g i o M i d d e n -L i m b u r g O o s t G r e n z e l o o s w o n e n i n M i d d e n -L i m b u r g R e g i o n a l e W o o n v i s i e 4 o k t o b e r 2 0 0 6 P r o j e c t n r. 2 9 5 7. 7 2 B o

Nadere informatie

Het wiskunde B1,2-examen

Het wiskunde B1,2-examen Ger Koole, Alex van den Brandhof He wiskunde B,2 examen NAW 5/4 nr. 2 juni 2003 65 Ger Koole Faculei der Exace Weenschappen, Afdeling Wiskunde, Vrije Universiei, De Boelelaan 08 a, 08 HV Amserdam koole@cs.vu.nl

Nadere informatie

Krommen in het platte vlak

Krommen in het platte vlak Krommen in he plae vlak 1 Een komee beschrijf een baan om de zon. We brengen een assenselsel aan in he vlak van de baan van de komee, me de zon als oorsprong. Als eenheid in he assenselsel nemen we de

Nadere informatie

QUARK_6-Thema-04-bijzondere krachten Blz. 1. THEMA 4: bijzondere krachten

QUARK_6-Thema-04-bijzondere krachten Blz. 1. THEMA 4: bijzondere krachten QUAK_6-Thea-04-bijodere krachte Bl. 1 THEMA 4: bijodere krachte QUAK_6-Thea-04-bijodere krachte Bl. di.gealle: Copoete a poitie-ector: Copoete a elheid-ector Noraalkracht Ee oorwerp dat oderteud wordt,

Nadere informatie

De leraar fysica als goochelaar. lesvoorbeeld: harmonische trillingen

De leraar fysica als goochelaar. lesvoorbeeld: harmonische trillingen De leraar fysica als goochelaar lesvoorbeeld: harmonische trillingen Stan Wouters Docent Fysica aan de Faculteit Industriële Ingenieurs Fi² (= KHLim en Xios) VLAAMS CONGRES VAN LERAARS WETENSCHAPPEN zaterdag

Nadere informatie

Vergelijkingen oplossen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.

Vergelijkingen oplossen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. Verelijkinen oplossen vmbo-k34 Aueur VO-conen Laas ewijzid Licenie Webadres 12 April 2016 CC Naamsvermeldin 3.0 Nederland licenie hp://maken.wikiwijs.nl/74230 Di lesmaeriaal is emaak me Wikiwijsleermiddelenplein.

Nadere informatie

2.1 Het differentiequotiënt

2.1 Het differentiequotiënt hoodsk : Diereniëren. He dierenieqoiën Me een ncie kn je de onwikkeling n een grooheid beschrijen. Neem bijoorbeeld een schoonspringer die n de ienmeerplnk spring. Als je de lchwrijing erwrloos, kn je

Nadere informatie

digitale signaalverwerking

digitale signaalverwerking digiale signaalverwerking deel 2: sampling en digiale filerechniek Hoewel we de vorige keer reeds over he samplen van signalen gesproken hebben, komen we daar nu op erug, om de ermee samenhangende effecen

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 2 Regels voor differentiëren

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 2 Regels voor differentiëren De Wageningse Methode &6 WO wiskunde B Uitgebreide antwoorden Hoofdstuk egels voor differentiëren Paragraaf Opnieuw sinus en inus a. -, 0, ; -, ; -, ; -, b. (,sin) (-0, ; 0,9), met de G Op dezelfde hoogte:,

Nadere informatie

Studiekosten en andere scholings uitgaven

Studiekosten en andere scholings uitgaven 20 Aanvullende oeliching bij aangife inkomsenbelasing 20 IB 266-1T12FD (2576) Sudiekosen en andere scholings uigaven Volgde u in 20 een opleiding of een sudie voor uw (oekomsige) beroep? Of had u kosen

Nadere informatie

Hoofdstuk 11:Reactiesneleid 1.waarom van het waarom De reactiesnelheid kan afhankelijk zijn van verschillende factoren:

Hoofdstuk 11:Reactiesneleid 1.waarom van het waarom De reactiesnelheid kan afhankelijk zijn van verschillende factoren: Hoofdsuk :eaciesneleid.waarom van he waarom De reaciesnelheid kan afhankelijk zijn van verschillende facoren:. aard van de reagerende producen(uigangssoffen) A + B AB A + B AB Hoeveel kans op bosing? ~[

Nadere informatie

Programma zomervakantie 2008 Thema: Milkshake

Programma zomervakantie 2008 Thema: Milkshake Proramma zomervakanie 2008 Thema: Milkshake Roerdam, juli 2008 Bese ouders, Deze zomervakanie is he hema als e milkshake van allerlei zonnie fanasische s. We verrass de kinder me verschillde sfer: Afrika,

Nadere informatie

De MEETKUNDE BOEK 2 Over de natuur van de kromme lijnen.

De MEETKUNDE BOEK 2 Over de natuur van de kromme lijnen. De MEETKUNDE BOEK 2 Over de natuur van de kroe lijnen. [p. 315] De ouden (d.w.. de Grieken) hebben eer juist opgeerkt dat soige eetkundige probleen vlak ijn, andere lichaelijk & weer andere lijnachtig,

Nadere informatie

X Y e. p n+ e. X Y e. Y(stabiel)

X Y e. p n+ e. X Y e. Y(stabiel) Faculei Bèaweenschappen Ioniserende Sralen Pracicum chergrondinformaie Eigenschappen van ioniserende sraling Bij he uizenden van ioniserende sraling röngensraling en α-, β- en γ-sraling door maerie gaa

Nadere informatie

Voorwerk DGH 3.1_WE.indd :27

Voorwerk DGH 3.1_WE.indd :27 2018 INHOUD 2017 H H/F U BV V : W : R D D: X, R P Z: V PM S Pö : M L- D E: Y K 978 90 5956 755 9 447. N,,,,,. D. T,,. O. D. M, (@.). W 5 H D G H 8 T 100 S 9 T 25 R 13 T 25 S B 14 T 25 C 15 T 25 M 16 T

Nadere informatie

Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel.

Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel. Herhalingsoefeningen Driehoeksmeting Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Construeer

Nadere informatie

Studiekosten en andere scholings uitgaven

Studiekosten en andere scholings uitgaven bij aangife inkomsenbelasing 20 IB 266-1TFD (2576) Sudiekosen en andere scholings uigaven Volgde u in 20 een opleiding of een sudie voor uw (oekomsige) beroep? Of had u kosen voor een EVCprocedure (Erkenning

Nadere informatie

de Wageningse Methode Antwoorden H26 RECHTE LIJNEN HAVO 1

de Wageningse Methode Antwoorden H26 RECHTE LIJNEN HAVO 1 H6 RECHTE LIJNEN HAVO 6.0 INTRO a km kost,0: =,0 b rankje kost : =,0, us e entree is,0,0 = 0,-. Nee, als je bij e onerste lijn naar rechts gaat ga je omhoog, us als je naar rechts zou gaan, zou je omhoog

Nadere informatie

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 1 Voorwoord Satellieten zijn er in vele soorten en maten. Zo heb je bijvoorbeeld

Nadere informatie